nodes.py 55.7 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
space-nuko's avatar
space-nuko committed
10
11
import struct
from io import BytesIO
comfyanonymous's avatar
comfyanonymous committed
12

13
from PIL import Image, ImageOps
comfyanonymous's avatar
comfyanonymous committed
14
15
from PIL.PngImagePlugin import PngInfo
import numpy as np
16
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
17

sALTaccount's avatar
sALTaccount committed
18

comfyanonymous's avatar
comfyanonymous committed
19
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
20
21


22
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
23
import comfy.samplers
24
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
25
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
26
import comfy.utils
space-nuko's avatar
space-nuko committed
27
from comfy.taesd.taesd import TAESD
comfyanonymous's avatar
comfyanonymous committed
28

29
import comfy.clip_vision
30

31
import comfy.model_management
32
import importlib
comfyanonymous's avatar
comfyanonymous committed
33

34
import folder_paths
35

Dr.Lt.Data's avatar
Dr.Lt.Data committed
36

37
def before_node_execution():
38
    comfy.model_management.throw_exception_if_processing_interrupted()
39

40
def interrupt_processing(value=True):
41
    comfy.model_management.interrupt_current_processing(value)
42

43
MAX_RESOLUTION=8192
space-nuko's avatar
space-nuko committed
44
MAX_PREVIEW_RESOLUTION = 512
45

comfyanonymous's avatar
comfyanonymous committed
46
47
48
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
49
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
50
51
52
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

53
54
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
55
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
56
57
58
59
60
61
62
63
64
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

65
66
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
67
68
69
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
70
71
72
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
73
74
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
75
76
77
78
79
80
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
81
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
82
        out = []
comfyanonymous's avatar
comfyanonymous committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
            n = [tw, conditioning_to[i][1].copy()]
FizzleDorf's avatar
FizzleDorf committed
97
98
99
            out.append(n)
        return (out, )

comfyanonymous's avatar
comfyanonymous committed
100
101
102
103
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
104
105
106
107
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
108
109
110
111
112
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

113
114
    CATEGORY = "conditioning"

115
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
116
117
118
119
120
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
121
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
122
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
123
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
124

Jacob Segal's avatar
Jacob Segal committed
125
126
127
128
129
130
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
131
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
132
133
134
135
136
137
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

138
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
139
        c = []
140
141
142
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
143
144
145
146
147
148
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
149
            n[1]['set_area_to_bounds'] = set_area_to_bounds
150
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
151
152
153
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
154
155
156
157
158
159
160
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

161
162
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
163
    def decode(self, vae, samples):
164
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
165

166
167
168
169
170
171
172
173
174
175
176
177
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

space-nuko's avatar
space-nuko committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
class TAESDDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "taesd": ("TAESD", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "latent"

    def decode(self, taesd, samples):
        device = comfy.model_management.get_torch_device()
        # [B, C, H, W] -> [B, H, W, C]
        pixels = taesd.decoder(samples["samples"].to(device)).permute(0, 2, 3, 1).detach().clamp(0, 1)
        return (pixels, )

comfyanonymous's avatar
comfyanonymous committed
193
194
195
196
197
198
199
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

200
201
    CATEGORY = "latent"

202
203
204
205
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
206
        if pixels.shape[1] != x or pixels.shape[2] != y:
207
208
209
210
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
211

212
213
214
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
215
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
216

comfyanonymous's avatar
comfyanonymous committed
217
218
219
220
221
222
223
224
225
226
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
227
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
comfyanonymous's avatar
comfyanonymous committed
228
229
        t = vae.encode_tiled(pixels[:,:,:,:3])
        return ({"samples":t}, )
230

231
232
233
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
234
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
235
236
237
238
239
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

240
    def encode(self, vae, pixels, mask, grow_mask_by=6):
241
242
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
243
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
244

245
        pixels = pixels.clone()
246
        if pixels.shape[1] != x or pixels.shape[2] != y:
247
248
249
250
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
251

252
        #grow mask by a few pixels to keep things seamless in latent space
253
254
255
256
257
258
259
260
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

261
        m = (1.0 - mask.round()).squeeze(1)
262
263
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
264
            pixels[:,:,:,i] *= m
265
266
267
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

268
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
269

space-nuko's avatar
space-nuko committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
class TAESDEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "taesd": ("TAESD", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent"

    def encode(self, taesd, pixels):
        device = comfy.model_management.get_torch_device()
        # [B, H, W, C] -> [B, C, H, W]
        samples = taesd.encoder(pixels.permute(0, 3, 1, 2).to(device)).to(device)
        return ({"samples": samples}, )

Dr.Lt.Data's avatar
Dr.Lt.Data committed
285
286
287

class SaveLatent:
    def __init__(self):
288
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
289
290
291
292

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
293
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
294
295
296
297
298
299
300
301
302
303
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
304
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
305
306
307
308
309
310

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

311
        metadata = {"prompt": prompt_info}
Dr.Lt.Data's avatar
Dr.Lt.Data committed
312
313
314
315
316
317
318
        if extra_pnginfo is not None:
            for x in extra_pnginfo:
                metadata[x] = json.dumps(extra_pnginfo[x])

        file = f"{filename}_{counter:05}_.latent"
        file = os.path.join(full_output_folder, file)

319
320
321
322
        output = {}
        output["latent_tensor"] = samples["samples"]

        safetensors.torch.save_file(output, file, metadata=metadata)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
323
324
325
326
327
328
329

        return {}


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
330
331
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
332
333
334
335
336
337
338
339
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
340
341
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
342
        samples = {"samples": latent["latent_tensor"].float()}
343
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
344

345
346
347
348
349
350
351
352
353
354
355
356
357
358
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
359

comfyanonymous's avatar
comfyanonymous committed
360
361
362
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
363
364
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
365
366
367
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

368
    CATEGORY = "advanced/loaders"
369

comfyanonymous's avatar
comfyanonymous committed
370
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
371
372
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
373
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
374

375
376
377
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
378
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
379
380
381
382
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

383
    CATEGORY = "loaders"
384

385
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
386
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
387
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
388
389
        return out

sALTaccount's avatar
sALTaccount committed
390
391
392
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
393
        paths = []
sALTaccount's avatar
sALTaccount committed
394
        for search_path in folder_paths.get_folder_paths("diffusers"):
395
            if os.path.exists(search_path):
396
397
398
399
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

400
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
401
402
403
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

404
    CATEGORY = "advanced/loaders"
sALTaccount's avatar
sALTaccount committed
405
406

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
407
408
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
409
410
411
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
412
                    break
413

414
        return comfy.diffusers_load.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
415
416


417
418
419
420
421
422
423
424
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

425
    CATEGORY = "loaders"
426
427
428
429
430
431

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

448
449
450
451
452
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
453
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
454
455
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
456
457
458
459
460
461
462
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
463
464
465
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

466
        lora_path = folder_paths.get_full_path("loras", lora_name)
467
468
469
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
486
487
488
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
489
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
490
491
492
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

493
494
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
495
496
    #TODO: scale factor?
    def load_vae(self, vae_name):
497
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
498
499
500
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

space-nuko's avatar
space-nuko committed
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
class TAESDLoader:
    @classmethod
    def INPUT_TYPES(s):
        model_list = folder_paths.get_filename_list("taesd")
        return {"required": {
            "encoder_name": (model_list, { "default": "taesd_encoder.pth" }),
            "decoder_name": (model_list, { "default": "taesd_decoder.pth" })
        }}
    RETURN_TYPES = ("TAESD",)
    FUNCTION = "load_taesd"

    CATEGORY = "loaders"

    def load_taesd(self, encoder_name, decoder_name):
        device = comfy.model_management.get_torch_device()
        encoder_path = folder_paths.get_full_path("taesd", encoder_name)
        decoder_path = folder_paths.get_full_path("taesd", decoder_name)
        taesd = TAESD(encoder_path, decoder_path).to(device)
        return (taesd,)

comfyanonymous's avatar
comfyanonymous committed
521
522
523
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
524
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
525
526
527
528
529
530
531

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
532
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
533
534
535
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

536
537
538
539
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
540
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
541
542
543
544
545
546
547

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
548
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
549
550
551
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
552
553
554
555

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
556
557
558
559
560
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
561
562
563
564
565
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

566
    def apply_controlnet(self, conditioning, control_net, image, strength):
567
568
569
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
570
571
572
573
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
574
575
576
577
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
578
579
580
            c.append(n)
        return (c, )

581
582
583
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
584
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
585
586
587
588
589
590
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

591
    def load_clip(self, clip_name):
592
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
593
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
594
595
        return (clip,)

596
597
598
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
599
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
600
601
602
603
604
605
606
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
607
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
608
        clip_vision = comfy.clip_vision.load(clip_path)
609
610
611
612
613
614
615
616
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
617
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
618
619
    FUNCTION = "encode"

620
    CATEGORY = "conditioning"
621
622
623
624
625
626
627
628

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
629
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
630
631
632
633
634
635
636

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
637
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
638
639
640
641
642
643
644
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
645
646
647
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
648
649
650
651
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
652
    CATEGORY = "conditioning/style_model"
653

654
655
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
656
        c = []
657
658
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
659
660
661
            c.append(n)
        return (c, )

662
663
664
665
666
667
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
668
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
669
670
671
672
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

673
    CATEGORY = "conditioning"
674

675
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
676
677
678
        if strength == 0:
            return (conditioning, )

679
680
681
        c = []
        for t in conditioning:
            o = t[1].copy()
682
            x = (clip_vision_output, strength, noise_augmentation)
683
684
685
686
687
688
689
690
            if "adm" in o:
                o["adm"] = o["adm"][:] + [x]
            else:
                o["adm"] = [x]
            n = [t[0], o]
            c.append(n)
        return (c, )

691
692
693
694
695
696
697
698
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
699
    CATEGORY = "loaders"
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
721
    CATEGORY = "conditioning/gligen"
722
723
724
725
726
727
728
729
730
731
732
733
734
735

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
736

comfyanonymous's avatar
comfyanonymous committed
737
738
739
740
741
742
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
743
744
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
745
746
747
748
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

749
750
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
751
752
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
753
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
754

comfyanonymous's avatar
comfyanonymous committed
755

756
757
758
759
760
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
761
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
762
763
                              }}
    RETURN_TYPES = ("LATENT",)
764
    FUNCTION = "frombatch"
765

766
    CATEGORY = "latent/batch"
767

768
    def frombatch(self, samples, batch_index, length):
769
770
771
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
812
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
813

comfyanonymous's avatar
comfyanonymous committed
814
class LatentUpscale:
815
    upscale_methods = ["nearest-exact", "bilinear", "area", "bislerp"]
816
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
817
818
819
820

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
821
822
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
823
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
824
825
826
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

827
828
    CATEGORY = "latent"

829
    def upscale(self, samples, upscale_method, width, height, crop):
830
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
831
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
832
833
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
class LatentUpscaleBy:
    upscale_methods = ["nearest-exact", "bilinear", "area", "bislerp"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
853
854
855
856
857
858
859
860
861
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
862
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
863
864

    def rotate(self, samples, rotation):
865
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
866
867
868
869
870
871
872
873
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

874
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
875
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
876
877
878
879
880
881
882
883
884
885

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
886
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
887
888

    def flip(self, samples, flip_method):
889
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
890
        if flip_method.startswith("x"):
891
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
892
        elif flip_method.startswith("y"):
893
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
894
895

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
896
897
898
899

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
900
901
902
903
904
905
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
906
907
908
909
910
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
911
912
913
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
914
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
938

comfyanonymous's avatar
comfyanonymous committed
939
940
941
942
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
943
944
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
945
946
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
947
948
949
950
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
951
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
952
953

    def crop(self, samples, width, height, x, y):
954
955
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
956
957
958
959
960
961
962
963
964
965
966
967
968
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
969
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
970
971
        return (s,)

972
973
974
975
976
977
978
979
980
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

981
    CATEGORY = "latent/inpaint"
982
983
984

    def set_mask(self, samples, mask):
        s = samples.copy()
985
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
986
987
        return (s,)

space-nuko's avatar
space-nuko committed
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018

def decode_latent_to_preview_image(taesd, device, preview_format, x0):
    x_sample = taesd.decoder(x0.to(device))[0].detach()
    x_sample = taesd.unscale_latents(x_sample)  # returns value in [-2, 2]
    x_sample = x_sample * 0.5

    x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
    x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
    x_sample = x_sample.astype(np.uint8)

    preview_image = Image.fromarray(x_sample)

    if preview_image.size[0] > MAX_PREVIEW_RESOLUTION or preview_image.size[1] > MAX_PREVIEW_RESOLUTION:
        preview_image.thumbnail((MAX_PREVIEW_RESOLUTION, MAX_PREVIEW_RESOLUTION), Image.ANTIALIAS)

    preview_type = 1
    if preview_format == "JPEG":
        preview_type = 1
    elif preview_format == "PNG":
        preview_type = 2

    bytesIO = BytesIO()
    header = struct.pack(">I", preview_type)
    bytesIO.write(header)
    preview_image.save(bytesIO, format=preview_format)
    preview_bytes = bytesIO.getvalue()

    return preview_bytes


def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, taesd=None):
1019
    device = comfy.model_management.get_torch_device()
1020
    latent_image = latent["samples"]
1021

comfyanonymous's avatar
comfyanonymous committed
1022
1023
1024
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
1025
1026
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
1027

1028
    noise_mask = None
1029
    if "noise_mask" in latent:
1030
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
1031

space-nuko's avatar
space-nuko committed
1032
1033
1034
1035
    preview_format = "JPEG"
    if preview_format not in ["JPEG", "PNG"]:
        preview_format = "JPEG"

1036
    pbar = comfy.utils.ProgressBar(steps)
1037
    def callback(step, x0, x, total_steps):
space-nuko's avatar
space-nuko committed
1038
1039
1040
1041
        preview_bytes = None
        if taesd:
            preview_bytes = decode_latent_to_preview_image(taesd, device, preview_format, x0)
        pbar.update_absolute(step + 1, total_steps, preview_bytes)
1042

1043
1044
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
1045
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback)
1046
1047
1048
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
1049

comfyanonymous's avatar
comfyanonymous committed
1050
1051
1052
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1053
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
1064
1065
1066
1067
                     },
                "optional": {
                    "taesd": ("TAESD",)
                }}
comfyanonymous's avatar
comfyanonymous committed
1068
1069
1070
1071

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

1072
1073
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
1074
1075
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, taesd=None):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, taesd=taesd)
comfyanonymous's avatar
comfyanonymous committed
1076

comfyanonymous's avatar
comfyanonymous committed
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1094
1095
1096
1097
                     },
                "optional": {
                    "taesd": ("TAESD",)
                }}
comfyanonymous's avatar
comfyanonymous committed
1098
1099
1100
1101
1102

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1103

space-nuko's avatar
space-nuko committed
1104
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0, taesd=None):
comfyanonymous's avatar
comfyanonymous committed
1105
1106
1107
1108
1109
1110
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1111
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise, taesd=taesd)
comfyanonymous's avatar
comfyanonymous committed
1112
1113
1114

class SaveImage:
    def __init__(self):
1115
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1116
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
1117
1118
1119
1120

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1121
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1122
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1123
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1124
1125
1126
1127
1128
1129
1130
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1131
1132
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1133
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1134
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1135
        results = list()
comfyanonymous's avatar
comfyanonymous committed
1136
1137
        for image in images:
            i = 255. * image.cpu().numpy()
1138
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
1139
1140
1141
1142
1143
1144
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1145

1146
            file = f"{filename}_{counter:05}_.png"
1147
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
1148
1149
1150
1151
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1152
            })
1153
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1154

m957ymj75urz's avatar
m957ymj75urz committed
1155
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1156

pythongosssss's avatar
pythongosssss committed
1157
1158
class PreviewImage(SaveImage):
    def __init__(self):
1159
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1160
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
1161
1162
1163

    @classmethod
    def INPUT_TYPES(s):
1164
        return {"required":
pythongosssss's avatar
pythongosssss committed
1165
1166
1167
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1168

1169
1170
1171
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1172
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1173
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1174
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1175
                    {"image": (sorted(files), )},
1176
                }
1177
1178

    CATEGORY = "image"
1179

1180
    RETURN_TYPES = ("IMAGE", "MASK")
1181
1182
    FUNCTION = "load_image"
    def load_image(self, image):
1183
        image_path = folder_paths.get_annotated_filepath(image)
1184
        i = Image.open(image_path)
1185
        i = ImageOps.exif_transpose(i)
1186
        image = i.convert("RGB")
1187
        image = np.array(image).astype(np.float32) / 255.0
1188
        image = torch.from_numpy(image)[None,]
1189
1190
1191
1192
1193
1194
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
1195

1196
1197
    @classmethod
    def IS_CHANGED(s, image):
1198
        image_path = folder_paths.get_annotated_filepath(image)
1199
1200
1201
1202
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1203

1204
1205
1206
1207
1208
1209
1210
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1211
class LoadImageMask:
1212
    _color_channels = ["alpha", "red", "green", "blue"]
1213
1214
    @classmethod
    def INPUT_TYPES(s):
1215
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1216
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1217
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1218
                    {"image": (sorted(files), ),
1219
                     "channel": (s._color_channels, ), }
1220
1221
                }

1222
    CATEGORY = "mask"
1223
1224
1225
1226

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1227
        image_path = folder_paths.get_annotated_filepath(image)
1228
        i = Image.open(image_path)
1229
        i = ImageOps.exif_transpose(i)
1230
1231
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1245
        image_path = folder_paths.get_annotated_filepath(image)
1246
1247
1248
1249
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1250

1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1261
1262
1263
1264
1265
1266
1267
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1268
1269
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1270
1271
1272
1273
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1274
    CATEGORY = "image/upscaling"
1275

comfyanonymous's avatar
comfyanonymous committed
1276
1277
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1278
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1279
1280
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1281

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1298
1299
1300
1301
1302
1303
1304
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1305
1306
1307
1308
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1309
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1310
1311
1312
1313
1314
1315
1316
1317
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1318
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1331

1332
1333
1334
1335
1336
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1337
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1357

Guo Y.K's avatar
Guo Y.K committed
1358
1359
1360
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1361
1362
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1363
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1364
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1365
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1366
1367
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1368
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1369
    "VAELoader": VAELoader,
space-nuko's avatar
space-nuko committed
1370
1371
1372
    "TAESDDecode": TAESDDecode,
    "TAESDEncode": TAESDEncode,
    "TAESDLoader": TAESDLoader,
comfyanonymous's avatar
comfyanonymous committed
1373
1374
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1375
    "LatentUpscaleBy": LatentUpscaleBy,
1376
    "LatentFromBatch": LatentFromBatch,
1377
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1378
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1379
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1380
    "LoadImage": LoadImage,
1381
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1382
    "ImageScale": ImageScale,
1383
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1384
    "ImagePadForOutpaint": ImagePadForOutpaint,
FizzleDorf's avatar
FizzleDorf committed
1385
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1386
1387
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1388
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1389
    "KSamplerAdvanced": KSamplerAdvanced,
1390
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1391
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1392
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1393
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1394
    "LatentCrop": LatentCrop,
1395
    "LoraLoader": LoraLoader,
1396
    "CLIPLoader": CLIPLoader,
1397
    "CLIPVisionEncode": CLIPVisionEncode,
1398
    "StyleModelApply": StyleModelApply,
1399
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1400
1401
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1402
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1403
1404
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1405
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1406
    "VAEEncodeTiled": VAEEncodeTiled,
1407
    "TomePatchModel": TomePatchModel,
1408
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1409
1410
1411
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1412
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1413
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1414
1415
1416

    "LoadLatent": LoadLatent,
    "SaveLatent": SaveLatent
comfyanonymous's avatar
comfyanonymous committed
1417
1418
}

City's avatar
City committed
1419
1420
1421
1422
1423
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1424
1425
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1426
    "VAELoader": "Load VAE",
space-nuko's avatar
space-nuko committed
1427
    "TAESDLoader": "Load TAESD",
City's avatar
City committed
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1441
    "ConditioningAverage ": "Conditioning (Average)",
City's avatar
City committed
1442
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1443
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1444
1445
1446
1447
1448
1449
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
space-nuko's avatar
space-nuko committed
1450
1451
    "TAESDDecode": "TAESD Decode",
    "TAESDEncode": "TAESD Encode",
City's avatar
City committed
1452
1453
1454
1455
1456
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1457
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1458
    "LatentComposite": "Latent Composite",
1459
1460
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1490
1491
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1492
            return True
1493
1494
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1495
            return False
1496
1497
1498
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
1499
        return False
1500

Hacker 17082006's avatar
Hacker 17082006 committed
1501
def load_custom_nodes():
1502
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1503
    node_import_times = []
1504
1505
1506
1507
1508
1509
1510
1511
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1512
            if module_path.endswith(".disabled"): continue
1513
            time_before = time.perf_counter()
1514
            success = load_custom_node(module_path)
1515
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1516

1517
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1518
        print("\nImport times for custom nodes:")
1519
        for n in sorted(node_import_times):
1520
1521
1522
1523
1524
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1525
        print()
1526

1527
def init_custom_nodes():
1528
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1529
1530
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1531
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
1532
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
1533
    load_custom_nodes()