task.py 67.9 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
59
    tag: Optional[Union[str, list]] = None
60
61
62
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
Baber's avatar
Baber committed
63
    download_dataset: Optional[Callable] = None
64
65
66
67
68
69
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
70
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
71
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
72
    )
73
74
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
75
76
77
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
78
    doc_to_image: Union[Callable, str] = None
Hojin Lee's avatar
Hojin Lee committed
79
    unsafe_code: bool = False
80
81
82
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
83
    description: str = ""
84
85
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
86
    fewshot_config: Optional[dict] = None
87
    # runtime configuration options
88
    num_fewshot: Optional[int] = None
89
    # scoring options
90
91
92
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
93
    repeats: int = 1
94
    filter_list: Optional[Union[str, list]] = None
95
    should_decontaminate: bool = False
96
    doc_to_decontamination_query: Optional[str] = None
Baber Abbasi's avatar
Baber Abbasi committed
97
    assistant_prefill: Optional[str] = None
98
99
100
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
101

Ethan Smith's avatar
Ethan Smith committed
102
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
103
        if self.generation_kwargs is not None:
104
            if self.output_type != "generate_until":
105
                eval_logger.warning(
106
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
107
108
109
110
111
112
113
114
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
115
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
116
        else:
117
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
118
119
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
120
121
122
123
124
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
125
126
                    "do_sample": False,
                }
127

128
129
130
    def __getitem__(self, item):
        return getattr(self, item)

131
132
133
    def __setitem__(self, item, value):
        return setattr(self, item, value)

134
    def to_dict(self, keep_callable: bool = False) -> dict:
135
136
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
137
        Used for dumping results alongside full task configuration
138

haileyschoelkopf's avatar
haileyschoelkopf committed
139
140
141
142
143
144
145
146
147
148
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
149
150
151
152
153
154
155
156
157
158
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
159
        return cfg_dict
160

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

177
178
179
180
181
182
183
184
185
186
187

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

188
    VERSION: Optional[Union[int, str]] = None
189

190
191
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
192
    DATASET_PATH: Optional[str] = None
193
194

    # The name of a subset within `DATASET_PATH`.
195
    DATASET_NAME: Optional[str] = None
196

197
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
198

199
200
    def __init__(
        self,
201
202
203
204
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
205
    ) -> None:
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
228
229
230
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
231

232
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
233

lintangsutawika's avatar
lintangsutawika committed
234
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
235
236
237
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
238

239
240
241
242
243
244
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
269
270
271
272
273
274
275
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
276

277
    @property
278
    def config(self) -> TaskConfig:
279
280
281
        """Returns the TaskConfig associated with this class."""
        return self._config

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

297
    def training_docs(self) -> Iterable:
298
299
300
301
302
303
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

304
    def validation_docs(self) -> Iterable:
305
306
307
308
309
310
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

311
    def test_docs(self) -> Iterable:
312
313
314
315
316
317
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

318
    def fewshot_docs(self) -> Iterable:
319
320
321
322
323
324
325
326
327
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber's avatar
Baber committed
328
329
330
331
332
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
333
334
            return self.test_docs()

335
    def _process_doc(self, doc: dict) -> dict:
336
337
338
339
340
341
342
343
344
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
345

346
    @property
347
    def instances(self) -> List[Instance]:
348
349
350
351
352
353
354
355
356
357
358
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

359
360
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
361
362
363
364
365
366
367
368
369
370
371
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

372
373
374
375
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

376
377
    def build_all_requests(
        self,
378
        *,
379
380
381
382
383
384
385
386
387
388
        limit: Union[int, None] = None,
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
389
    ) -> None:
390
        """Build a set of Instances for a task, and store them in task.instances"""
391
392
393
394

        # used with caching
        og_limit = limit

395
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
396
397
398
399
400
401
402
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
403
        cache_key += f"-tokenizer{tokenizer_name}"
404

Baber Abbasi's avatar
Baber Abbasi committed
405
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
406
407
408
409
410
411
412
413
414
415
416
417
418

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
419
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
420

421
        instances = []
422
423
424
425
426
427
428
429
430
431

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
432
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
433
434
435
436
437
438
439
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
440
        ):
441
            # sample fewshot context #TODO: need to offset doc_id by rank now!
442
            fewshot_ctx = self.fewshot_context(
443
                doc,
444
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
445
446
447
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
448
                chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
449
                assistant_prefill=self.config.assistant_prefill,
450
            )
451

452
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
453
454
455
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
456
                metadata=(self.config["task"], doc_id, self.config.repeats),
457
                apply_chat_template=apply_chat_template,
lintangsutawika's avatar
lintangsutawika committed
458
            )
459
460
461
462

            if not isinstance(inst, list):
                inst = [inst]

463
464
465
466
467
468
469
470
471
472
473
474
475
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
476

477
478
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
479

480
481
482
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
499
            The number of times each instance in a dataset is inferred on. Defaults to 1,
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

535
536
537
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
538
539
540
541
542
543
544
545
546
547
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

548
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
549
    def fewshot_context(
550
551
552
        self,
        doc,
        num_fewshot,
553
        rnd=None,
554
        description=None,
lintangsutawika's avatar
lintangsutawika committed
555
    ):
556
557
558
559
560
561
562
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
563
564
565
566
567
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
568
569
570
        :returns: str
            The fewshot context.
        """
571
        if rnd is None:
572
573
574
575
576
577
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
578

579
        description = description if description else ""
580
581

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
582
            labeled_examples = ""
583
        else:
lintangsutawika's avatar
lintangsutawika committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
608
            )
609
610

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
611
        return description + labeled_examples + example
612

613
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
614
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
615
616
        if hasattr(self, "_filters"):
            for f in self._filters:
617
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
618
619
620
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
621

baberabb's avatar
baberabb committed
622
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
623
        """Returns the config as a dictionary."""
624
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
625
        # (num_fewshot)
626
        return self.config.to_dict()
627

Baber Abbasi's avatar
Baber Abbasi committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

668
669
670
671
672
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

673
674
675
676
677
678
679
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
680
681
682
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
683
684
685
686
687
688
689
690
691
692
693
694
695

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

696
697

class ConfigurableTask(Task):
698
    VERSION = "Yaml"
699
    OUTPUT_TYPE = None
700
    CONFIG = None
701
702

    def __init__(
703
704
705
706
707
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
708
    ) -> None:  # TODO no super() call here
709
        # Get pre-configured attributes
710
        self._config = self.CONFIG
711

712
        # Use new configurations if there was no preconfiguration
713
        if self.config is None:
714
            self._config = TaskConfig(**config)
715
716
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
717
            if config is not None:
718
                self._config.__dict__.update(config)
719

720
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
721
722
723
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
724

725
726
727
728
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

729
        if self.config.output_type is not None:
730
731
732
733
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
734
            self.OUTPUT_TYPE = self.config.output_type
735

736
737
738
739
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
740
741
742
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

743
744
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
745

746
747
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
748

749
750
751
752
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
753

754
        if self.config.metric_list is None:
755
            # TODO: handle this in TaskConfig.__post_init__ ?
756
757
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

758
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
759
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
760
                self._metric_fn_kwargs[metric_name] = {}
761
762
763
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
764
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
765
        else:
766
            for metric_config in self.config.metric_list:
767
768
769
770
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
771
772
773
774
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
775
776
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
777
                }
Chris's avatar
Chris committed
778
779
780
781
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
782

783
                if self.config.process_results is not None:
784
785
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
786
787
788
789
790
791
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
792
793
794
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
795
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
796

797
                if "aggregation" in metric_config:
798
                    agg_name = metric_config["aggregation"]
799
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
800
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
801
                    elif callable(agg_name):  # noqa: E721
802
803
804
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
805
                else:
806
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
807
                    metric_agg = get_metric_aggregation(metric_name)
808
                    eval_logger.warning(
809
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
810
811
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
812
                    )
813
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
814

815
816
817
818
819
820
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
821
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
822
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
823
                        f"higher_is_better={is_higher_better(metric_name)}"
824
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
825
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
826

Baber's avatar
Baber committed
827
828
829
        if self.config.download_dataset is None:
            self.download(self.config.dataset_kwargs)
        else:
Baber's avatar
Baber committed
830
            self.dataset = self.config.download_dataset(
Baber's avatar
Baber committed
831
832
833
834
                metadata=self.config.metadata,
                **self.config.dataset_kwargs
                if self.config.dataset_kwargs is not None
                else {},
Baber's avatar
Baber committed
835
            )
836
837
838
        self._training_docs = None
        self._fewshot_docs = None

839
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
840
            self._filters = []
841
            for filter_config in self.config.filter_list:
842
843
844
845
846
847
848
849
850
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
851
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
852
        else:
853
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
854

855
856
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
857
            self.prompt = get_prompt(
858
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
859
            )
860
861
862
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
863
        if self.fewshot_docs() is not None:
864
865
866
867
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
868
869
870
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
887

888
        self.task_docs = self.eval_docs
889

890
        # Test One Doc
891
        self.features = list(self.task_docs.features.keys())
892
893
        self.multiple_input = 0
        self.multiple_target = 0
894
        test_doc = self.task_docs[0]
895
        test_text = self.doc_to_text(test_doc)
896
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
897

898
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
899
            test_choice = self.doc_to_choice(test_doc)
900
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
901
                eval_logger.error("doc_to_choice must return list")
902
903
            else:
                num_choice = len(test_choice)
904

905
            if isinstance(test_text, int):
906
                self.multiple_input = num_choice
907
908
        else:
            test_choice = None
909

910
        if isinstance(test_target, list):
911
            self.multiple_target = len(test_target)
912
        else:
913
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
914
                test_target = test_choice[test_target]
915
            else:
lintangsutawika's avatar
lintangsutawika committed
916
                test_target = str(test_target)
917

918
919
920
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
921
            check_choices = [test_target]
922
923
924
925
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
926
927
                    True
                    if self.config.target_delimiter.rstrip()
928
                    != self.config.target_delimiter
929
                    else False
930
                )
931

932
                if delimiter_has_whitespace and choice_has_whitespace:
933
934
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
935
936
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
937
                    eval_logger.debug(
938
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
939
940
                    )

Baber's avatar
nit  
Baber committed
941
942
943
    def download(
        self, dataset_kwargs: Optional[Dict[str, Any]] = None, **kwargs
    ) -> None:
944
945
946
947
948
949
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
950
    def has_training_docs(self) -> bool:
951
        if self.config.training_split is not None:
952
953
954
955
            return True
        else:
            return False

baberabb's avatar
baberabb committed
956
    def has_validation_docs(self) -> bool:
957
        if self.config.validation_split is not None:
958
959
960
961
            return True
        else:
            return False

baberabb's avatar
baberabb committed
962
    def has_test_docs(self) -> bool:
963
        if self.config.test_split is not None:
964
965
966
967
            return True
        else:
            return False

baberabb's avatar
baberabb committed
968
    def training_docs(self) -> datasets.Dataset:
969
        if self.has_training_docs():
970
971
972
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
973
                )
974
            return self.dataset[self.config.training_split]
975

baberabb's avatar
baberabb committed
976
    def validation_docs(self) -> datasets.Dataset:
977
        if self.has_validation_docs():
978
979
980
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
981
                )
982
            return self.dataset[self.config.validation_split]
983

baberabb's avatar
baberabb committed
984
    def test_docs(self) -> datasets.Dataset:
985
        if self.has_test_docs():
986
987
988
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
989

990
    def fewshot_docs(self):
991
        if self.config.fewshot_split is not None:
992
993
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
994
            return self.dataset[self.config.fewshot_split]
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1007
        else:
1008
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1009
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
1010
                    f"[Task: {self.config.task}] "
1011
1012
1013
1014
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1015

KonradSzafer's avatar
KonradSzafer committed
1016
1017
1018
1019
1020
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1021
        assistant_prefill: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
1037
1038
        if assistant_prefill:
            labeled_examples.append({"role": "assistant", "content": assistant_prefill})
KonradSzafer's avatar
KonradSzafer committed
1039

lintangsutawika's avatar
lintangsutawika committed
1040
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1041
1042
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1043
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
1044
1045
1046
1047
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1048
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1049
1050
        assistant_prefill: Optional[str] = None,
    ) -> Union[str, List[str]]:
lintangsutawika's avatar
lintangsutawika committed
1051
1052
1053
1054
1055
1056
1057
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1058
1059
1060
1061
1062
1063
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1064
1065
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
lintangsutawika's avatar
lintangsutawika committed
1066
1067
1068
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1069
1070
1071
1072
1073
1074
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1075
1076
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1077

KonradSzafer's avatar
KonradSzafer committed
1078
1079
1080
1081
1082
1083
1084
1085
1086
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1087
        else:
KonradSzafer's avatar
KonradSzafer committed
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
1102
1103
1104
1105
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
                        assistant_prefill=assistant_prefill,
KonradSzafer's avatar
KonradSzafer committed
1106
1107
1108
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1109
1110
1111
                labeled_examples += self.sampler.get_context(
                    doc, num_fewshot, assistant_prefill=assistant_prefill
                )
lintangsutawika's avatar
lintangsutawika committed
1112
1113

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1114
1115
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
1116
                # TODO: append prefill?
1117
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1118
1119
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1120
1121
1122
1123
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
                    assistant_prefill=assistant_prefill,
KonradSzafer's avatar
KonradSzafer committed
1124
1125
1126
1127
1128
1129
1130
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
                        assistant_prefill=assistant_prefill,
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
                            add_generation_prompt=False if assistant_prefill else True,
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
1144
1145
1146
1147
1148
1149
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1150
1151
1152
1153
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
                        assistant_prefill=assistant_prefill,
KonradSzafer's avatar
KonradSzafer committed
1154
1155
1156
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1157
1158
1159
1160
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
                        assistant_prefill=assistant_prefill,
KonradSzafer's avatar
KonradSzafer committed
1161
1162
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1163
1164
1165
1166
            return chat_template(
                labeled_examples,
                add_generation_prompt=False if assistant_prefill else True,
            )
1167
        else:
Baber Abbasi's avatar
Baber Abbasi committed
1168
1169
1170
1171
1172
            prefix = (
                self.config.target_delimiter + assistant_prefill
                if assistant_prefill is not None
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
1173
1174
            if self.multiple_input:
                return labeled_examples
1175
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
1176
                return labeled_examples + example + prefix
1177
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
1178
                return [labeled_examples + ex + prefix for ex in example]
1179
1180
1181
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
1182
                    return labeled_examples + choices[example] + prefix
1183
                else:
Baber Abbasi's avatar
Baber Abbasi committed
1184
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
1185

Baber Abbasi's avatar
Baber Abbasi committed
1186
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
1187
        """Iterates over FilterEnsembles and applies them to instances"""
1188
1189
        if hasattr(self, "_filters"):
            for f in self._filters:
1190
                f.apply(self._instances)
1191
1192
1193
1194
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1195
    def should_decontaminate(self):
1196
        return self.config.should_decontaminate
1197

Baber Abbasi's avatar
Baber Abbasi committed
1198
    def doc_to_decontamination_query(self, doc: dict):
1199
        if self.config.should_decontaminate:
1200
1201
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1202
            else:
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1214

1215
    def _process_doc(self, doc: dict) -> dict:
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1226
    def doc_to_text(self, doc, doc_to_text=None):
1227
1228
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1229
1230
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1231
        else:
1232
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1233

1234
        if isinstance(doc_to_text, int):
1235
            return doc_to_text
1236
        elif isinstance(doc_to_text, str):
1237
            if doc_to_text in self.features:
1238
                # if self.config.doc_to_choice is not None:
1239
1240
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1241
1242
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1243
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1244
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1245
1246
1247
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1248
        elif callable(doc_to_text):
1249
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1250
        # Used when applying a Promptsource template
1251
        elif hasattr(doc_to_text, "apply"):
1252
1253
1254
1255
1256
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1257
                return self.config.fewshot_delimiter
1258
        else:
1259
            print(type(doc_to_text))
1260
            raise TypeError
1261

Yu Shi Jie's avatar
Yu Shi Jie committed
1262
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1263
1264
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1265
1266
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1267
        else:
1268
            doc_to_target = self.config.doc_to_target
1269

1270
        if isinstance(doc_to_target, int):
1271
            return doc_to_target
1272
        elif isinstance(doc_to_target, str):
1273
            if doc_to_target in self.features:
1274
                # if self.config.doc_to_choice is not None:
1275
1276
1277
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1278
            else:
lintangsutawika's avatar
lintangsutawika committed
1279
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1280
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1281
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1282
1283
1284
1285
1286
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1287
1288
1289
1290
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1291
1292
                else:
                    return target_string
1293
        elif isinstance(doc_to_target, list):
1294
            return doc_to_target
1295
        elif callable(doc_to_target):
1296
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1297
        # Used when applying a Promptsource template
1298
        elif hasattr(doc_to_target, "apply"):
1299
            applied_prompt = doc_to_target.apply(doc)
1300
1301
1302
1303
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1304
                return self.config.fewshot_delimiter
1305
1306
        else:
            raise TypeError
1307

Yu Shi Jie's avatar
Yu Shi Jie committed
1308
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1309
1310
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1311
1312
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1313
        elif self.config.doc_to_choice is None:
1314
1315
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1316
            doc_to_choice = self.config.doc_to_choice
1317

1318
        if isinstance(doc_to_choice, str):
1319
1320
1321
1322
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1323
        elif isinstance(doc_to_choice, list):
1324
            return doc_to_choice
1325
        elif isinstance(doc_to_choice, dict):
1326
1327
1328
1329
1330
1331
1332
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1333

1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

baberabb's avatar
baberabb committed
1357
1358
1359
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1360
1361
        apply_chat_template = kwargs.pop("apply_chat_template", False)

1362
1363
        aux_arguments = None

1364
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1365
            arguments = (ctx, self.doc_to_target(doc))
1366
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1367
            arguments = (self.doc_to_target(doc),)
1368
        elif self.OUTPUT_TYPE == "multiple_choice":
1369
            choices = self.doc_to_choice(doc)
1370
            target_delimiter = self.config.target_delimiter
1371
1372
            if apply_chat_template:
                target_delimiter = ""
1373
1374
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1375
                cont = self.doc_to_target(doc)
1376
1377
1378
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1379
            else:
1380
                # Otherwise they are placed in the continuation
1381
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1382

1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                aux_arguments = [("", f"{choice}") for choice in choices]

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1414
            request_list = [
1415
1416
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1417
                    doc=doc,
1418
                    arguments=arg,
1419
                    idx=i,
1420
1421
                    **kwargs,
                )
1422
                for i, arg in enumerate(arguments)
1423
            ]
1424
1425

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1426

lintangsutawika's avatar
lintangsutawika committed
1427
        return Instance(
1428
1429
1430
1431
1432
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1433
        )
1434
1435

    def process_results(self, doc, results):
1436
1437
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1438

1439
        result_dict = {}
1440
        use_metric = list(self._metric_fn_list.keys())
1441
1442
1443
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1444
1445
1446
1447
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1448
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1449
            (loglikelihood,) = results
1450
1451
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1452
            return {
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1468
            }
1469
        elif self.OUTPUT_TYPE == "multiple_choice":
1470
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1471

1472
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1473
            choices = self.doc_to_choice(doc)
1474
1475
            completion_len = np.array([float(len(i)) for i in choices])

1476
1477
            if (
                2 * len(choices) == len(lls)
1478
                and "acc_mutual_info" in self._metric_fn_list.keys()
1479
1480
1481
1482
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1483
1484
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1485
1486
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1487

1488
1489
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1490

1491
1492
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1493
            else:
1494
                gold = self.doc_to_target(doc)
1495
1496

            gold_index_error = False
1497
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1498
1499
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1500
1501
                    gold_index_error = True
            else:
1502
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1503
                    gold = gold if gold < len(choices) else -100
1504
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1505
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1506

Lintang Sutawika's avatar
Lintang Sutawika committed
1507
                if gold == -100:
1508
1509
1510
1511
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1512
                    f"Label index was not in within range of available choices,"
1513
1514
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1515

1516
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1517
1518
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1519
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1520
1521
1522
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1523
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1524
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1525

Lintang Sutawika's avatar
Lintang Sutawika committed
1526
1527
1528
1529
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1530
            result_dict = {
1531
                **({"acc": acc} if "acc" in use_metric else {}),
1532
1533
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1534
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1535
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1536
1537
1538
1539
1540
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1541
1542
            }

1543
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1544
1545
1546
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1547
1548
1549
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1550
        elif self.OUTPUT_TYPE == "generate_until":
1551
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1552
            result = results[0]
1553
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1554
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1555
                # it assumes that doc_to_target returns a number.
1556
1557
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1558
1559
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1560
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1561
1562
1563
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
                "bypass" in self._metric_fn_list.keys() or isinstance(result, list)
1564
            ):
Chris's avatar
Chris committed
1565
1566
                # cast gold to the same type as result
                gold = type(result)(gold)
1567

lintangsutawika's avatar
lintangsutawika committed
1568
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1569
1570
1571
1572
1573
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1574
1575
1576
1577
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1578
1579
1580
1581
1582
1583
1584
1585
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1586
                    else:
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1608
                else:
1609
                    try:
1610
                        result_score = self._metric_fn_list[metric](
1611
1612
                            references=[gold],
                            predictions=[result],
1613
                            **self._metric_fn_kwargs[metric],
1614
                        )
1615
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1616
                        result_score = self._metric_fn_list[metric]([gold, result])
1617
1618
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
Hojin Lee's avatar
Hojin Lee committed
1619
1620
1621
1622
                        # This allows for multiple metrics to be returned from the same function
                        for k, v in result_score.items():
                            result_dict[k] = v
                        return result_dict
1623
                result_dict[metric] = result_score
1624
        else:
lintangsutawika's avatar
lintangsutawika committed
1625
1626
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1627
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1628
            )
1629
1630
1631

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1632
    def aggregation(self) -> dict:
1633
1634
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1635
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1636
        return self._higher_is_better
1637

Baber Abbasi's avatar
Baber Abbasi committed
1638
1639
1640
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1641
1642
1643
1644
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1645
1646
1647
1648
1649
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1650
            f"num_samples={len(self.eval_docs)})"
1651
1652
        )

1653
1654

class MultipleChoiceTask(Task):
1655
    OUTPUT_TYPE = "loglikelihood"
1656

baberabb's avatar
baberabb committed
1657
    def doc_to_target(self, doc: dict) -> str:
1658
1659
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1660
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1661
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1662
1663
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1664
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1665
                doc=doc,
1666
                arguments=(ctx, " {}".format(choice)),
1667
                idx=i,
1668
1669
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1670
1671
            for i, choice in enumerate(doc["choices"])
        ]
1672

1673
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1674
1675
1676
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1688
    def higher_is_better(self) -> dict:
1689
1690
1691
1692
1693
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1694
    def aggregation(self) -> dict:
1695
1696
1697
1698
1699
1700
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1701
class PerplexityTask(Task):
1702
1703
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1704
    def has_training_docs(self) -> bool:
1705
1706
        return False

baberabb's avatar
baberabb committed
1707
    def fewshot_examples(self, k: int, rnd) -> List:
1708
1709
1710
1711
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1712
1713
        return []

baberabb's avatar
baberabb committed
1714
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1715
1716
1717
1718
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1719
1720
1721

        return ""

baberabb's avatar
baberabb committed
1722
    def higher_is_better(self) -> dict:
1723
1724
1725
1726
1727
1728
1729
1730
1731
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1732
    def doc_to_text(self, doc) -> str:
1733
1734
1735
1736
1737
        return ""

    def doc_to_target(self, doc):
        return doc

1738
1739
1740
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1741

lintangsutawika's avatar
lintangsutawika committed
1742
1743
1744
1745
1746
1747
1748
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1749

1750
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1751
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1752
1753
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1754
1755
1756
1757
1758
1759
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1760
    def aggregation(self) -> dict:
1761
1762
1763
1764
1765
1766
1767
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1768
    def count_bytes(cls, doc) -> int:
1769
1770
1771
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1772
    def count_words(cls, doc) -> int:
1773
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1774
        return len(re.split(r"\s+", doc))