task.py 65.6 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
59
    tag: Optional[Union[str, list]] = None
60
61
62
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
63
64
65
66
67
68
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
69
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
70
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
71
    )
72
73
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
74
75
76
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
77
    doc_to_image: Union[Callable, str] = None
78
79
80
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
81
    description: str = ""
82
83
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
84
    fewshot_config: Optional[dict] = None
85
    # runtime configuration options
86
    num_fewshot: Optional[int] = None
87
    # scoring options
88
89
90
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
91
    repeats: int = 1
92
    filter_list: Optional[Union[str, list]] = None
93
    should_decontaminate: bool = False
94
    doc_to_decontamination_query: Optional[str] = None
95
96
97
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
98

Ethan Smith's avatar
Ethan Smith committed
99
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
100
        if self.generation_kwargs is not None:
101
            if self.output_type != "generate_until":
102
                eval_logger.warning(
103
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
104
105
106
107
108
109
110
111
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
112
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
113
        else:
114
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
115
116
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
117
118
119
120
121
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
122
123
                    "do_sample": False,
                }
124

125
126
127
    def __getitem__(self, item):
        return getattr(self, item)

128
129
130
    def __setitem__(self, item, value):
        return setattr(self, item, value)

131
    def to_dict(self, keep_callable: bool = False) -> dict:
132
133
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
134
        Used for dumping results alongside full task configuration
135

haileyschoelkopf's avatar
haileyschoelkopf committed
136
137
138
139
140
141
142
143
144
145
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
146
147
148
149
150
151
152
153
154
155
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
156
        return cfg_dict
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

174
175
176
177
178
179
180
181
182
183
184

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

185
    VERSION: Optional[Union[int, str]] = None
186

187
188
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
189
    DATASET_PATH: Optional[str] = None
190
191

    # The name of a subset within `DATASET_PATH`.
192
    DATASET_NAME: Optional[str] = None
193

194
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
195

196
197
    def __init__(
        self,
198
199
200
201
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
202
    ) -> None:
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
225
226
227
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
228

229
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
230

lintangsutawika's avatar
lintangsutawika committed
231
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
232
233
234
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
235

236
237
238
239
240
241
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
266
267
268
269
270
271
272
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
273

274
    @property
275
    def config(self) -> TaskConfig:
276
277
278
        """Returns the TaskConfig associated with this class."""
        return self._config

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

294
    def training_docs(self) -> Iterable:
295
296
297
298
299
300
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

301
    def validation_docs(self) -> Iterable:
302
303
304
305
306
307
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

308
    def test_docs(self) -> Iterable:
309
310
311
312
313
314
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

315
    def fewshot_docs(self) -> Iterable:
316
317
318
319
320
321
322
323
324
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber's avatar
Baber committed
325
326
327
328
329
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
330
331
            return self.test_docs()

332
    def _process_doc(self, doc: dict) -> dict:
333
334
335
336
337
338
339
340
341
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
342

343
    @property
344
    def instances(self) -> List[Instance]:
345
346
347
348
349
350
351
352
353
354
355
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

356
357
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
358
359
360
361
362
363
364
365
366
367
368
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

369
370
371
372
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

373
374
    def build_all_requests(
        self,
375
        *,
376
377
378
379
380
381
382
383
384
385
        limit: Union[int, None] = None,
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
386
    ) -> None:
387
        """Build a set of Instances for a task, and store them in task.instances"""
388
389
390
391

        # used with caching
        og_limit = limit

392
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
393
394
395
396
397
398
399
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
400
        cache_key += f"-tokenizer{tokenizer_name}"
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
416
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
417

418
        instances = []
419
420
421
422
423
424
425
426
427
428

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
429
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
430
431
432
433
434
435
436
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
437
        ):
438
            # sample fewshot context #TODO: need to offset doc_id by rank now!
439
            fewshot_ctx = self.fewshot_context(
440
                doc,
441
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
442
443
444
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
445
                chat_template,
446
            )
447

448
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
449
450
451
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
452
                metadata=(self.config["task"], doc_id, self.config.repeats),
453
                apply_chat_template=apply_chat_template,
lintangsutawika's avatar
lintangsutawika committed
454
            )
455
456
457
458

            if not isinstance(inst, list):
                inst = [inst]

459
460
461
462
463
464
465
466
467
468
469
470
471
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
472

473
474
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
475

476
477
478
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
495
            The number of times each instance in a dataset is inferred on. Defaults to 1,
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

531
532
533
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
534
535
536
537
538
539
540
541
542
543
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

544
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
545
    def fewshot_context(
546
547
548
        self,
        doc,
        num_fewshot,
549
        rnd=None,
550
        description=None,
lintangsutawika's avatar
lintangsutawika committed
551
    ):
552
553
554
555
556
557
558
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
559
560
561
562
563
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
564
565
566
        :returns: str
            The fewshot context.
        """
567
        if rnd is None:
568
569
570
571
572
573
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
574

575
        description = description if description else ""
576
577

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
578
            labeled_examples = ""
579
        else:
lintangsutawika's avatar
lintangsutawika committed
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
604
            )
605
606

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
607
        return description + labeled_examples + example
608

609
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
610
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
611
612
        if hasattr(self, "_filters"):
            for f in self._filters:
613
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
614
615
616
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
617

baberabb's avatar
baberabb committed
618
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
619
        """Returns the config as a dictionary."""
620
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
621
        # (num_fewshot)
622
        return self.config.to_dict()
623

Baber Abbasi's avatar
Baber Abbasi committed
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

664
665
666
667
668
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

669
670
671
672
673
674
675
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
676
677
678
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
679
680
681
682
683
684
685
686
687
688
689
690
691

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

692
693

class ConfigurableTask(Task):
694
    VERSION = "Yaml"
695
    OUTPUT_TYPE = None
696
    CONFIG = None
697
698

    def __init__(
699
700
701
702
703
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
704
    ) -> None:  # TODO no super() call here
705
        # Get pre-configured attributes
706
        self._config = self.CONFIG
707

708
        # Use new configurations if there was no preconfiguration
709
        if self.config is None:
710
            self._config = TaskConfig(**config)
711
712
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
713
            if config is not None:
714
                self._config.__dict__.update(config)
715

716
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
717
718
719
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
720

721
722
723
724
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

725
        if self.config.output_type is not None:
726
727
728
729
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
730
            self.OUTPUT_TYPE = self.config.output_type
731

732
733
734
735
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

736
737
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
738

739
740
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
741

742
743
744
745
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
746

747
        if self.config.metric_list is None:
748
            # TODO: handle this in TaskConfig.__post_init__ ?
749
750
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

751
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
752
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
753
                self._metric_fn_kwargs[metric_name] = {}
754
755
756
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
757
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
758
        else:
759
            for metric_config in self.config.metric_list:
760
761
762
763
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
764
765
766
767
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
768
769
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
770
                }
Chris's avatar
Chris committed
771
772
773
774
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
775

776
                if self.config.process_results is not None:
777
778
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
779
780
781
782
783
784
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
785
786
787
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
788
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
789

790
                if "aggregation" in metric_config:
791
                    agg_name = metric_config["aggregation"]
792
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
793
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
794
                    elif callable(agg_name):  # noqa: E721
795
796
797
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
798
                else:
799
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
800
                    metric_agg = get_metric_aggregation(metric_name)
801
                    eval_logger.warning(
802
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
803
804
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
805
                    )
806
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
807

808
809
810
811
812
813
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
814
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
815
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
816
                        f"higher_is_better={is_higher_better(metric_name)}"
817
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
818
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
819

820
        self.download(self.config.dataset_kwargs)
821
822
823
        self._training_docs = None
        self._fewshot_docs = None

824
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
825
            self._filters = []
826
            for filter_config in self.config.filter_list:
827
828
829
830
831
832
833
834
835
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
836
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
837
        else:
838
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
839

840
841
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
842
            self.prompt = get_prompt(
843
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
844
            )
845
846
847
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
848
        if self.fewshot_docs() is not None:
849
850
851
852
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
853
854
855
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
872

873
        self.task_docs = self.eval_docs
874

875
        # Test One Doc
876
        self.features = list(self.task_docs.features.keys())
877
878
        self.multiple_input = 0
        self.multiple_target = 0
879
        test_doc = self.task_docs[0]
880
        test_text = self.doc_to_text(test_doc)
881
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
882

883
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
884
            test_choice = self.doc_to_choice(test_doc)
885
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
886
                eval_logger.error("doc_to_choice must return list")
887
888
            else:
                num_choice = len(test_choice)
889

890
            if isinstance(test_text, int):
891
                self.multiple_input = num_choice
892
893
        else:
            test_choice = None
894

895
        if isinstance(test_target, list):
896
            self.multiple_target = len(test_target)
897
        else:
898
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
899
                test_target = test_choice[test_target]
900
            else:
lintangsutawika's avatar
lintangsutawika committed
901
                test_target = str(test_target)
902

903
904
905
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
906
            check_choices = [test_target]
907
908
909
910
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
911
912
                    True
                    if self.config.target_delimiter.rstrip()
913
                    != self.config.target_delimiter
914
                    else False
915
                )
916

917
                if delimiter_has_whitespace and choice_has_whitespace:
918
919
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
920
921
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
922
                    eval_logger.debug(
923
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
924
925
                    )

926
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
927
928
929
930
931
932
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
933
    def has_training_docs(self) -> bool:
934
        if self.config.training_split is not None:
935
936
937
938
            return True
        else:
            return False

baberabb's avatar
baberabb committed
939
    def has_validation_docs(self) -> bool:
940
        if self.config.validation_split is not None:
941
942
943
944
            return True
        else:
            return False

baberabb's avatar
baberabb committed
945
    def has_test_docs(self) -> bool:
946
        if self.config.test_split is not None:
947
948
949
950
            return True
        else:
            return False

baberabb's avatar
baberabb committed
951
    def training_docs(self) -> datasets.Dataset:
952
        if self.has_training_docs():
953
954
955
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
956
                )
957
            return self.dataset[self.config.training_split]
958

baberabb's avatar
baberabb committed
959
    def validation_docs(self) -> datasets.Dataset:
960
        if self.has_validation_docs():
961
962
963
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
964
                )
965
            return self.dataset[self.config.validation_split]
966

baberabb's avatar
baberabb committed
967
    def test_docs(self) -> datasets.Dataset:
968
        if self.has_test_docs():
969
970
971
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
972

973
    def fewshot_docs(self):
974
        if self.config.fewshot_split is not None:
975
976
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
977
            return self.dataset[self.config.fewshot_split]
978
979
980
981
982
983
984
985
986
987
988
989
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
990
        else:
991
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
992
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
993
                    f"[Task: {self.config.task}] "
994
995
996
997
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
998

KonradSzafer's avatar
KonradSzafer committed
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1020
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1021
1022
1023
1024
1025
1026
1027
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1028
        chat_template: Optional[Callable] = None,
KonradSzafer's avatar
KonradSzafer committed
1029
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1030
1031
1032
1033
1034
1035
1036
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1037
1038
1039
1040
1041
1042
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1043
1044
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
lintangsutawika's avatar
lintangsutawika committed
1045
1046
1047
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1048
1049
1050
1051
1052
1053
1054

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1055
1056
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1057

KonradSzafer's avatar
KonradSzafer committed
1058
1059
1060
1061
1062
1063
1064
1065
1066
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1067
        else:
KonradSzafer's avatar
KonradSzafer committed
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1087
1088

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1089
1090
        if apply_chat_template:
            if self.multiple_input:
1091
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
1103
                    labeled_examples_list.append(chat_template(chat))
KonradSzafer's avatar
KonradSzafer committed
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
1117
            return chat_template(labeled_examples)
1118
        else:
KonradSzafer's avatar
KonradSzafer committed
1119
1120
            if self.multiple_input:
                return labeled_examples
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1131

1132
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1133
        """Iterates over FilterEnsembles and applies them to instances"""
1134
1135
        if hasattr(self, "_filters"):
            for f in self._filters:
1136
                f.apply(self._instances)
1137
1138
1139
1140
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1141
    def should_decontaminate(self):
1142
        return self.config.should_decontaminate
1143
1144

    def doc_to_decontamination_query(self, doc):
1145
        if self.config.should_decontaminate:
1146
1147
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1148
            else:
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1160

1161
    def _process_doc(self, doc: dict) -> dict:
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1172
    def doc_to_text(self, doc, doc_to_text=None):
1173
1174
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1175
1176
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1177
        else:
1178
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1179

1180
        if isinstance(doc_to_text, int):
1181
            return doc_to_text
1182
        elif isinstance(doc_to_text, str):
1183
            if doc_to_text in self.features:
1184
                # if self.config.doc_to_choice is not None:
1185
1186
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1187
1188
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1189
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1190
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1191
1192
1193
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1194
        elif callable(doc_to_text):
1195
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1196
        # Used when applying a Promptsource template
1197
        elif hasattr(doc_to_text, "apply"):
1198
1199
1200
1201
1202
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1203
                return self.config.fewshot_delimiter
1204
        else:
1205
            print(type(doc_to_text))
1206
            raise TypeError
1207

Yu Shi Jie's avatar
Yu Shi Jie committed
1208
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1209
1210
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1211
1212
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1213
        else:
1214
            doc_to_target = self.config.doc_to_target
1215

1216
        if isinstance(doc_to_target, int):
1217
            return doc_to_target
1218
        elif isinstance(doc_to_target, str):
1219
            if doc_to_target in self.features:
1220
                # if self.config.doc_to_choice is not None:
1221
1222
1223
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1224
            else:
lintangsutawika's avatar
lintangsutawika committed
1225
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1226
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1227
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1228
1229
1230
1231
1232
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1233
1234
1235
1236
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1237
1238
                else:
                    return target_string
1239
        elif isinstance(doc_to_target, list):
1240
            return doc_to_target
1241
        elif callable(doc_to_target):
1242
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1243
        # Used when applying a Promptsource template
1244
        elif hasattr(doc_to_target, "apply"):
1245
            applied_prompt = doc_to_target.apply(doc)
1246
1247
1248
1249
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1250
                return self.config.fewshot_delimiter
1251
1252
        else:
            raise TypeError
1253

Yu Shi Jie's avatar
Yu Shi Jie committed
1254
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1255
1256
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1257
1258
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1259
        elif self.config.doc_to_choice is None:
1260
1261
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1262
            doc_to_choice = self.config.doc_to_choice
1263

1264
        if isinstance(doc_to_choice, str):
1265
1266
1267
1268
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1269
        elif isinstance(doc_to_choice, list):
1270
            return doc_to_choice
1271
        elif isinstance(doc_to_choice, dict):
1272
1273
1274
1275
1276
1277
1278
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1279

1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

baberabb's avatar
baberabb committed
1303
1304
1305
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1306
1307
        apply_chat_template = kwargs.pop("apply_chat_template", False)

1308
1309
        aux_arguments = None

1310
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1311
            arguments = (ctx, self.doc_to_target(doc))
1312
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1313
            arguments = (self.doc_to_target(doc),)
1314
        elif self.OUTPUT_TYPE == "multiple_choice":
1315
            choices = self.doc_to_choice(doc)
1316
            target_delimiter = self.config.target_delimiter
1317
1318
            if apply_chat_template:
                target_delimiter = ""
1319
1320
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1321
                cont = self.doc_to_target(doc)
1322
1323
1324
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1325
            else:
1326
                # Otherwise they are placed in the continuation
1327
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1328

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                aux_arguments = [("", f"{choice}") for choice in choices]

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1360
            request_list = [
1361
1362
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1363
                    doc=doc,
1364
                    arguments=arg,
1365
                    idx=i,
1366
1367
                    **kwargs,
                )
1368
                for i, arg in enumerate(arguments)
1369
            ]
1370
1371

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1372

lintangsutawika's avatar
lintangsutawika committed
1373
        return Instance(
1374
1375
1376
1377
1378
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1379
        )
1380
1381

    def process_results(self, doc, results):
1382
1383
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1384

1385
        result_dict = {}
1386
        use_metric = list(self._metric_fn_list.keys())
1387
1388
1389
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1390
1391
1392
1393
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1394
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1395
            (loglikelihood,) = results
1396
1397
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1398
            return {
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1414
            }
1415
        elif self.OUTPUT_TYPE == "multiple_choice":
1416
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1417

1418
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1419
            choices = self.doc_to_choice(doc)
1420
1421
            completion_len = np.array([float(len(i)) for i in choices])

1422
1423
            if (
                2 * len(choices) == len(lls)
1424
                and "acc_mutual_info" in self._metric_fn_list.keys()
1425
1426
1427
1428
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1429
1430
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1431
1432
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1433

1434
1435
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1436

1437
1438
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1439
            else:
1440
                gold = self.doc_to_target(doc)
1441
1442

            gold_index_error = False
1443
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1444
1445
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1446
1447
                    gold_index_error = True
            else:
1448
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1449
                    gold = gold if gold < len(choices) else -100
1450
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1451
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1452

Lintang Sutawika's avatar
Lintang Sutawika committed
1453
                if gold == -100:
1454
1455
1456
1457
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1458
                    f"Label index was not in within range of available choices,"
1459
1460
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1461

1462
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1463
1464
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1465
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1466
1467
1468
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1469
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1470
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1471

Lintang Sutawika's avatar
Lintang Sutawika committed
1472
1473
1474
1475
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1476
            result_dict = {
1477
                **({"acc": acc} if "acc" in use_metric else {}),
1478
1479
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1480
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1481
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1482
1483
1484
1485
1486
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1487
1488
            }

1489
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1490
1491
1492
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1493
1494
1495
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1496
        elif self.OUTPUT_TYPE == "generate_until":
1497
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1498
            result = results[0]
1499
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1500
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1501
                # it assumes that doc_to_target returns a number.
1502
1503
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1504
1505
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1506
                gold = list(gold)
1507
1508
1509
1510
            elif (
                type(gold) is not type(result)
                and "bypass" not in self._metric_fn_list.keys()
            ):
Chris's avatar
Chris committed
1511
1512
                # cast gold to the same type as result
                gold = type(result)(gold)
1513

lintangsutawika's avatar
lintangsutawika committed
1514
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1515
1516
1517
1518
1519
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1520
1521
1522
1523
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1524
1525
1526
1527
1528
1529
1530
1531
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1532
                    else:
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1554
                else:
1555
                    try:
1556
                        result_score = self._metric_fn_list[metric](
1557
1558
                            references=[gold],
                            predictions=[result],
1559
                            **self._metric_fn_kwargs[metric],
1560
                        )
1561
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1562
                        result_score = self._metric_fn_list[metric]([gold, result])
1563
1564
1565
1566
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1567
        else:
lintangsutawika's avatar
lintangsutawika committed
1568
1569
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1570
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1571
            )
1572
1573
1574

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1575
    def aggregation(self) -> dict:
1576
1577
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1578
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1579
        return self._higher_is_better
1580

Baber Abbasi's avatar
Baber Abbasi committed
1581
1582
1583
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1584
1585
1586
1587
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1588
1589
1590
1591
1592
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1593
            f"num_samples={len(self.eval_docs)})"
1594
1595
        )

1596
1597

class MultipleChoiceTask(Task):
1598
    OUTPUT_TYPE = "loglikelihood"
1599

baberabb's avatar
baberabb committed
1600
    def doc_to_target(self, doc: dict) -> str:
1601
1602
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1603
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1604
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1605
1606
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1607
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1608
                doc=doc,
1609
                arguments=(ctx, " {}".format(choice)),
1610
                idx=i,
1611
1612
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1613
1614
            for i, choice in enumerate(doc["choices"])
        ]
1615

1616
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1617
1618
1619
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1631
    def higher_is_better(self) -> dict:
1632
1633
1634
1635
1636
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1637
    def aggregation(self) -> dict:
1638
1639
1640
1641
1642
1643
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1644
class PerplexityTask(Task):
1645
1646
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1647
    def has_training_docs(self) -> bool:
1648
1649
        return False

baberabb's avatar
baberabb committed
1650
    def fewshot_examples(self, k: int, rnd) -> List:
1651
1652
1653
1654
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1655
1656
        return []

baberabb's avatar
baberabb committed
1657
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1658
1659
1660
1661
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1662
1663
1664

        return ""

baberabb's avatar
baberabb committed
1665
    def higher_is_better(self) -> dict:
1666
1667
1668
1669
1670
1671
1672
1673
1674
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1675
    def doc_to_text(self, doc) -> str:
1676
1677
1678
1679
1680
        return ""

    def doc_to_target(self, doc):
        return doc

1681
1682
1683
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1684

lintangsutawika's avatar
lintangsutawika committed
1685
1686
1687
1688
1689
1690
1691
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1692

1693
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1694
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1695
1696
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1697
1698
1699
1700
1701
1702
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1703
    def aggregation(self) -> dict:
1704
1705
1706
1707
1708
1709
1710
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1711
    def count_bytes(cls, doc) -> int:
1712
1713
1714
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1715
    def count_words(cls, doc) -> int:
1716
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1717
        return len(re.split(r"\s+", doc))