task.py 61 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from typing import (
Baber's avatar
Baber committed
9
    TYPE_CHECKING,
10
11
12
13
14
15
16
17
18
19
20
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
21
22
23

import datasets
import numpy as np
24
from tqdm import tqdm
Baber's avatar
Baber committed
25
from typing_extensions import deprecated
26
27

from lm_eval import utils
28
29
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
30
from lm_eval.caching.cache import load_from_cache, save_to_cache
Baber's avatar
Baber committed
31
32
from lm_eval.config.metric import MetricConfig
from lm_eval.config.task import TaskConfig
33
34
from lm_eval.filters import build_filter_ensemble

35

36
37
38
39
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
40
    "generate_until",
41
42
]

Baber's avatar
Baber committed
43
if TYPE_CHECKING:
Baber's avatar
Baber committed
44
    pass
Baber's avatar
Baber committed
45
46


Lintang Sutawika's avatar
Lintang Sutawika committed
47
eval_logger = logging.getLogger(__name__)
48

lintangsutawika's avatar
lintangsutawika committed
49

50
51
52
53
54
55
56
57
58
59
class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

60
    VERSION: Optional[Union[int, str]] = None
61

62
63
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
64
    DATASET_PATH: Optional[str] = None
65
66

    # The name of a subset within `DATASET_PATH`.
67
    DATASET_NAME: Optional[str] = None
68

69
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
70

71
72
    def __init__(
        self,
73
74
75
76
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
77
    ) -> None:
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
100
101
102
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
103

104
        self._config: TaskConfig = TaskConfig.from_yaml({**config})
105

106
        self._filters = [build_filter_ensemble("none", [("take_first", None)])]
107
108
109
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
110

111
112
113
114
115
116
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
141
142
143
144
145
146
147
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
148

149
    @property
150
    def config(self) -> TaskConfig:
151
152
153
        """Returns the TaskConfig associated with this class."""
        return self._config

154
    @abc.abstractmethod
Baber's avatar
Baber committed
155
    def has_training_docs(self) -> bool:
156
157
158
159
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
Baber's avatar
Baber committed
160
    def has_validation_docs(self) -> bool:
161
162
163
164
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
Baber's avatar
Baber committed
165
    def has_test_docs(self) -> bool:
166
167
168
        """Whether the task has a test set"""
        pass

169
    def training_docs(self) -> Iterable:
170
171
172
173
174
175
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

176
    def validation_docs(self) -> Iterable:
177
178
179
180
181
182
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

183
    def test_docs(self) -> Iterable:
184
185
186
187
188
189
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

190
    def fewshot_docs(self) -> Iterable:
191
192
193
194
195
196
197
198
199
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber Abbasi's avatar
Baber Abbasi committed
200
201
202
203
204
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
205
206
            return self.test_docs()

207
    def _process_doc(self, doc: dict) -> dict:
208
209
210
211
212
213
214
215
216
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
217

218
    @property
Baber's avatar
Baber committed
219
    def instances(self) -> list[Instance]:
220
221
222
223
224
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

Baber's avatar
Baber committed
225
    def fewshot_examples(self, k, rnd) -> Iterable[dict]:
226
227
228
229
230
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Baber's avatar
Baber committed
231
    def doc_to_decontamination_query(self, doc: dict):
232
        raise NotImplementedError(
233
234
235
236
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
Baber's avatar
Baber committed
237
    def doc_to_text(self, doc: dict) -> str:
238
239
240
        pass

    @abc.abstractmethod
Baber's avatar
Baber committed
241
    def doc_to_target(self, doc: dict) -> Union[str, int]:
242
243
        pass

244
    # not an abstractmethod because not every language-only task has to implement this
Baber's avatar
Baber committed
245
    def doc_to_image(self, doc: dict):
246
247
        raise NotImplementedError

Baber's avatar
Baber committed
248
    def doc_to_audio(self, doc: dict):
249
250
        raise NotImplementedError

Baber's avatar
Baber committed
251
    def doc_to_prefix(self, doc: dict) -> str:
Baber Abbasi's avatar
Baber Abbasi committed
252
253
        return ""

254
255
    def build_all_requests(
        self,
256
        *,
257
        limit: Union[int, None] = None,
258
        samples: Optional[List[int]] = None,
259
260
261
262
263
264
265
266
267
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
268
    ) -> None:
269
        """Build a set of Instances for a task, and store them in task.instances"""
270
271
272
273

        # used with caching
        og_limit = limit

274
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
275
276
277
278
279
280
281
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
282
        cache_key += f"-tokenizer{tokenizer_name}"
283

Baber Abbasi's avatar
Baber Abbasi committed
284
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
285
286
287
288
289
290
291
292
293
294
295
296
297

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
298
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
299

300
        instances = []
301
302
303
304
305
306
307
308
309
310

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
311
312
313
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
314
315
316
317
318
319
320
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
321
        ):
322
            # sample fewshot context #TODO: need to offset doc_id by rank now!
323
            fewshot_ctx = self.fewshot_context(
324
                doc,
325
326
327
328
329
330
331
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
332
                gen_prefix=self.doc_to_prefix(doc),
333
            )
334

335
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
336
337
338
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
339
                metadata=(self.config["task"], doc_id, self.config.repeats),
340
                apply_chat_template=apply_chat_template,
341
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
342
            )
343
344
345
346

            if not isinstance(inst, list):
                inst = [inst]

347
348
349
350
351
352
353
354
355
356
357
358
359
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
360

361
362
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
363

364
365
366
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

367
    @abc.abstractmethod
Baber's avatar
Baber committed
368
    def construct_requests(self, doc: dict, ctx: Union[list[dict], str], **kwargs):
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
383
            The number of times each instance in a dataset is inferred on. Defaults to 1,
384
385
386
387
388
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
Baber's avatar
Baber committed
389
    def process_results(self, doc: dict, results: list):
390
391
392
393
394
395
396
397
398
399
400
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

Baber's avatar
Baber committed
401
    @deprecated("not used anymore")
402
403
404
405
406
407
408
409
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

Baber's avatar
Baber committed
410
    @deprecated("not used anymore")
411
412
413
414
415
416
417
418
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

419
420
421
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
422
    @classmethod
Baber's avatar
Baber committed
423
    def count_bytes(cls, doc: str) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
424
425
426
427
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
Baber's avatar
Baber committed
428
    def count_words(cls, doc: str) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
429
430
431
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

432
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
433
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
434
435
436
437
438
439
440
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
441
442
443
444
445
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
446
447
448
        :returns: str
            The fewshot context.
        """
449
        if rnd is None:
450
451
452
453
454
455
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
456

457
        description = description if description else ""
458
459

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
460
            labeled_examples = ""
461
        else:
lintangsutawika's avatar
lintangsutawika committed
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
486
            )
487
488

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
489
        return description + labeled_examples + example
490

491
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
492
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
493
494
        if hasattr(self, "_filters"):
            for f in self._filters:
495
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
496
497
498
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
499

baberabb's avatar
baberabb committed
500
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
501
        """Returns the config as a dictionary."""
502
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
503
        # (num_fewshot)
504
        return self.config.to_dict()
505

Baber Abbasi's avatar
Baber Abbasi committed
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
Baber's avatar
Baber committed
528
529
530
531
532
533
534
        # if not isinstance(self, ConfigurableTask):
        #     self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
        #     self.aggregation = lambda: {
        #         metric_name: get_metric_aggregation(metric_name)
        #     }
        setattr(self._config, "metric_list", [MetricConfig(name=metric_name)])
        setattr(self._config, "process_results", lambda *args: {"bypass": 0})
Baber Abbasi's avatar
Baber Abbasi committed
535

536
537
538
539
540
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

541
    @property
Baber's avatar
Baber committed
542
    def eval_docs(self) -> Union[datasets.Dataset, Iterable[dict]]:
543
544
545
546
547
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
548
549
550
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
551
552

    def doc_iterator(
553
554
555
556
557
558
        self,
        *,
        rank: int = 0,
        limit: Union[int, None] = None,
        world_size: int = 1,
        samples: Optional[List[int]] = None,
559
    ) -> Iterator[Tuple[int, Any]]:
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
        if samples:
            n = len(self.eval_docs)
            assert all([e < n for e in samples]), (
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
582
583
        return doc_iterator

584
585

class ConfigurableTask(Task):
586
    VERSION = "Yaml"
587
    OUTPUT_TYPE = None
588
    CONFIG = None
589
590

    def __init__(
591
592
593
594
595
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Baber's avatar
Baber committed
596
    ) -> None:
597
        # Get pre-configured attributes
598
        self._config = self.CONFIG
599

600
        # Use new configurations if there was no preconfiguration
601
        if self.config is None:
602
            self._config = TaskConfig(**config)
603
604
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
605
            if config is not None:
606
                self._config.__dict__.update(config)
607

608
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
609
610
611
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
612

613
614
615
616
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

617
        if self.config.output_type is not None:
618
619
620
621
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
622
            self.OUTPUT_TYPE = self.config.output_type
623

624
625
626
627
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

628
629
630
631
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
632
633
634
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

635
636
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
637

638
639
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
640

641
        # self.metric_list: list[MetricConfig] = self.config.get_metrics
642

643
        self.download(self.config.dataset_kwargs)
644
645
646
        self._training_docs = None
        self._fewshot_docs = None

Baber's avatar
Baber committed
647
        self._filters = self.config.get_filters
Baber's avatar
Baber committed
648

Baber's avatar
Baber committed
649
650
651
652
653
654
655
        # if self.config.use_prompt is not None:
        #     eval_logger.info(f"loading prompt {self.config.use_prompt}")
        #     self.prompt = get_prompt(
        #         self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
        #     )
        # else:
        #     self.prompt = None
656

657
658
659
660
        if (
            self.config.fewshot_cfg.num_fewshot() > 0
            and self.fewshot_docs() is not None
        ):
Baber's avatar
Baber committed
661
662
663
            self.fewshot_rnd = random.Random()
            self.sampler = self.config.fewshot_cfg.init_sampler(
                list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
664
            )
665
        self.task_docs = self.eval_docs
666

667
        # Test One Doc
Baber's avatar
Baber committed
668
        self.features: list[str] = list(self.task_docs.features.keys())
669
670
        self.multiple_input = 0
        self.multiple_target = 0
671
        test_doc = self.task_docs[0]
672
        test_text = self.doc_to_text(test_doc)
673
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
674

675
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
676
            test_choice = self.doc_to_choice(test_doc)
677
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
678
                eval_logger.error("doc_to_choice must return list")
679
680
            else:
                num_choice = len(test_choice)
681

682
            if isinstance(test_text, int):
Baber Abbasi's avatar
Baber Abbasi committed
683
684
685
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
686
                self.multiple_input = num_choice
687
688
        else:
            test_choice = None
689

690
        if isinstance(test_target, list):
Baber Abbasi's avatar
Baber Abbasi committed
691
692
693
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
694
            self.multiple_target = len(test_target)
695
        else:
696
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
697
                test_target = test_choice[test_target]
698
            else:
lintangsutawika's avatar
lintangsutawika committed
699
                test_target = str(test_target)
700

701
702
703
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
704
            check_choices = [test_target]
705
706
707
708
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
709
710
                    True
                    if self.config.target_delimiter.rstrip()
711
                    != self.config.target_delimiter
712
                    else False
713
                )
714

715
                if delimiter_has_whitespace and choice_has_whitespace:
716
717
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
718
719
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
720
                    eval_logger.debug(
721
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
722
723
                    )

Baber Abbasi's avatar
Baber Abbasi committed
724
725
726
    def download(
        self, dataset_kwargs: Optional[Dict[str, Any]] = None, **kwargs
    ) -> None:
727
728
729
730
731
        self.config.dataset_kwargs, self.config.metadata = (
            self.config.dataset_kwargs or {},
            self.config.metadata or {},
        )
        if isinstance(df := self.config.custom_dataset, Callable):
Baber Abbasi's avatar
Baber Abbasi committed
732
733
734
735
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
736
            self.dataset = df(**(self.config.dataset_kwargs | self.config.metadata))
Baber Abbasi's avatar
Baber Abbasi committed
737
738
        else:
            self.dataset = datasets.load_dataset(
739
740
741
                path=self.config.dataset_path,
                name=self.config.dataset_name,
                **self.config.dataset_kwargs,
Baber Abbasi's avatar
Baber Abbasi committed
742
            )
743

baberabb's avatar
baberabb committed
744
    def has_training_docs(self) -> bool:
745
        if self.config.training_split is not None:
746
747
748
749
            return True
        else:
            return False

baberabb's avatar
baberabb committed
750
    def has_validation_docs(self) -> bool:
751
        if self.config.validation_split is not None:
752
753
754
755
            return True
        else:
            return False

baberabb's avatar
baberabb committed
756
    def has_test_docs(self) -> bool:
757
        if self.config.test_split is not None:
758
759
760
761
            return True
        else:
            return False

Baber's avatar
Baber committed
762
    def training_docs(self) -> Optional[datasets.Dataset]:
763
        if self.has_training_docs():
764
765
766
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
767
                )
768
            return self.dataset[self.config.training_split]
769

Baber's avatar
Baber committed
770
    def validation_docs(self) -> Optional[datasets.Dataset]:
771
        if self.has_validation_docs():
772
773
774
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
775
                )
776
            return self.dataset[self.config.validation_split]
777

Baber's avatar
Baber committed
778
    def test_docs(self) -> Optional[datasets.Dataset]:
779
        if self.has_test_docs():
780
781
782
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
783

784
    def fewshot_docs(self):
Baber's avatar
Baber committed
785
786
787
788
789
790
791
792
        docs = self.config.fewshot_cfg.get_docs(self.dataset)

        if docs is not None:
            return docs

        # Fallback to parent implementation
        if _num_fewshot := getattr(self.config, "num_fewshot"):
            if isinstance(_num_fewshot, int) and _num_fewshot > 0:
793
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
794
                    f"[Task: {self.config.task}] "
Baber's avatar
Baber committed
795
796
                    "num_fewshot > 0 but no fewshot source configured. "
                    "Using preconfigured rule."
797
                )
Baber's avatar
Baber committed
798
799

        return super().fewshot_docs()
800

KonradSzafer's avatar
KonradSzafer committed
801
802
803
804
805
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
806
        gen_prefix: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
807
808
809
810
811
812
813
814
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
815
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
816
817
            # if last message is user, append to it to avoid two user messages in a row
            else:
818
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
819
820
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
821
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
822
823
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
824

lintangsutawika's avatar
lintangsutawika committed
825
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
826
827
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
828
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
829
830
831
832
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
833
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
834
        gen_prefix: Optional[str] = None,
Baber's avatar
Baber committed
835
    ) -> Union[str, List[str], None]:
lintangsutawika's avatar
lintangsutawika committed
836
837
838
839
840
841
842
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
843
844
845
846
847
848
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
849
850
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
851
852
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
853
854
855
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
856
857
858
859
860
861
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
862
863
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
864

KonradSzafer's avatar
KonradSzafer committed
865
866
867
868
869
870
871
872
873
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
874
        else:
KonradSzafer's avatar
KonradSzafer committed
875
876
877
878
879
880
881
882
883
884
885
886
887
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
888
889
890
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
891
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
892
893
894
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
895
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
896
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
897
                )
lintangsutawika's avatar
lintangsutawika committed
898
899

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
900
901
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
902
                # TODO: append prefill?
903
904
                if not labeled_examples:
                    return ""
905
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
906
907
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
908
909
910
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
911
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
912
913
914
915
916
917
918
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
919
920
921
922
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
923
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
924
925
926
927
928
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber Abbasi's avatar
Baber Abbasi committed
929
                            add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
930
931
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
932
933
934
935
936
937
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
938
939
940
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
941
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
942
943
944
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
945
946
947
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
948
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
949
950
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
951
952
            return chat_template(
                labeled_examples,
Baber Abbasi's avatar
Baber Abbasi committed
953
                add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
954
            )
955
        else:
Baber Abbasi's avatar
Baber Abbasi committed
956
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
957
958
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
959
960
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
961
962
            if self.multiple_input:
                return labeled_examples
963
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
964
                return labeled_examples + example + prefix
965
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
966
                return [labeled_examples + ex + prefix for ex in example]
967
968
969
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
970
                    return labeled_examples + choices[example] + prefix
971
                else:
Baber Abbasi's avatar
Baber Abbasi committed
972
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
973

Baber Abbasi's avatar
Baber Abbasi committed
974
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
975
        """Iterates over FilterEnsembles and applies them to instances"""
976
977
        if hasattr(self, "_filters"):
            for f in self._filters:
978
                f.ensemble.apply(self._instances)
979
980
981
982
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

983
    def should_decontaminate(self):
984
        return self.config.should_decontaminate
985

Baber Abbasi's avatar
Baber Abbasi committed
986
    def doc_to_decontamination_query(self, doc: dict):
987
        if self.config.should_decontaminate:
988
989
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
990
            else:
991
992
993
994
995
996
997
998
999
1000
1001
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1002

1003
    def _process_doc(self, doc: dict) -> dict:
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Baber's avatar
Baber committed
1014
1015
1016
1017
1018
1019
    def doc_to_text(
        self, doc: dict, doc_to_text: Union[int, str, Callable, None] = None
    ):
        # if self.prompt is not None:
        #     doc_to_text = self.prompt
        if doc_to_text is not None:
Yu Shi Jie's avatar
Yu Shi Jie committed
1020
            doc_to_text = doc_to_text
1021
        else:
1022
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1023

1024
        if isinstance(doc_to_text, int):
1025
            return doc_to_text
1026
        elif isinstance(doc_to_text, str):
1027
            if doc_to_text in self.features:
1028
                # if self.config.doc_to_choice is not None:
1029
1030
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1031
1032
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1033
                text_string = utils.apply_template(doc_to_text, doc)
Baber's avatar
nit  
Baber committed
1034
                if text_string.isdigit() and self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1035
1036
1037
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1038
        elif callable(doc_to_text):
1039
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1040
        # Used when applying a Promptsource template
Baber's avatar
Baber committed
1041
1042
1043
1044
1045
1046
1047
        # elif hasattr(doc_to_text, "apply"):
        #     applied_prompt = doc_to_text.apply(doc)
        #     if len(applied_prompt) == 2:
        #         return applied_prompt[0]
        #     else:
        #         eval_logger.warning("Applied prompt returns empty string")
        #         return self.config.fewshot_delimiter
1048
        else:
1049
            print(type(doc_to_text))
1050
            raise TypeError
1051

Baber's avatar
Baber committed
1052
    def doc_to_target(self, doc: dict, doc_to_target=None) -> Union[int, str, list]:
Baber's avatar
Baber committed
1053
1054
1055
        # if self.prompt is not None:
        #     doc_to_target = self.prompt
        if doc_to_target is not None:
Yu Shi Jie's avatar
Yu Shi Jie committed
1056
            doc_to_target = doc_to_target
1057
        else:
1058
            doc_to_target = self.config.doc_to_target
1059

1060
        if isinstance(doc_to_target, int):
1061
            return doc_to_target
1062
        elif isinstance(doc_to_target, str):
1063
            if doc_to_target in self.features:
1064
                # if self.config.doc_to_choice is not None:
1065
1066
1067
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1068
            else:
lintangsutawika's avatar
lintangsutawika committed
1069
                target_string = utils.apply_template(doc_to_target, doc)
Baber's avatar
nit  
Baber committed
1070
                if target_string.isdigit() and self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1071
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1072
1073
1074
1075
1076
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1077
1078
1079
1080
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1081
1082
                else:
                    return target_string
1083
        elif isinstance(doc_to_target, list):
1084
            return doc_to_target
1085
        elif callable(doc_to_target):
1086
            return doc_to_target(doc)
Baber's avatar
Baber committed
1087
1088
1089
1090
1091
1092
1093
1094
        # # Used when applying a Promptsource template
        # elif hasattr(doc_to_target, "apply"):
        #     applied_prompt = doc_to_target.apply(doc)
        #     if len(applied_prompt) == 2:
        #         return applied_prompt[1]
        #     else:
        #         eval_logger.warning("Applied prompt returns empty string")
        #         return self.config.fewshot_delimiter
1095
1096
        else:
            raise TypeError
1097

Baber's avatar
Baber committed
1098
    def doc_to_choice(
Baber's avatar
Baber committed
1099
        self, doc: dict, doc_to_choice: Union[str, list, dict, None] = None
Baber's avatar
Baber committed
1100
    ) -> List[str]:
Baber's avatar
Baber committed
1101
1102
1103
        # if self.prompt is not None:
        #     doc_to_choice = self.prompt
        if doc_to_choice is not None:
Yu Shi Jie's avatar
Yu Shi Jie committed
1104
            doc_to_choice = doc_to_choice
1105
        elif self.config.doc_to_choice is None:
1106
            eval_logger.error("doc_to_choice was called but not set in config")
Baber's avatar
Baber committed
1107
            doc_to_choice = None
1108
        else:
1109
            doc_to_choice = self.config.doc_to_choice
1110

1111
        if isinstance(doc_to_choice, str):
1112
1113
1114
1115
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1116
        elif isinstance(doc_to_choice, list):
1117
            return doc_to_choice
1118
        elif isinstance(doc_to_choice, dict):
1119
1120
1121
1122
1123
1124
1125
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1126

Baber's avatar
Baber committed
1127
    def doc_to_image(self, doc: dict, doc_to_image=None) -> Union[int, str, list, None]:
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

Baber's avatar
Baber committed
1150
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> Union[int, str, list, None]:
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber's avatar
Baber committed
1173
    def doc_to_prefix(self, doc: dict) -> Optional[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1174
1175
1176
1177
1178
1179
1180
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1181
1182
1183
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1184
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1185
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1186

1187
1188
        aux_arguments = None

1189
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1190
            arguments = (ctx, self.doc_to_target(doc))
1191
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1192
            arguments = (self.doc_to_target(doc),)
1193
        elif self.OUTPUT_TYPE == "multiple_choice":
1194
            choices = self.doc_to_choice(doc)
1195
            target_delimiter = self.config.target_delimiter
1196
1197
            if apply_chat_template:
                target_delimiter = ""
1198
1199
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1200
                # apply chat_template to choices if apply_chat_template
1201
                cont = self.doc_to_target(doc)
1202

1203
                arguments = [
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1214
                ]
1215
            else:
1216
                # Otherwise they are placed in the continuation
1217
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1218

1219
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
Baber's avatar
Baber committed
1220
            if "acc_mutual_info" in [m.metric_name for m in self.config._metric_list]:
1221
1222
1223
1224
1225
1226
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1227
1228
1229
1230
                # TODO: should these be strided? will have to modify the processing in process_results if so
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1246
1247
1248
1249
1250
1251
1252
1253
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1254
1255
1256
1257
1258
1259
1260
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1261
            request_list = [
1262
1263
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1264
                    doc=doc,
1265
                    arguments=arg,
1266
                    idx=i,
1267
1268
                    **kwargs,
                )
1269
                for i, arg in enumerate(arguments)
1270
            ]
1271
1272

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1273

lintangsutawika's avatar
lintangsutawika committed
1274
        return Instance(
1275
1276
1277
1278
1279
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1280
        )
1281

Baber's avatar
Baber committed
1282
    def process_results(self, doc: dict, results: list) -> dict:
1283
1284
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1285

1286
        result_dict = {}
Baber's avatar
fixup  
Baber committed
1287
        use_metric = list(m.metric_name for m in self.config._metric_list)
1288
1289
1290
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1291
1292
1293
1294
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1295
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1296
            (loglikelihood,) = results
1297
1298
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1299
            return {
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1315
            }
1316
        elif self.OUTPUT_TYPE == "multiple_choice":
1317
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1318

1319
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1320
            choices = self.doc_to_choice(doc)
1321
1322
            completion_len = np.array([float(len(i)) for i in choices])

Baber's avatar
Baber committed
1323
            if 2 * len(choices) == len(lls) and "acc_mutual_info" in use_metric:
1324
1325
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1326
1327
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1328
1329
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1330
                # and this stores our "regular" conditional loglikelihoods
1331
                lls = lls[: len(choices)]
1332

1333
1334
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1335

1336
1337
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1338
            else:
1339
                gold = self.doc_to_target(doc)
1340
1341

            gold_index_error = False
1342
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1343
1344
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1345
1346
                    gold_index_error = True
            else:
1347
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1348
                    gold = gold if gold < len(choices) else -100
1349
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1350
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1351

Lintang Sutawika's avatar
Lintang Sutawika committed
1352
                if gold == -100:
1353
1354
1355
1356
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1357
                    f"Label index was not in within range of available choices,"
1358
1359
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1360

1361
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1362
1363
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1364
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1365
1366
1367
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1368
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1369
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1370

Lintang Sutawika's avatar
Lintang Sutawika committed
1371
1372
1373
1374
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1375
            result_dict = {
1376
                **({"acc": acc} if "acc" in use_metric else {}),
1377
1378
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1379
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1380
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1381
1382
1383
1384
1385
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1386
1387
            }

1388
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1389
1390
1391
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1392
1393
1394
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1395
        elif self.OUTPUT_TYPE == "generate_until":
1396
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1397
            result = results[0]
1398
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1399
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1400
                # it assumes that doc_to_target returns a number.
1401
1402
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1403
1404
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1405
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1406
1407
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
Baber's avatar
Baber committed
1408
                "bypass" in use_metric or isinstance(result, list)
1409
            ):
Chris's avatar
Chris committed
1410
1411
                # cast gold to the same type as result
                gold = type(result)(gold)
1412

Baber's avatar
fixup  
Baber committed
1413
            for metric in self.config._metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
1414
1415
1416
1417
1418
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1419
1420
1421
1422
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
Baber's avatar
Baber committed
1423
                    if metric.name == "exact_match":
1424
                        result = [result for _ in range(len(gold))]
Baber's avatar
Baber committed
1425
                        scores = metric.fn(
1426
1427
                            references=gold,
                            predictions=result,
Baber's avatar
Baber committed
1428
                            **metric.kwargs,
1429
1430
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1431
                    else:
1432
1433
                        for gold_option in gold:
                            try:
Baber's avatar
Baber committed
1434
                                result_score = metric.fn(
1435
1436
                                    references=[gold_option],
                                    predictions=[result],
Baber's avatar
Baber committed
1437
                                    **metric.kwargs,
1438
1439
1440
1441
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
Baber's avatar
Baber committed
1442
                                result_score = metric.fn([gold_option, result])
1443
1444
1445
1446
1447
1448
1449
1450
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1451
                else:
1452
                    try:
Baber's avatar
Baber committed
1453
                        result_score = metric.fn(
1454
1455
                            references=[gold],
                            predictions=[result],
Baber's avatar
Baber committed
1456
                            **metric.kwargs,
1457
                        )
1458
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
Baber's avatar
Baber committed
1459
                        result_score = metric.fn([gold, result])
1460
1461
1462
1463
1464
1465
1466
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1467
        else:
lintangsutawika's avatar
lintangsutawika committed
1468
1469
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1470
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1471
            )
1472
1473
1474

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1475
    def aggregation(self) -> dict:
Baber's avatar
fixup  
Baber committed
1476
        return {k.name: k.aggregation_fn for k in self.config._metric_list}
1477

Baber Abbasi's avatar
Baber Abbasi committed
1478
    def higher_is_better(self) -> dict:
Baber's avatar
fixup  
Baber committed
1479
        return {k.name: k.higher_is_better for k in self.config._metric_list}
1480

Baber Abbasi's avatar
Baber Abbasi committed
1481
1482
1483
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1484
    @property
Baber's avatar
Baber committed
1485
    def task_name(self) -> Optional[str]:
Lintang Sutawika's avatar
Lintang Sutawika committed
1486
1487
        return getattr(self.config, "task", None)

1488
1489
1490
1491
1492
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1493
            f"num_samples={len(self.eval_docs)})"
1494
1495
        )

1496
1497

class MultipleChoiceTask(Task):
1498
    OUTPUT_TYPE = "loglikelihood"
1499

baberabb's avatar
baberabb committed
1500
    def doc_to_target(self, doc: dict) -> str:
1501
1502
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1503
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1504
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1505
1506
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1507
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1508
                doc=doc,
1509
                arguments=(ctx, " {}".format(choice)),
1510
                idx=i,
1511
1512
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1513
1514
            for i, choice in enumerate(doc["choices"])
        ]
1515

1516
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1517
1518
1519
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1531
    def higher_is_better(self) -> dict:
1532
1533
1534
1535
1536
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1537
    def aggregation(self) -> dict:
1538
1539
1540
1541
1542
1543
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1544
class PerplexityTask(Task):
1545
1546
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1547
    def has_training_docs(self) -> bool:
1548
1549
        return False

baberabb's avatar
baberabb committed
1550
    def fewshot_examples(self, k: int, rnd) -> List:
1551
1552
1553
1554
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1555
1556
        return []

baberabb's avatar
baberabb committed
1557
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1558
1559
1560
1561
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1562
1563
1564

        return ""

baberabb's avatar
baberabb committed
1565
    def higher_is_better(self) -> dict:
1566
1567
1568
1569
1570
1571
1572
1573
1574
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1575
    def doc_to_text(self, doc) -> str:
1576
1577
1578
1579
1580
        return ""

    def doc_to_target(self, doc):
        return doc

1581
1582
1583
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1584

lintangsutawika's avatar
lintangsutawika committed
1585
1586
1587
1588
1589
1590
1591
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1592

1593
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1594
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1595
1596
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1597
1598
1599
1600
1601
1602
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1603
    def aggregation(self) -> dict:
1604
1605
1606
1607
1608
1609
1610
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1611
    def count_bytes(cls, doc) -> int:
1612
1613
1614
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1615
    def count_words(cls, doc) -> int:
1616
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1617
        return len(re.split(r"\s+", doc))