task.py 60.2 KB
Newer Older
Baber's avatar
nit  
Baber committed
1
2
from __future__ import annotations

3
import abc
4
import ast
lintangsutawika's avatar
lintangsutawika committed
5
import logging
6
import random
7
import re
8
from collections.abc import Callable, Iterable, Iterator, Mapping
9
from copy import deepcopy
Baber's avatar
types  
Baber committed
10
from typing import TYPE_CHECKING, Any, Literal, overload
11
12
13

import datasets
import numpy as np
14
from tqdm import tqdm
Baber's avatar
Baber committed
15
from typing_extensions import deprecated
16
17

from lm_eval import utils
18
19
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
20
from lm_eval.api.utils import check_gold_index_error
21
from lm_eval.caching.cache import load_from_cache, save_to_cache
Baber's avatar
Baber committed
22
from lm_eval.config.metric import MetricConfig
Baber's avatar
types  
Baber committed
23
from lm_eval.config.task import DataSet, TaskConfig
24
25
from lm_eval.filters import build_filter_ensemble

26

27
28
29
30
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
31
    "generate_until",
32
33
]

Baber's avatar
Baber committed
34
if TYPE_CHECKING:
Baber's avatar
Baber committed
35
    pass
Baber's avatar
Baber committed
36
37


Lintang Sutawika's avatar
Lintang Sutawika committed
38
eval_logger = logging.getLogger(__name__)
39

lintangsutawika's avatar
lintangsutawika committed
40

41
42
43
44
45
46
47
48
49
50
class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

Baber's avatar
nit  
Baber committed
51
    VERSION: int | str | None = None
52

53
54
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
Baber's avatar
nit  
Baber committed
55
    DATASET_PATH: str | None = None
56
57

    # The name of a subset within `DATASET_PATH`.
Baber's avatar
nit  
Baber committed
58
    DATASET_NAME: str | None = None
59

Baber's avatar
nit  
Baber committed
60
    OUTPUT_TYPE: OutputType | None = None
lintangsutawika's avatar
lintangsutawika committed
61

62
63
    def __init__(
        self,
Baber's avatar
nit  
Baber committed
64
65
66
67
        data_dir: str | None = None,
        cache_dir: str | None = None,
        download_mode: datasets.DownloadMode | None = None,
        config: Mapping | None = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
68
    ) -> None:
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
Baber's avatar
nit  
Baber committed
91
92
93
        self._training_docs: list | None = None
        self._fewshot_docs: list | None = None
        self._instances: list[Instance] | None = None
94

95
        self._config: TaskConfig = TaskConfig.from_yaml({**config})
96

97
        self._filters = [build_filter_ensemble("none", [("take_first", None)])]
Baber's avatar
nit  
Baber committed
98
        self.fewshot_rnd: random.Random | None = (
99
100
            None  # purposely induce errors in case of improper usage
        )
101

102
103
    def download(
        self,
Baber's avatar
nit  
Baber committed
104
105
        data_dir: str | None = None,
        cache_dir: str | None = None,
106
107
        download_mode=None,
    ) -> None:
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
Baber's avatar
types  
Baber committed
132
        assert self.DATASET_PATH is not None, "DATASET_PATH must be set in Task class"
133
134
135
136
137
138
139
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
140

141
    @property
142
    def config(self) -> TaskConfig:
143
144
145
        """Returns the TaskConfig associated with this class."""
        return self._config

Baber's avatar
Baber committed
146
    def has_training_docs(self) -> bool:
147
        """Whether the task has a training set"""
Baber's avatar
types  
Baber committed
148
        raise NotImplementedError
149

Baber's avatar
Baber committed
150
    def has_validation_docs(self) -> bool:
151
        """Whether the task has a validation set"""
Baber's avatar
types  
Baber committed
152
        raise NotImplementedError
153

Baber's avatar
Baber committed
154
    def has_test_docs(self) -> bool:
155
        """Whether the task has a test set"""
Baber's avatar
types  
Baber committed
156
        raise NotImplementedError
157

Baber's avatar
types  
Baber committed
158
    def training_docs(self) -> DataSet | None:
159
160
161
162
163
164
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

Baber's avatar
types  
Baber committed
165
    def validation_docs(self) -> DataSet | None:
166
167
168
169
170
171
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

Baber's avatar
types  
Baber committed
172
    def test_docs(self) -> DataSet | None:
173
174
175
176
177
178
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

Baber's avatar
types  
Baber committed
179
    def fewshot_docs(self) -> DataSet | None:
180
181
182
183
184
185
186
187
188
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber's avatar
Baber committed
189
            if self.config.num_fewshot and self.config.num_fewshot > 0:
Baber Abbasi's avatar
Baber Abbasi committed
190
191
192
193
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
194
195
            return self.test_docs()

196
    def _process_doc(self, doc: dict) -> dict:
197
198
199
200
201
202
203
204
205
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
206

207
    @property
Baber's avatar
Baber committed
208
    def instances(self) -> list[Instance]:
209
210
211
212
213
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

Baber's avatar
Baber committed
214
    def fewshot_examples(self, k, rnd) -> Iterable[dict]:
215
216
217
218
219
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Baber's avatar
Baber committed
220
    def doc_to_decontamination_query(self, doc: dict):
221
        raise NotImplementedError(
222
223
224
225
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
Baber's avatar
Baber committed
226
    def doc_to_text(self, doc: dict) -> str:
227
228
229
        pass

    @abc.abstractmethod
Baber's avatar
nit  
Baber committed
230
    def doc_to_target(self, doc: dict) -> str | int:
231
232
        pass

233
    # not an abstractmethod because not every language-only task has to implement this
Baber's avatar
Baber committed
234
    def doc_to_image(self, doc: dict):
235
236
        raise NotImplementedError

Baber's avatar
Baber committed
237
    def doc_to_audio(self, doc: dict):
238
239
        raise NotImplementedError

Baber's avatar
Baber committed
240
    def doc_to_prefix(self, doc: dict) -> str:
Baber Abbasi's avatar
Baber Abbasi committed
241
242
        return ""

243
244
    def build_all_requests(
        self,
245
        *,
Baber's avatar
nit  
Baber committed
246
247
        limit: int | None = None,
        samples: list[int] | None = None,
248
249
250
251
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
Baber's avatar
nit  
Baber committed
252
        system_instruction: str | None = None,
253
254
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
Baber's avatar
nit  
Baber committed
255
        chat_template: Callable | None = None,
256
        tokenizer_name: str = "",
257
    ) -> None:
258
        """Build a set of Instances for a task, and store them in task.instances"""
259
260
261
262

        # used with caching
        og_limit = limit

263
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
264
265
266
267
268
269
270
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
271
        cache_key += f"-tokenizer{tokenizer_name}"
272

Baber Abbasi's avatar
Baber Abbasi committed
273
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
274
275
276
277
278
279
280
281
282
283
284
285
286

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
287
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
288

289
        instances = []
290
291
292
293
294
295
296
297
298
299

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
300
301
302
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
303
304
305
306
307
308
309
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
310
        ):
311
            # sample fewshot context #TODO: need to offset doc_id by rank now!
312
            fewshot_ctx = self.fewshot_context(
313
                doc,
314
315
316
317
318
319
320
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
321
                gen_prefix=self.doc_to_prefix(doc),
322
            )
323

324
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
325
326
327
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
Baber's avatar
Baber committed
328
                metadata=(self.config.task, doc_id, self.config.repeats),
329
                apply_chat_template=apply_chat_template,
330
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
331
            )
332
333
334
335

            if not isinstance(inst, list):
                inst = [inst]

336
337
338
339
340
341
342
343
344
345
346
347
348
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
349

350
351
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
352

353
354
355
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

356
    @abc.abstractmethod
Baber's avatar
nit  
Baber committed
357
    def construct_requests(self, doc: dict, ctx: list[dict] | str, **kwargs):
358
359
360
361
362
363
364
365
366
367
368
369
370
371
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
372
            The number of times each instance in a dataset is inferred on. Defaults to 1,
373
374
375
376
377
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
378
    def process_results(self, doc: dict, results: list) -> dict[str, Any]:
379
380
381
382
383
384
385
386
387
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
388
        raise NotImplementedError
389

Baber's avatar
Baber committed
390
    @deprecated("not used anymore")
391
392
393
394
395
396
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
Baber's avatar
nit  
Baber committed
397
        return True
398

Baber's avatar
Baber committed
399
    @deprecated("not used anymore")
400
401
402
403
404
405
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
Baber's avatar
nit  
Baber committed
406
        return True
407

408
409
410
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
411
    @classmethod
Baber's avatar
Baber committed
412
    def count_bytes(cls, doc: str) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
413
414
415
416
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
Baber's avatar
Baber committed
417
    def count_words(cls, doc: str) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
418
419
420
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

421
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
422
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
423
424
425
426
427
428
429
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
430
431
432
433
434
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
435
436
437
        :returns: str
            The fewshot context.
        """
438
        if rnd is None:
439
440
441
442
443
444
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
445

446
        description = description if description else ""
447
448

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
449
            labeled_examples = ""
450
        else:
lintangsutawika's avatar
lintangsutawika committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
475
            )
476
477

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
478
        return description + labeled_examples + example
479

Baber's avatar
nit  
Baber committed
480
    def apply_filters(self) -> list[Instance] | None:
Baber Abbasi's avatar
Baber Abbasi committed
481
        """Iterates over FilterEnsembles and applies them to instances"""
Baber's avatar
nit  
Baber committed
482
        if hasattr(self, "_filters") and self._instances:
lintangsutawika's avatar
lintangsutawika committed
483
            for f in self._filters:
484
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
485
        else:
Baber's avatar
nit  
Baber committed
486
487
488
            eval_logger.warning(
                "No filter defined or no instances, passing through instances"
            )
lintangsutawika's avatar
lintangsutawika committed
489
            return self._instances
490

baberabb's avatar
baberabb committed
491
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
492
        """Returns the config as a dictionary."""
493
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
494
        # (num_fewshot)
495
        return self.config.to_dict()
496

Baber Abbasi's avatar
Baber Abbasi committed
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
Baber's avatar
Baber committed
516
517
518
519
520
        # if not isinstance(self, ConfigurableTask):
        #     self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
        #     self.aggregation = lambda: {
        #         metric_name: get_metric_aggregation(metric_name)
        #     }
521
522
        self._config.metric_list = [MetricConfig(name=metric_name)]
        self._config.process_results = lambda *args: {"bypass": 0}
Baber Abbasi's avatar
Baber Abbasi committed
523

Baber's avatar
nit  
Baber committed
524
    def set_fewshot_seed(self, seed: int | None = None) -> None:
525
526
527
528
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

529
    @property
Baber's avatar
nit  
Baber committed
530
    def eval_docs(self) -> datasets.Dataset | Iterable[dict]:
531
532
533
534
535
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
536
537
538
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
539
540

    def doc_iterator(
541
542
543
        self,
        *,
        rank: int = 0,
Baber's avatar
nit  
Baber committed
544
        limit: int | None = None,
545
        world_size: int = 1,
Baber's avatar
nit  
Baber committed
546
547
        samples: list[int] | None = None,
    ) -> Iterator[tuple[int, Any]]:
548
549
        if samples:
            n = len(self.eval_docs)
Baber's avatar
nit  
Baber committed
550
            assert all(e < n for e in samples), (
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
570
571
        return doc_iterator

572
573

class ConfigurableTask(Task):
574
    VERSION = "Yaml"
575
    OUTPUT_TYPE = None
576
    CONFIG = None
577
578

    def __init__(
579
580
581
582
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
Baber's avatar
types  
Baber committed
583
        config: Mapping[str, Any] | None = None,
Baber's avatar
Baber committed
584
    ) -> None:
585
        # Get pre-configured attributes
586
        self._config = self.CONFIG
587

588
        # Use new configurations if there was no preconfiguration
589
        if self.config is None:
590
            self._config = TaskConfig(**config)
591
592
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
593
            if config is not None:
594
                self._config.__dict__.update(config)
595

596
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
597
598
599
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
600

Baber's avatar
nit  
Baber committed
601
602
        if isinstance(self.config.metadata, dict) and "version" in self.config.metadata:
            self.VERSION = self.config.metadata["version"]
603

604
        if self.config.output_type is not None:
605
606
607
608
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
609
            self.OUTPUT_TYPE = self.config.output_type
610

611
612
613
614
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

615
616
617
618
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
619
620
621
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

622
623
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
624

625
626
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
627

628
        # self.metric_list: list[MetricConfig] = self.config.get_metrics
629

630
        self.download(self.config.dataset_kwargs)
631
632
633
        self._training_docs = None
        self._fewshot_docs = None

Baber's avatar
Baber committed
634
        self._filters = self.config.get_filters
Baber's avatar
Baber committed
635

Baber's avatar
Baber committed
636
637
638
639
640
641
642
        # if self.config.use_prompt is not None:
        #     eval_logger.info(f"loading prompt {self.config.use_prompt}")
        #     self.prompt = get_prompt(
        #         self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
        #     )
        # else:
        #     self.prompt = None
643

644
645
646
647
        if (
            self.config.fewshot_cfg.num_fewshot() > 0
            and self.fewshot_docs() is not None
        ):
Baber's avatar
Baber committed
648
649
650
            self.fewshot_rnd = random.Random()
            self.sampler = self.config.fewshot_cfg.init_sampler(
                list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
651
            )
652
        self.task_docs = self.eval_docs
653

654
        # Test One Doc
Baber's avatar
Baber committed
655
        self.features: list[str] = list(self.task_docs.features.keys())
Baber's avatar
Baber committed
656
        self.multiple_input = self.config.multiple_input
657
        self.multiple_target = 0
658
        test_doc = self.task_docs[0]
659
        test_text = self.doc_to_text(test_doc)
660
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
661

662
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
663
            test_choice = self.doc_to_choice(test_doc)
664
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
665
                eval_logger.error("doc_to_choice must return list")
666
667
            else:
                num_choice = len(test_choice)
668

669
            if isinstance(test_text, int):
Baber Abbasi's avatar
Baber Abbasi committed
670
671
672
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
673
                self.multiple_input = num_choice
674
675
        else:
            test_choice = None
676

677
        if isinstance(test_target, list):
Baber Abbasi's avatar
Baber Abbasi committed
678
679
680
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
681
            self.multiple_target = len(test_target)
682
        else:
683
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
684
                test_target = test_choice[test_target]
685
            else:
lintangsutawika's avatar
lintangsutawika committed
686
                test_target = str(test_target)
687

Baber's avatar
nit  
Baber committed
688
        check_choices = test_choice if test_choice is not None else [test_target]
689
690
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
Baber's avatar
nit  
Baber committed
691
                choice_has_whitespace = choice[0].isspace()
692
                delimiter_has_whitespace = (
Baber's avatar
nit  
Baber committed
693
                    self.config.target_delimiter.rstrip()
694
                    != self.config.target_delimiter
695
                )
696

697
                if delimiter_has_whitespace and choice_has_whitespace:
698
699
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
700
701
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
702
                    eval_logger.debug(
703
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
704
705
                    )

Baber's avatar
nit  
Baber committed
706
    def download(self, dataset_kwargs: dict[str, Any] | None = None, **kwargs) -> None:
707
708
709
710
711
        self.config.dataset_kwargs, self.config.metadata = (
            self.config.dataset_kwargs or {},
            self.config.metadata or {},
        )
        if isinstance(df := self.config.custom_dataset, Callable):
Baber Abbasi's avatar
Baber Abbasi committed
712
713
714
715
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
716
            self.dataset = df(**(self.config.dataset_kwargs | self.config.metadata))
Baber Abbasi's avatar
Baber Abbasi committed
717
        else:
Baber's avatar
types  
Baber committed
718
719
720
            assert self.config.dataset_path is not None, (
                "dataset_path must be set in TaskConfig"
            )
Baber Abbasi's avatar
Baber Abbasi committed
721
            self.dataset = datasets.load_dataset(
722
723
724
                path=self.config.dataset_path,
                name=self.config.dataset_name,
                **self.config.dataset_kwargs,
Baber Abbasi's avatar
Baber Abbasi committed
725
            )
726

baberabb's avatar
baberabb committed
727
    def has_training_docs(self) -> bool:
Baber's avatar
nit  
Baber committed
728
        return self.config.training_split is not None
729

baberabb's avatar
baberabb committed
730
    def has_validation_docs(self) -> bool:
Baber's avatar
nit  
Baber committed
731
        return self.config.validation_split is not None
732

baberabb's avatar
baberabb committed
733
    def has_test_docs(self) -> bool:
Baber's avatar
nit  
Baber committed
734
        return self.config.test_split is not None
735

Baber's avatar
types  
Baber committed
736
    def training_docs(self) -> DataSet | None:
737
        if self.has_training_docs():
738
739
740
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
741
                )
742
            return self.dataset[self.config.training_split]
743

Baber's avatar
types  
Baber committed
744
    def validation_docs(self) -> DataSet | None:
745
        if self.has_validation_docs():
746
747
748
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
749
                )
750
            return self.dataset[self.config.validation_split]
751

Baber's avatar
types  
Baber committed
752
    def test_docs(self) -> DataSet | None:
753
        if self.has_test_docs():
754
755
756
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
757

758
    def fewshot_docs(self):
Baber's avatar
Baber committed
759
760
761
762
763
764
        docs = self.config.fewshot_cfg.get_docs(self.dataset)

        if docs is not None:
            return docs

        # Fallback to parent implementation
Baber's avatar
nit  
Baber committed
765
766
767
768
769
770
771
772
773
774
        if (
            (_num_fewshot := self.config.num_fewshot)
            and isinstance(_num_fewshot, int)
            and _num_fewshot > 0
        ):
            eval_logger.warning(
                f"[Task: {self.config.task}] "
                "num_fewshot > 0 but no fewshot source configured. "
                "Using preconfigured rule."
            )
Baber's avatar
Baber committed
775
776

        return super().fewshot_docs()
777

KonradSzafer's avatar
KonradSzafer committed
778
779
    @staticmethod
    def append_target_question(
Baber's avatar
nit  
Baber committed
780
        labeled_examples: list[dict[str, str]],
KonradSzafer's avatar
KonradSzafer committed
781
782
        question: str,
        fewshot_as_multiturn: bool = False,
Baber's avatar
nit  
Baber committed
783
        gen_prefix: str | None = None,
KonradSzafer's avatar
KonradSzafer committed
784
785
786
787
788
789
790
791
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
792
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
793
794
            # if last message is user, append to it to avoid two user messages in a row
            else:
795
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
796
797
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
798
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
799
800
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
801

lintangsutawika's avatar
lintangsutawika committed
802
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
803
804
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
805
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
806
        num_fewshot: int,
Baber's avatar
nit  
Baber committed
807
        system_instruction: str | None = None,
KonradSzafer's avatar
KonradSzafer committed
808
809
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
Baber's avatar
nit  
Baber committed
810
811
812
        chat_template: Callable | None = None,
        gen_prefix: str | None = None,
    ) -> str | list[str] | None:
lintangsutawika's avatar
lintangsutawika committed
813
814
815
816
817
818
819
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
820
821
822
823
824
825
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
826
827
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
828
829
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
830
831
832
        :returns: str
            The fewshot context.
        """
Baber's avatar
nit  
Baber committed
833
        labeled_examples = [] if apply_chat_template else ""
KonradSzafer's avatar
KonradSzafer committed
834
835

        # get task description
836
837
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
838

KonradSzafer's avatar
KonradSzafer committed
839
840
841
842
843
844
845
846
847
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
848
        else:
KonradSzafer's avatar
KonradSzafer committed
849
850
851
852
853
854
855
856
857
858
859
860
861
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
862
863
864
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
865
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
866
867
868
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
869
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
870
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
871
                )
lintangsutawika's avatar
lintangsutawika committed
872
873

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
874
875
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
876
                # TODO: append prefill?
877
878
                if not labeled_examples:
                    return ""
879
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
880
881
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
882
883
884
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
885
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
886
887
888
889
890
891
892
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
893
894
895
896
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
897
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
898
899
900
901
902
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber's avatar
nit  
Baber committed
903
                            add_generation_prompt=not gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
904
905
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
906
907
908
909
910
911
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
912
913
914
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
915
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
916
917
918
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
919
920
921
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
922
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
923
924
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
925
926
            return chat_template(
                labeled_examples,
Baber's avatar
nit  
Baber committed
927
                add_generation_prompt=not gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
928
            )
929
        else:
Baber Abbasi's avatar
Baber Abbasi committed
930
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
931
932
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
933
934
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
935
936
            if self.multiple_input:
                return labeled_examples
937
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
938
                return labeled_examples + example + prefix
939
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
940
                return [labeled_examples + ex + prefix for ex in example]
941
942
943
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
944
                    return labeled_examples + choices[example] + prefix
945
                else:
Baber Abbasi's avatar
Baber Abbasi committed
946
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
947

Baber's avatar
nit  
Baber committed
948
    def apply_filters(self) -> list[Instance] | None:
Baber Abbasi's avatar
Baber Abbasi committed
949
        """Iterates over FilterEnsembles and applies them to instances"""
950
        if hasattr(self, "_filters") and self._instances:
951
            for f in self._filters:
952
                f.ensemble.apply(self._instances)
953
        else:
954
955
956
            eval_logger.warning(
                "No filter defined or instances found. Passing through instances"
            )
957
958
            return self._instances

959
    def should_decontaminate(self):
960
        return self.config.should_decontaminate
961

Baber Abbasi's avatar
Baber Abbasi committed
962
    def doc_to_decontamination_query(self, doc: dict):
963
        if self.config.should_decontaminate:
964
965
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
966
            else:
967
968
969
970
971
972
973
974
975
976
977
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
978

979
    def _process_doc(self, doc: dict) -> dict:
980
981
982
983
984
985
986
987
988
989
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Baber's avatar
Baber committed
990
991
992
993
994
995
996
997
998
999
1000
1001
    @overload
    def doc_to_text(self, doc: dict, doc_to_text: None = None) -> str | int: ...

    @overload
    def doc_to_text(self, doc: dict, doc_to_text: int) -> int: ...

    @overload
    def doc_to_text(self, doc: dict, doc_to_text: str) -> str: ...

    @overload
    def doc_to_text(self, doc: dict, doc_to_text: Callable[..., str]) -> str: ...

Baber's avatar
nit  
Baber committed
1002
1003
    def doc_to_text(
        self, doc: dict, doc_to_text: int | str | Callable[..., str] | None = None
Baber's avatar
Baber committed
1004
    ) -> str | int:
Baber's avatar
Baber committed
1005
1006
        # if self.prompt is not None:
        #     doc_to_text = self.prompt
Baber's avatar
nit  
Baber committed
1007
        doc_to_text = doc_to_text or self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1008

1009
        if isinstance(doc_to_text, int):
1010
            return doc_to_text
1011
        elif isinstance(doc_to_text, str):
1012
            if doc_to_text in self.features:
1013
                # if self.config.doc_to_choice is not None:
1014
1015
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1016
1017
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1018
                text_string = utils.apply_template(doc_to_text, doc)
Baber's avatar
nit  
Baber committed
1019
                if text_string.isdigit() and self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1020
1021
1022
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1023
        elif callable(doc_to_text):
1024
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1025
        # Used when applying a Promptsource template
Baber's avatar
Baber committed
1026
1027
1028
1029
1030
1031
1032
        # elif hasattr(doc_to_text, "apply"):
        #     applied_prompt = doc_to_text.apply(doc)
        #     if len(applied_prompt) == 2:
        #         return applied_prompt[0]
        #     else:
        #         eval_logger.warning("Applied prompt returns empty string")
        #         return self.config.fewshot_delimiter
1033
        else:
1034
            print(type(doc_to_text))
1035
            raise TypeError
1036

Baber's avatar
Baber committed
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
    @overload
    def doc_to_target(
        self, doc: dict, doc_to_target: None = None
    ) -> int | str | list[int]: ...

    @overload
    def doc_to_target(self, doc: dict, doc_to_target: int) -> int: ...

    @overload
    def doc_to_target(self, doc: dict, doc_to_target: str) -> int | str | list[int]: ...

    @overload
    def doc_to_target(self, doc: dict, doc_to_target: list) -> list[int]: ...

    @overload
    def doc_to_target(
        self, doc: dict, doc_to_target: Callable[..., int | str | list[int]]
    ) -> int | str | list[int]: ...

Baber's avatar
nit  
Baber committed
1056
    def doc_to_target(self, doc: dict, doc_to_target=None) -> int | str | list[int]:
Baber's avatar
Baber committed
1057
1058
1059
        # if self.prompt is not None:
        #     doc_to_target = self.prompt
        if doc_to_target is not None:
Yu Shi Jie's avatar
Yu Shi Jie committed
1060
            doc_to_target = doc_to_target
1061
        else:
1062
            doc_to_target = self.config.doc_to_target
1063

1064
        if isinstance(doc_to_target, int):
1065
            return doc_to_target
1066
        elif isinstance(doc_to_target, str):
1067
            if doc_to_target in self.features:
1068
                # if self.config.doc_to_choice is not None:
1069
1070
1071
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1072
            else:
lintangsutawika's avatar
lintangsutawika committed
1073
                target_string = utils.apply_template(doc_to_target, doc)
Baber's avatar
nit  
Baber committed
1074
                if target_string.isdigit() and self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1075
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1076
1077
1078
1079
1080
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1081
1082
1083
1084
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1085
1086
                else:
                    return target_string
1087
        elif isinstance(doc_to_target, list):
1088
            return doc_to_target
1089
        elif callable(doc_to_target):
1090
            return doc_to_target(doc)
Baber's avatar
Baber committed
1091
1092
1093
1094
1095
1096
1097
1098
        # # Used when applying a Promptsource template
        # elif hasattr(doc_to_target, "apply"):
        #     applied_prompt = doc_to_target.apply(doc)
        #     if len(applied_prompt) == 2:
        #         return applied_prompt[1]
        #     else:
        #         eval_logger.warning("Applied prompt returns empty string")
        #         return self.config.fewshot_delimiter
1099
1100
        else:
            raise TypeError
1101

Baber's avatar
Baber committed
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: None = None) -> list[str]: ...

    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: str) -> list[str]: ...

    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: list) -> list[str]: ...

    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: dict) -> list[str]: ...

    @overload
    def doc_to_choice(
        self, doc: dict, doc_to_choice: Callable[..., list[str]]
    ) -> list[str]: ...

Baber's avatar
Baber committed
1119
    def doc_to_choice(
Baber's avatar
Baber committed
1120
1121
        self,
        doc: dict,
Baber's avatar
nit  
Baber committed
1122
1123
        doc_to_choice: str | list | dict | Callable[..., list[str]] | None = None,
    ) -> list[str]:
Baber's avatar
Baber committed
1124
1125
1126
        # if self.prompt is not None:
        #     doc_to_choice = self.prompt
        if doc_to_choice is not None:
Yu Shi Jie's avatar
Yu Shi Jie committed
1127
            doc_to_choice = doc_to_choice
1128
        elif self.config.doc_to_choice is None:
1129
            eval_logger.error("doc_to_choice was called but not set in config")
Baber's avatar
Baber committed
1130
            doc_to_choice = None
1131
        else:
1132
            doc_to_choice = self.config.doc_to_choice
1133

1134
        if isinstance(doc_to_choice, str):
1135
1136
1137
1138
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1139
        elif isinstance(doc_to_choice, list):
1140
            return doc_to_choice
1141
        elif isinstance(doc_to_choice, dict):
1142
1143
1144
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
Baber's avatar
Baber committed
1145
1146
        # elif hasattr(doc_to_choice, "get_answer_choices_list"):
        #     return doc_to_choice.get_answer_choices_list(doc)
1147
1148
        else:
            raise TypeError
1149

Baber's avatar
Baber committed
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
    @overload
    def doc_to_image(self, doc: dict, doc_to_image: None = None) -> None: ...

    @overload
    def doc_to_image(self, doc: dict, doc_to_image: list) -> list: ...

    @overload
    def doc_to_image(self, doc: dict, doc_to_image: str) -> int | str | None: ...

    @overload
    def doc_to_image(self, doc: dict, doc_to_image: Callable[..., Any]) -> Any: ...

Baber's avatar
nit  
Baber committed
1162
    def doc_to_image(self, doc: dict, doc_to_image=None) -> int | str | list | None:
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

Baber's avatar
Baber committed
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: None = None) -> None: ...

    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: list) -> list: ...

    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: str) -> int | str | None: ...

    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: Callable[..., Any]) -> Any: ...

Baber's avatar
nit  
Baber committed
1197
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> int | str | list | None:
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber's avatar
nit  
Baber committed
1220
    def doc_to_prefix(self, doc: dict) -> str | None:
Baber Abbasi's avatar
Baber Abbasi committed
1221
1222
1223
1224
1225
1226
1227
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1228
1229
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
Baber's avatar
nit  
Baber committed
1230
    ) -> list[Instance] | Instance:
1231
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1232
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1233

1234
1235
        aux_arguments = None

1236
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1237
            arguments = (ctx, self.doc_to_target(doc))
1238
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1239
            arguments = (self.doc_to_target(doc),)
1240
        elif self.OUTPUT_TYPE == "multiple_choice":
1241
            choices = self.doc_to_choice(doc)
1242
            target_delimiter = self.config.target_delimiter
1243
1244
            if apply_chat_template:
                target_delimiter = ""
1245
1246
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1247
                # apply chat_template to choices if apply_chat_template
1248
                cont = self.doc_to_target(doc)
1249

1250
                arguments = [
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1261
                ]
1262
            else:
1263
                # Otherwise they are placed in the continuation
1264
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1265

1266
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
Baber's avatar
Baber committed
1267
            if "acc_mutual_info" in [m.metric_name for m in self.config._metric_list]:
1268
1269
1270
1271
1272
1273
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1274
1275
1276
1277
                # TODO: should these be strided? will have to modify the processing in process_results if so
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1293
1294
1295
1296
1297
1298
1299
1300
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1301
1302
1303
1304
1305
1306
1307
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1308
            request_list = [
1309
1310
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1311
                    doc=doc,
1312
                    arguments=arg,
1313
                    idx=i,
1314
1315
                    **kwargs,
                )
1316
                for i, arg in enumerate(arguments)
1317
            ]
1318
1319

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1320

lintangsutawika's avatar
lintangsutawika committed
1321
        return Instance(
1322
1323
1324
1325
1326
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1327
        )
1328

1329
    def process_results(self, doc: dict, results: list) -> dict[str, Any]:
1330
1331
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1332

1333
        result_dict = {}
Baber's avatar
fixup  
Baber committed
1334
        use_metric = list(m.metric_name for m in self.config._metric_list)
1335
1336
1337
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1338
1339
1340
1341
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1342
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
1343
1344
1345
1346
1347
1348
            (loglikelihood, *_) = results
            assert isinstance(_target := self.doc_to_target(doc), str), (
                "Require target to be a string for loglikelihood_rolling"
            )
            _words = self.count_words(_target)
            _bytes = self.count_bytes(_target)
haileyschoelkopf's avatar
haileyschoelkopf committed
1349
            return {
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1365
            }
1366
        elif self.OUTPUT_TYPE == "multiple_choice":
1367
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1368

Baber's avatar
nit  
Baber committed
1369
            # retrieve choices in list[str] form, to compute choice lengths, etc.
1370
            choices = self.doc_to_choice(doc)
1371
1372
            completion_len = np.array([float(len(i)) for i in choices])

Baber's avatar
Baber committed
1373
            if 2 * len(choices) == len(lls) and "acc_mutual_info" in use_metric:
1374
1375
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1376
1377
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1378
1379
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1380
                # and this stores our "regular" conditional loglikelihoods
1381
                lls = lls[: len(choices)]
Baber's avatar
Baber committed
1382
1383
            else:
                lls_unconditional = None
1384

1385
1386
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1387

1388
1389
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1390
            else:
1391
                gold = self.doc_to_target(doc)
1392

1393
            gold, gold_index_error = check_gold_index_error(choices, gold)
1394
1395
1396

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1397
                    f"Label index was not in within range of available choices,"
1398
1399
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1400

1401
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1402
1403
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Baber's avatar
nit  
Baber committed
1404
                exact_match = int(any(is_greedy[i] if i != -100 else 0 for i in gold))
lintangsutawika's avatar
lintangsutawika committed
1405
1406
1407
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1408
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1409
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1410

Lintang Sutawika's avatar
Lintang Sutawika committed
1411
1412
1413
1414
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1415
            result_dict = {
1416
                **({"acc": acc} if "acc" in use_metric else {}),
1417
1418
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1419
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1420
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1421
1422
1423
1424
1425
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1426
1427
            }

1428
            if "acc_mutual_info" in use_metric:
Baber's avatar
Baber committed
1429
1430
1431
                assert lls_unconditional is not None, (
                    "lls_unconditional should not be None if acc_mutual_info is in use_metric"
                )
lintangsutawika's avatar
lintangsutawika committed
1432
1433
1434
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1435
1436
1437
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1438
        elif self.OUTPUT_TYPE == "generate_until":
1439
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1440
            result = results[0]
Baber's avatar
Baber committed
1441
            for metric in self.config._metric_list:
Baber's avatar
Baber committed
1442
                try:
Baber's avatar
Baber committed
1443
                    result_score = metric.fn(
Baber's avatar
Baber committed
1444
1445
                        references=[gold] if not isinstance(gold, list) else gold,
                        predictions=[result],
Baber's avatar
Baber committed
1446
                        **metric.kwargs,
Baber's avatar
Baber committed
1447
1448
                    )
                except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
Baber's avatar
Baber committed
1449
                    result_score = metric.fn([gold, result])
1450
1451
1452
1453
1454
1455
1456
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1457
        else:
lintangsutawika's avatar
lintangsutawika committed
1458
1459
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1460
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1461
            )
1462
1463
1464

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1465
    def aggregation(self) -> dict:
Baber's avatar
fixup  
Baber committed
1466
        return {k.name: k.aggregation_fn for k in self.config._metric_list}
1467

Baber Abbasi's avatar
Baber Abbasi committed
1468
    def higher_is_better(self) -> dict:
Baber's avatar
fixup  
Baber committed
1469
        return {k.name: k.higher_is_better for k in self.config._metric_list}
1470

Baber Abbasi's avatar
Baber Abbasi committed
1471
1472
1473
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1474
    @property
Baber's avatar
nit  
Baber committed
1475
    def task_name(self) -> str | None:
Lintang Sutawika's avatar
Lintang Sutawika committed
1476
1477
        return getattr(self.config, "task", None)

1478
1479
1480
1481
1482
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1483
            f"num_samples={len(self.eval_docs)})"
1484
1485
        )

1486
1487

class MultipleChoiceTask(Task):
1488
    OUTPUT_TYPE = "loglikelihood"
1489

baberabb's avatar
baberabb committed
1490
    def doc_to_target(self, doc: dict) -> str:
1491
1492
        return " " + doc["choices"][doc["gold"]]

Baber's avatar
nit  
Baber committed
1493
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> list[Instance]:
1494
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1495
1496
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1497
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1498
                doc=doc,
1499
                arguments=(ctx, f" {choice}"),
1500
                idx=i,
1501
1502
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1503
1504
            for i, choice in enumerate(doc["choices"])
        ]
1505

Baber's avatar
nit  
Baber committed
1506
    def process_results(self, doc: dict, results: Iterable[tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1507
1508
1509
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1521
    def higher_is_better(self) -> dict:
1522
1523
1524
1525
1526
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1527
    def aggregation(self) -> dict:
1528
1529
1530
1531
1532
1533
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1534
class PerplexityTask(Task):
1535
1536
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1537
    def has_training_docs(self) -> bool:
1538
1539
        return False

Baber's avatar
nit  
Baber committed
1540
    def fewshot_examples(self, k: int, rnd) -> list:
1541
1542
1543
1544
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1545
1546
        return []

baberabb's avatar
baberabb committed
1547
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1548
1549
1550
1551
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1552
1553
1554

        return ""

baberabb's avatar
baberabb committed
1555
    def higher_is_better(self) -> dict:
1556
1557
1558
1559
1560
1561
1562
1563
1564
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1565
    def doc_to_text(self, doc) -> str:
1566
1567
1568
1569
1570
        return ""

    def doc_to_target(self, doc):
        return doc

Baber's avatar
nit  
Baber committed
1571
    def construct_requests(self, doc: dict, ctx: str | None, **kwargs):
1572
1573
        if bool(ctx):
            raise ValueError
1574

lintangsutawika's avatar
lintangsutawika committed
1575
1576
1577
1578
1579
1580
1581
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1582

Baber's avatar
nit  
Baber committed
1583
    def process_results(self, doc: dict, results: tuple[float]) -> dict:
1584
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1585
1586
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1587
1588
1589
1590
1591
1592
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1593
    def aggregation(self) -> dict:
1594
1595
1596
1597
1598
1599
1600
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1601
    def count_bytes(cls, doc) -> int:
1602
1603
1604
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1605
    def count_words(cls, doc) -> int:
1606
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1607
        return len(re.split(r"\s+", doc))