transforms.py 81.3 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import List, Optional, Tuple, Union
vfdev's avatar
vfdev committed
7
8
9
10

import torch
from torch import Tensor

11
12
13
14
15
try:
    import accimage
except ImportError:
    accimage = None

16
from ..utils import _log_api_usage_once
17
from . import functional as F
18
from .functional import _interpolation_modes_from_int, InterpolationMode
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
__all__ = [
    "Compose",
    "ToTensor",
    "PILToTensor",
    "ConvertImageDtype",
    "ToPILImage",
    "Normalize",
    "Resize",
    "CenterCrop",
    "Pad",
    "Lambda",
    "RandomApply",
    "RandomChoice",
    "RandomOrder",
    "RandomCrop",
    "RandomHorizontalFlip",
    "RandomVerticalFlip",
    "RandomResizedCrop",
    "FiveCrop",
    "TenCrop",
    "LinearTransformation",
    "ColorJitter",
    "RandomRotation",
    "RandomAffine",
    "Grayscale",
    "RandomGrayscale",
    "RandomPerspective",
    "RandomErasing",
    "GaussianBlur",
    "InterpolationMode",
    "RandomInvert",
    "RandomPosterize",
    "RandomSolarize",
    "RandomAdjustSharpness",
    "RandomAutocontrast",
    "RandomEqualize",
56
    "ElasticTransform",
57
]
58

59

60
class Compose:
61
62
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.
63
64
65
66
67
68
69

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
70
71
        >>>     transforms.PILToTensor(),
        >>>     transforms.ConvertImageDtype(torch.float),
72
        >>> ])
73
74
75
76
77
78
79
80
81
82
83
84
85

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

86
87
88
    """

    def __init__(self, transforms):
89
90
        if not torch.jit.is_scripting() and not torch.jit.is_tracing():
            _log_api_usage_once(self)
91
92
93
94
95
96
97
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
98
    def __repr__(self) -> str:
99
        format_string = self.__class__.__name__ + "("
100
        for t in self.transforms:
101
            format_string += "\n"
102
            format_string += f"    {t}"
103
        format_string += "\n)"
104
105
        return format_string

106

107
class ToTensor:
108
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
109
110

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
111
112
113
114
115
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
116
117
118
119
120

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

121
    .. _references: https://github.com/pytorch/vision/tree/main/references/segmentation
122
123
    """

124
125
126
    def __init__(self) -> None:
        _log_api_usage_once(self)

127
128
129
130
131
132
133
134
135
136
    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

Joao Gomes's avatar
Joao Gomes committed
137
138
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}()"
139

140

141
class PILToTensor:
142
    """Convert a ``PIL Image`` to a tensor of the same type. This transform does not support torchscript.
143

vfdev's avatar
vfdev committed
144
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
145
146
    """

147
148
149
    def __init__(self) -> None:
        _log_api_usage_once(self)

150
151
    def __call__(self, pic):
        """
152
153
154
155
        .. note::

            A deep copy of the underlying array is performed.

156
157
158
159
160
161
162
163
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

Joao Gomes's avatar
Joao Gomes committed
164
165
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}()"
166
167


168
class ConvertImageDtype(torch.nn.Module):
169
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
170
    This function does not support PIL Image.
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
188
        super().__init__()
189
        _log_api_usage_once(self)
190
191
        self.dtype = dtype

vfdev's avatar
vfdev committed
192
    def forward(self, image):
193
194
195
        return F.convert_image_dtype(image, self.dtype)


196
class ToPILImage:
197
    """Convert a tensor or an ndarray to PIL Image. This transform does not support torchscript.
198
199
200
201
202
203
204

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
205
206
207
208
209
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
210

csukuangfj's avatar
csukuangfj committed
211
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
212
    """
213

214
    def __init__(self, mode=None):
215
        _log_api_usage_once(self)
216
217
218
219
220
221
222
223
224
225
226
227
228
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

Joao Gomes's avatar
Joao Gomes committed
229
    def __repr__(self) -> str:
230
        format_string = self.__class__.__name__ + "("
231
        if self.mode is not None:
232
            format_string += f"mode={self.mode}"
233
        format_string += ")"
234
        return format_string
235

236

237
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
238
    """Normalize a tensor image with mean and standard deviation.
239
    This transform does not support PIL Image.
240
241
242
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
243
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
244

245
    .. note::
246
        This transform acts out of place, i.e., it does not mutate the input tensor.
247

248
249
250
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
251
252
        inplace(bool,optional): Bool to make this operation in-place.

253
254
    """

surgan12's avatar
surgan12 committed
255
    def __init__(self, mean, std, inplace=False):
256
        super().__init__()
257
        _log_api_usage_once(self)
258
259
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
260
        self.inplace = inplace
261

262
    def forward(self, tensor: Tensor) -> Tensor:
263
264
        """
        Args:
vfdev's avatar
vfdev committed
265
            tensor (Tensor): Tensor image to be normalized.
266
267
268
269

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
270
        return F.normalize(tensor, self.mean, self.std, self.inplace)
271

Joao Gomes's avatar
Joao Gomes committed
272
273
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(mean={self.mean}, std={self.std})"
274

275

vfdev's avatar
vfdev committed
276
277
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
278
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
279
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
280

281
282
283
284
    .. warning::
        The output image might be different depending on its type: when downsampling, the interpolation of PIL images
        and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences
        in the performance of a network. Therefore, it is preferable to train and serve a model with the same input
285
286
        types. See also below the ``antialias`` parameter, which can help making the output of PIL images and tensors
        closer.
287

288
289
290
291
292
    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
293
            (size * height / width, size).
294
295
296

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
297
298
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
299
300
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
301
302
303
304
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
305
            ``max_size``. As a result, ``size`` might be overruled, i.e. the
306
307
308
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
309
        antialias (bool, optional): antialias flag. If ``img`` is PIL Image, the flag is ignored and anti-alias
310
            is always used. If ``img`` is Tensor, the flag is False by default and can be set to True for
311
312
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` modes.
            This can help making the output for PIL images and tensors closer.
313
314
    """

315
    def __init__(self, size, interpolation=InterpolationMode.BILINEAR, max_size=None, antialias=None):
vfdev's avatar
vfdev committed
316
        super().__init__()
317
        _log_api_usage_once(self)
318
        if not isinstance(size, (int, Sequence)):
319
            raise TypeError(f"Size should be int or sequence. Got {type(size)}")
320
321
322
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")
        self.size = size
323
        self.max_size = max_size
324

325
        self.interpolation = interpolation
326
        self.antialias = antialias
327

vfdev's avatar
vfdev committed
328
    def forward(self, img):
329
330
        """
        Args:
vfdev's avatar
vfdev committed
331
            img (PIL Image or Tensor): Image to be scaled.
332
333

        Returns:
vfdev's avatar
vfdev committed
334
            PIL Image or Tensor: Rescaled image.
335
        """
336
        return F.resize(img, self.size, self.interpolation, self.max_size, self.antialias)
337

Joao Gomes's avatar
Joao Gomes committed
338
    def __repr__(self) -> str:
339
        detail = f"(size={self.size}, interpolation={self.interpolation.value}, max_size={self.max_size}, antialias={self.antialias})"
Joao Gomes's avatar
Joao Gomes committed
340
        return f"{self.__class__.__name__}{detail}"
341

342

vfdev's avatar
vfdev committed
343
344
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
345
    If the image is torch Tensor, it is expected
346
347
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
348
349
350
351

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
352
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
353
354
355
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
356
        super().__init__()
357
        _log_api_usage_once(self)
358
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
359

vfdev's avatar
vfdev committed
360
    def forward(self, img):
361
362
        """
        Args:
vfdev's avatar
vfdev committed
363
            img (PIL Image or Tensor): Image to be cropped.
364
365

        Returns:
vfdev's avatar
vfdev committed
366
            PIL Image or Tensor: Cropped image.
367
368
369
        """
        return F.center_crop(img, self.size)

Joao Gomes's avatar
Joao Gomes committed
370
371
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(size={self.size})"
372

373

374
375
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
376
    If the image is torch Tensor, it is expected
377
378
379
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
380
381

    Args:
382
383
384
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
385
            this is the padding for the left, top, right and bottom borders respectively.
386
387
388
389

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
390
        fill (number or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
391
            length 3, it is used to fill R, G, B channels respectively.
392
393
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
394
            Only int or tuple value is supported for PIL Image.
395
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
396
            Default is constant.
397
398
399

            - constant: pads with a constant value, this value is specified with fill

400
401
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
402

403
404
405
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
406

407
408
409
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
410
411
    """

412
413
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
414
        _log_api_usage_once(self)
415
416
417
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

418
        if not isinstance(fill, (numbers.Number, tuple, list)):
419
420
421
422
423
424
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
425
            raise ValueError(
426
                f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple"
427
            )
428
429
430

        self.padding = padding
        self.fill = fill
431
        self.padding_mode = padding_mode
432

433
    def forward(self, img):
434
435
        """
        Args:
436
            img (PIL Image or Tensor): Image to be padded.
437
438

        Returns:
439
            PIL Image or Tensor: Padded image.
440
        """
441
        return F.pad(img, self.padding, self.fill, self.padding_mode)
442

Joao Gomes's avatar
Joao Gomes committed
443
444
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(padding={self.padding}, fill={self.fill}, padding_mode={self.padding_mode})"
445

446

447
class Lambda:
448
    """Apply a user-defined lambda as a transform. This transform does not support torchscript.
449
450
451
452
453
454

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
455
        _log_api_usage_once(self)
456
        if not callable(lambd):
457
            raise TypeError(f"Argument lambd should be callable, got {repr(type(lambd).__name__)}")
458
459
460
461
462
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

Joao Gomes's avatar
Joao Gomes committed
463
464
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}()"
465

466

467
class RandomTransforms:
468
469
470
    """Base class for a list of transformations with randomness

    Args:
471
        transforms (sequence): list of transformations
472
473
474
    """

    def __init__(self, transforms):
475
        _log_api_usage_once(self)
476
477
        if not isinstance(transforms, Sequence):
            raise TypeError("Argument transforms should be a sequence")
478
479
480
481
482
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

Joao Gomes's avatar
Joao Gomes committed
483
    def __repr__(self) -> str:
484
        format_string = self.__class__.__name__ + "("
485
        for t in self.transforms:
486
            format_string += "\n"
487
            format_string += f"    {t}"
488
        format_string += "\n)"
489
490
491
        return format_string


492
class RandomApply(torch.nn.Module):
493
    """Apply randomly a list of transformations with a given probability.
494
495
496
497
498
499
500
501
502
503
504
505

    .. note::
        In order to script the transformation, please use ``torch.nn.ModuleList`` as input instead of list/tuple of
        transforms as shown below:

        >>> transforms = transforms.RandomApply(torch.nn.ModuleList([
        >>>     transforms.ColorJitter(),
        >>> ]), p=0.3)
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.
506
507

    Args:
508
        transforms (sequence or torch.nn.Module): list of transformations
509
510
511
512
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
513
        super().__init__()
514
        _log_api_usage_once(self)
515
        self.transforms = transforms
516
517
        self.p = p

518
519
    def forward(self, img):
        if self.p < torch.rand(1):
520
521
522
523
524
            return img
        for t in self.transforms:
            img = t(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
525
    def __repr__(self) -> str:
526
        format_string = self.__class__.__name__ + "("
527
        format_string += f"\n    p={self.p}"
528
        for t in self.transforms:
529
            format_string += "\n"
530
            format_string += f"    {t}"
531
        format_string += "\n)"
532
533
534
535
        return format_string


class RandomOrder(RandomTransforms):
536
537
    """Apply a list of transformations in a random order. This transform does not support torchscript."""

538
539
540
541
542
543
544
545
546
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
547
548
    """Apply single transformation randomly picked from a list. This transform does not support torchscript."""

549
550
551
    def __init__(self, transforms, p=None):
        super().__init__(transforms)
        if p is not None and not isinstance(p, Sequence):
552
            raise TypeError("Argument p should be a sequence")
553
554
555
556
557
558
        self.p = p

    def __call__(self, *args):
        t = random.choices(self.transforms, weights=self.p)[0]
        return t(*args)

Joao Gomes's avatar
Joao Gomes committed
559
560
    def __repr__(self) -> str:
        return f"{super().__repr__()}(p={self.p})"
561
562


vfdev's avatar
vfdev committed
563
564
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
565
    If the image is torch Tensor, it is expected
566
567
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions,
    but if non-constant padding is used, the input is expected to have at most 2 leading dimensions
568
569
570
571

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
572
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
573
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
574
            of the image. Default is None. If a single int is provided this
575
576
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
vfdev's avatar
vfdev committed
577
            this is the padding for the left, top, right and bottom borders respectively.
578
579
580
581

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
582
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
583
            desired size to avoid raising an exception. Since cropping is done
584
            after padding, the padding seems to be done at a random offset.
585
        fill (number or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
586
            length 3, it is used to fill R, G, B channels respectively.
587
588
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
589
            Only int or tuple value is supported for PIL Image.
590
591
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.
592

593
            - constant: pads with a constant value, this value is specified with fill
594

595
596
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
597

598
599
600
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
601

602
603
604
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
605
606
607
    """

    @staticmethod
vfdev's avatar
vfdev committed
608
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
609
610
611
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
612
            img (PIL Image or Tensor): Image to be cropped.
613
614
615
616
617
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
618
        _, h, w = F.get_dimensions(img)
619
        th, tw = output_size
vfdev's avatar
vfdev committed
620

621
        if h < th or w < tw:
622
            raise ValueError(f"Required crop size {(th, tw)} is larger than input image size {(h, w)}")
vfdev's avatar
vfdev committed
623

624
625
626
        if w == tw and h == th:
            return 0, 0, h, w

627
628
        i = torch.randint(0, h - th + 1, size=(1,)).item()
        j = torch.randint(0, w - tw + 1, size=(1,)).item()
629
630
        return i, j, th, tw

vfdev's avatar
vfdev committed
631
632
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()
633
        _log_api_usage_once(self)
vfdev's avatar
vfdev committed
634

635
        self.size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size."))
636

vfdev's avatar
vfdev committed
637
638
639
640
641
642
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
643
644
        """
        Args:
vfdev's avatar
vfdev committed
645
            img (PIL Image or Tensor): Image to be cropped.
646
647

        Returns:
vfdev's avatar
vfdev committed
648
            PIL Image or Tensor: Cropped image.
649
        """
650
651
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
652

653
        _, height, width = F.get_dimensions(img)
654
        # pad the width if needed
vfdev's avatar
vfdev committed
655
656
657
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
658
        # pad the height if needed
vfdev's avatar
vfdev committed
659
660
661
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
662

663
664
665
666
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

Joao Gomes's avatar
Joao Gomes committed
667
668
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(size={self.size}, padding={self.padding})"
669

670

671
672
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
673
    If the image is torch Tensor, it is expected
674
675
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
676
677
678
679
680
681

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
682
        super().__init__()
683
        _log_api_usage_once(self)
684
        self.p = p
685

686
    def forward(self, img):
687
688
        """
        Args:
689
            img (PIL Image or Tensor): Image to be flipped.
690
691

        Returns:
692
            PIL Image or Tensor: Randomly flipped image.
693
        """
694
        if torch.rand(1) < self.p:
695
696
697
            return F.hflip(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
698
699
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
700

701

702
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
703
    """Vertically flip the given image randomly with a given probability.
704
    If the image is torch Tensor, it is expected
705
706
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
707
708
709
710
711
712

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
713
        super().__init__()
714
        _log_api_usage_once(self)
715
        self.p = p
716

717
    def forward(self, img):
718
719
        """
        Args:
720
            img (PIL Image or Tensor): Image to be flipped.
721
722

        Returns:
723
            PIL Image or Tensor: Randomly flipped image.
724
        """
725
        if torch.rand(1) < self.p:
726
727
728
            return F.vflip(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
729
730
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
731

732

733
734
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
735
    If the image is torch Tensor, it is expected
736
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
737
738

    Args:
739
740
741
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
742
743
744
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
745
746
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
747
748
    """

749
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=InterpolationMode.BILINEAR, fill=0):
750
        super().__init__()
751
        _log_api_usage_once(self)
752
        self.p = p
753

754
755
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
756
757
758
759
760
761

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

762
        self.fill = fill
763

764
    def forward(self, img):
765
766
        """
        Args:
767
            img (PIL Image or Tensor): Image to be Perspectively transformed.
768
769

        Returns:
770
            PIL Image or Tensor: Randomly transformed image.
771
        """
772
773

        fill = self.fill
774
        channels, height, width = F.get_dimensions(img)
775
776
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
777
                fill = [float(fill)] * channels
778
779
780
            else:
                fill = [float(f) for f in fill]

781
        if torch.rand(1) < self.p:
782
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
783
            return F.perspective(img, startpoints, endpoints, self.interpolation, fill)
784
785
786
        return img

    @staticmethod
787
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
788
789
790
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
791
792
793
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
794
795

        Returns:
796
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
797
798
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
799
800
801
        half_height = height // 2
        half_width = width // 2
        topleft = [
802
803
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1,)).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1,)).item()),
804
805
        ]
        topright = [
806
807
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1,)).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1,)).item()),
808
809
        ]
        botright = [
810
811
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1,)).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1,)).item()),
812
813
        ]
        botleft = [
814
815
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1,)).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1,)).item()),
816
817
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
818
819
820
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

Joao Gomes's avatar
Joao Gomes committed
821
822
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
823
824


825
class RandomResizedCrop(torch.nn.Module):
826
827
    """Crop a random portion of image and resize it to a given size.

828
    If the image is torch Tensor, it is expected
829
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
830

831
832
833
    A crop of the original image is made: the crop has a random area (H * W)
    and a random aspect ratio. This crop is finally resized to the given
    size. This is popularly used to train the Inception networks.
834
835

    Args:
836
        size (int or sequence): expected output size of the crop, for each edge. If size is an
837
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
838
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
839
840
841

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
Nicolas Hug's avatar
Nicolas Hug committed
842
843
        scale (tuple of float): Specifies the lower and upper bounds for the random area of the crop,
            before resizing. The scale is defined with respect to the area of the original image.
844
845
        ratio (tuple of float): lower and upper bounds for the random aspect ratio of the crop, before
            resizing.
846
847
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
848
849
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
850
851
852
853
        antialias (bool, optional): antialias flag. If ``img`` is PIL Image, the flag is ignored and anti-alias
            is always used. If ``img`` is Tensor, the flag is False by default and can be set to True for
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` modes.
            This can help making the output for PIL images and tensors closer.
854
855
    """

856
857
858
859
860
861
862
863
    def __init__(
        self,
        size,
        scale=(0.08, 1.0),
        ratio=(3.0 / 4.0, 4.0 / 3.0),
        interpolation=InterpolationMode.BILINEAR,
        antialias: Optional[bool] = None,
    ):
864
        super().__init__()
865
        _log_api_usage_once(self)
866
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
867

868
        if not isinstance(scale, Sequence):
869
            raise TypeError("Scale should be a sequence")
870
        if not isinstance(ratio, Sequence):
871
            raise TypeError("Ratio should be a sequence")
872
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
873
            warnings.warn("Scale and ratio should be of kind (min, max)")
874

875
        self.interpolation = interpolation
876
        self.antialias = antialias
877
878
        self.scale = scale
        self.ratio = ratio
879
880

    @staticmethod
881
    def get_params(img: Tensor, scale: List[float], ratio: List[float]) -> Tuple[int, int, int, int]:
882
883
884
        """Get parameters for ``crop`` for a random sized crop.

        Args:
885
            img (PIL Image or Tensor): Input image.
886
887
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
888
889
890

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
891
            sized crop.
892
        """
893
        _, height, width = F.get_dimensions(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
894
        area = height * width
895

896
        log_ratio = torch.log(torch.tensor(ratio))
897
        for _ in range(10):
898
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
899
            aspect_ratio = torch.exp(torch.empty(1).uniform_(log_ratio[0], log_ratio[1])).item()
900
901
902
903

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
904
            if 0 < w <= width and 0 < h <= height:
905
906
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
907
908
                return i, j, h, w

909
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
910
        in_ratio = float(width) / float(height)
911
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
912
            w = width
913
            h = int(round(w / min(ratio)))
914
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
915
            h = height
916
            w = int(round(h * max(ratio)))
917
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
918
919
920
921
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
922
        return i, j, h, w
923

924
    def forward(self, img):
925
926
        """
        Args:
927
            img (PIL Image or Tensor): Image to be cropped and resized.
928
929

        Returns:
930
            PIL Image or Tensor: Randomly cropped and resized image.
931
        """
932
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
933
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation, antialias=self.antialias)
934

Joao Gomes's avatar
Joao Gomes committed
935
    def __repr__(self) -> str:
936
        interpolate_str = self.interpolation.value
937
938
939
        format_string = self.__class__.__name__ + f"(size={self.size}"
        format_string += f", scale={tuple(round(s, 4) for s in self.scale)}"
        format_string += f", ratio={tuple(round(r, 4) for r in self.ratio)}"
940
        format_string += f", interpolation={interpolate_str}"
941
        format_string += f", antialias={self.antialias})"
942
        return format_string
943

944

vfdev's avatar
vfdev committed
945
946
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
947
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
948
949
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
950
951
952
953
954
955
956
957
958

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
959
            If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
960
961
962
963

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
964
         >>>    Lambda(lambda crops: torch.stack([PILToTensor()(crop) for crop in crops])) # returns a 4D tensor
965
966
967
968
969
970
971
972
973
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
974
        super().__init__()
975
        _log_api_usage_once(self)
976
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
977

vfdev's avatar
vfdev committed
978
979
980
981
982
983
984
985
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
986
987
        return F.five_crop(img, self.size)

Joao Gomes's avatar
Joao Gomes committed
988
989
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(size={self.size})"
990

991

vfdev's avatar
vfdev committed
992
993
994
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
995
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
996
997
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
998
999
1000
1001
1002
1003
1004
1005
1006

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
1007
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
1008
        vertical_flip (bool): Use vertical flipping instead of horizontal
1009
1010
1011
1012

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
1013
         >>>    Lambda(lambda crops: torch.stack([PILToTensor()(crop) for crop in crops])) # returns a 4D tensor
1014
1015
1016
1017
1018
1019
1020
1021
1022
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
1023
        super().__init__()
1024
        _log_api_usage_once(self)
1025
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
1026
1027
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
1028
1029
1030
1031
1032
1033
1034
1035
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
1036
1037
        return F.ten_crop(img, self.size, self.vertical_flip)

Joao Gomes's avatar
Joao Gomes committed
1038
1039
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(size={self.size}, vertical_flip={self.vertical_flip})"
1040

1041

1042
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
1043
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
1044
    offline.
1045
    This transform does not support PIL Image.
ekka's avatar
ekka committed
1046
1047
1048
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
1049
    original shape.
1050

1051
    Applications:
1052
        whitening transformation: Suppose X is a column vector zero-centered data.
1053
1054
1055
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

1056
1057
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
1058
        mean_vector (Tensor): tensor [D], D = C x H x W
1059
1060
    """

ekka's avatar
ekka committed
1061
    def __init__(self, transformation_matrix, mean_vector):
1062
        super().__init__()
1063
        _log_api_usage_once(self)
1064
        if transformation_matrix.size(0) != transformation_matrix.size(1):
1065
1066
            raise ValueError(
                "transformation_matrix should be square. Got "
1067
                f"{tuple(transformation_matrix.size())} rectangular matrix."
1068
            )
ekka's avatar
ekka committed
1069
1070

        if mean_vector.size(0) != transformation_matrix.size(0):
1071
            raise ValueError(
1072
1073
                f"mean_vector should have the same length {mean_vector.size(0)}"
                f" as any one of the dimensions of the transformation_matrix [{tuple(transformation_matrix.size())}]"
1074
            )
ekka's avatar
ekka committed
1075

1076
        if transformation_matrix.device != mean_vector.device:
1077
            raise ValueError(
1078
                f"Input tensors should be on the same device. Got {transformation_matrix.device} and {mean_vector.device}"
1079
            )
1080

1081
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
1082
        self.mean_vector = mean_vector
1083

1084
    def forward(self, tensor: Tensor) -> Tensor:
1085
1086
        """
        Args:
vfdev's avatar
vfdev committed
1087
            tensor (Tensor): Tensor image to be whitened.
1088
1089
1090
1091

        Returns:
            Tensor: Transformed image.
        """
1092
1093
1094
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
1095
1096
            raise ValueError(
                "Input tensor and transformation matrix have incompatible shape."
1097
1098
                + f"[{shape[-3]} x {shape[-2]} x {shape[-1]}] != "
                + f"{self.transformation_matrix.shape[0]}"
1099
            )
1100
1101

        if tensor.device.type != self.mean_vector.device.type:
1102
1103
            raise ValueError(
                "Input tensor should be on the same device as transformation matrix and mean vector. "
1104
                f"Got {tensor.device} vs {self.mean_vector.device}"
1105
            )
1106
1107

        flat_tensor = tensor.view(-1, n) - self.mean_vector
1108
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
1109
        tensor = transformed_tensor.view(shape)
1110
1111
        return tensor

Joao Gomes's avatar
Joao Gomes committed
1112
1113
1114
1115
1116
1117
1118
    def __repr__(self) -> str:
        s = (
            f"{self.__class__.__name__}(transformation_matrix="
            f"{self.transformation_matrix.tolist()}"
            f", mean_vector={self.mean_vector.tolist()})"
        )
        return s
1119

1120

1121
class ColorJitter(torch.nn.Module):
1122
    """Randomly change the brightness, contrast, saturation and hue of an image.
1123
    If the image is torch Tensor, it is expected
1124
1125
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, mode "1", "I", "F" and modes with transparency (alpha channel) are not supported.
1126
1127

    Args:
yaox12's avatar
yaox12 committed
1128
1129
1130
1131
1132
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
1133
            or the given [min, max]. Should be non-negative numbers.
yaox12's avatar
yaox12 committed
1134
1135
1136
1137
1138
1139
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1140
1141
1142
            To jitter hue, the pixel values of the input image has to be non-negative for conversion to HSV space;
            thus it does not work if you normalize your image to an interval with negative values,
            or use an interpolation that generates negative values before using this function.
1143
    """
1144

1145
1146
1147
1148
1149
1150
1151
    def __init__(
        self,
        brightness: Union[float, Tuple[float, float]] = 0,
        contrast: Union[float, Tuple[float, float]] = 0,
        saturation: Union[float, Tuple[float, float]] = 0,
        hue: Union[float, Tuple[float, float]] = 0,
    ) -> None:
1152
        super().__init__()
1153
        _log_api_usage_once(self)
1154
1155
1156
1157
        self.brightness = self._check_input(brightness, "brightness")
        self.contrast = self._check_input(contrast, "contrast")
        self.saturation = self._check_input(saturation, "saturation")
        self.hue = self._check_input(hue, "hue", center=0, bound=(-0.5, 0.5), clip_first_on_zero=False)
yaox12's avatar
yaox12 committed
1158

1159
    @torch.jit.unused
1160
    def _check_input(self, value, name, center=1, bound=(0, float("inf")), clip_first_on_zero=True):
yaox12's avatar
yaox12 committed
1161
1162
        if isinstance(value, numbers.Number):
            if value < 0:
1163
                raise ValueError(f"If {name} is a single number, it must be non negative.")
1164
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1165
            if clip_first_on_zero:
1166
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1167
        elif isinstance(value, (tuple, list)) and len(value) == 2:
1168
            value = [float(value[0]), float(value[1])]
yaox12's avatar
yaox12 committed
1169
        else:
1170
            raise TypeError(f"{name} should be a single number or a list/tuple with length 2.")
yaox12's avatar
yaox12 committed
1171

1172
1173
1174
        if not bound[0] <= value[0] <= value[1] <= bound[1]:
            raise ValueError(f"{name} values should be between {bound}, but got {value}.")

yaox12's avatar
yaox12 committed
1175
1176
1177
        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
1178
1179
1180
            return None
        else:
            return tuple(value)
1181
1182

    @staticmethod
1183
1184
1185
1186
1187
1188
    def get_params(
        brightness: Optional[List[float]],
        contrast: Optional[List[float]],
        saturation: Optional[List[float]],
        hue: Optional[List[float]],
    ) -> Tuple[Tensor, Optional[float], Optional[float], Optional[float], Optional[float]]:
1189
        """Get the parameters for the randomized transform to be applied on image.
1190

1191
1192
1193
1194
1195
1196
1197
1198
1199
        Args:
            brightness (tuple of float (min, max), optional): The range from which the brightness_factor is chosen
                uniformly. Pass None to turn off the transformation.
            contrast (tuple of float (min, max), optional): The range from which the contrast_factor is chosen
                uniformly. Pass None to turn off the transformation.
            saturation (tuple of float (min, max), optional): The range from which the saturation_factor is chosen
                uniformly. Pass None to turn off the transformation.
            hue (tuple of float (min, max), optional): The range from which the hue_factor is chosen uniformly.
                Pass None to turn off the transformation.
1200
1201

        Returns:
1202
1203
            tuple: The parameters used to apply the randomized transform
            along with their random order.
1204
        """
1205
        fn_idx = torch.randperm(4)
1206

1207
1208
1209
1210
        b = None if brightness is None else float(torch.empty(1).uniform_(brightness[0], brightness[1]))
        c = None if contrast is None else float(torch.empty(1).uniform_(contrast[0], contrast[1]))
        s = None if saturation is None else float(torch.empty(1).uniform_(saturation[0], saturation[1]))
        h = None if hue is None else float(torch.empty(1).uniform_(hue[0], hue[1]))
1211

1212
        return fn_idx, b, c, s, h
1213

1214
    def forward(self, img):
1215
1216
        """
        Args:
1217
            img (PIL Image or Tensor): Input image.
1218
1219

        Returns:
1220
1221
            PIL Image or Tensor: Color jittered image.
        """
1222
1223
1224
        fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = self.get_params(
            self.brightness, self.contrast, self.saturation, self.hue
        )
1225

1226
        for fn_id in fn_idx:
1227
            if fn_id == 0 and brightness_factor is not None:
1228
                img = F.adjust_brightness(img, brightness_factor)
1229
            elif fn_id == 1 and contrast_factor is not None:
1230
                img = F.adjust_contrast(img, contrast_factor)
1231
            elif fn_id == 2 and saturation_factor is not None:
1232
                img = F.adjust_saturation(img, saturation_factor)
1233
            elif fn_id == 3 and hue_factor is not None:
1234
1235
1236
                img = F.adjust_hue(img, hue_factor)

        return img
1237

Joao Gomes's avatar
Joao Gomes committed
1238
1239
1240
1241
1242
1243
1244
1245
1246
    def __repr__(self) -> str:
        s = (
            f"{self.__class__.__name__}("
            f"brightness={self.brightness}"
            f", contrast={self.contrast}"
            f", saturation={self.saturation}"
            f", hue={self.hue})"
        )
        return s
1247

1248

1249
class RandomRotation(torch.nn.Module):
1250
    """Rotate the image by angle.
1251
    If the image is torch Tensor, it is expected
1252
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1253
1254

    Args:
1255
        degrees (sequence or number): Range of degrees to select from.
1256
1257
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1258
1259
1260
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1261
1262
1263
1264
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1265
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1266
            Default is the center of the image.
1267
1268
        fill (sequence or number): Pixel fill value for the area outside the rotated
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1269
1270
1271

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1272
1273
    """

1274
    def __init__(self, degrees, interpolation=InterpolationMode.NEAREST, expand=False, center=None, fill=0):
1275
        super().__init__()
1276
        _log_api_usage_once(self)
1277

1278
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
1279
1280

        if center is not None:
1281
            _check_sequence_input(center, "center", req_sizes=(2,))
1282
1283

        self.center = center
1284

1285
        self.interpolation = interpolation
1286
        self.expand = expand
1287
1288
1289
1290
1291
1292

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1293
        self.fill = fill
1294
1295

    @staticmethod
1296
    def get_params(degrees: List[float]) -> float:
1297
1298
1299
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1300
            float: angle parameter to be passed to ``rotate`` for random rotation.
1301
        """
1302
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1303
1304
        return angle

1305
    def forward(self, img):
1306
        """
1307
        Args:
1308
            img (PIL Image or Tensor): Image to be rotated.
1309
1310

        Returns:
1311
            PIL Image or Tensor: Rotated image.
1312
        """
1313
        fill = self.fill
1314
        channels, _, _ = F.get_dimensions(img)
1315
1316
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
1317
                fill = [float(fill)] * channels
1318
1319
            else:
                fill = [float(f) for f in fill]
1320
        angle = self.get_params(self.degrees)
1321

1322
        return F.rotate(img, angle, self.interpolation, self.expand, self.center, fill)
1323

Joao Gomes's avatar
Joao Gomes committed
1324
    def __repr__(self) -> str:
1325
        interpolate_str = self.interpolation.value
1326
1327
1328
        format_string = self.__class__.__name__ + f"(degrees={self.degrees}"
        format_string += f", interpolation={interpolate_str}"
        format_string += f", expand={self.expand}"
1329
        if self.center is not None:
1330
            format_string += f", center={self.center}"
1331
        if self.fill is not None:
1332
            format_string += f", fill={self.fill}"
1333
        format_string += ")"
1334
        return format_string
1335

1336

1337
1338
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
1339
    If the image is torch Tensor, it is expected
1340
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1341
1342

    Args:
1343
        degrees (sequence or number): Range of degrees to select from.
1344
            If degrees is a number instead of sequence like (min, max), the range of degrees
1345
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1346
1347
1348
1349
1350
1351
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
1352
        shear (sequence or number, optional): Range of degrees to select from.
1353
1354
            If shear is a number, a shear parallel to the x-axis in the range (-shear, +shear)
            will be applied. Else if shear is a sequence of 2 values a shear parallel to the x-axis in the
1355
            range (shear[0], shear[1]) will be applied. Else if shear is a sequence of 4 values,
1356
            an x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1357
            Will not apply shear by default.
1358
1359
1360
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1361
1362
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1363
1364
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
            Default is the center of the image.
1365
1366
1367

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1368
1369
    """

1370
    def __init__(
1371
1372
1373
1374
1375
1376
1377
        self,
        degrees,
        translate=None,
        scale=None,
        shear=None,
        interpolation=InterpolationMode.NEAREST,
        fill=0,
1378
        center=None,
1379
    ):
1380
        super().__init__()
1381
        _log_api_usage_once(self)
1382

1383
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
1384
1385

        if translate is not None:
1386
            _check_sequence_input(translate, "translate", req_sizes=(2,))
1387
1388
1389
1390
1391
1392
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1393
            _check_sequence_input(scale, "scale", req_sizes=(2,))
1394
1395
1396
1397
1398
1399
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1400
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1401
1402
1403
        else:
            self.shear = shear

1404
        self.interpolation = interpolation
1405
1406
1407
1408
1409
1410

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1411
        self.fill = fill
1412

1413
1414
1415
1416
1417
        if center is not None:
            _check_sequence_input(center, "center", req_sizes=(2,))

        self.center = center

1418
    @staticmethod
1419
    def get_params(
1420
1421
1422
1423
1424
        degrees: List[float],
        translate: Optional[List[float]],
        scale_ranges: Optional[List[float]],
        shears: Optional[List[float]],
        img_size: List[int],
1425
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1426
1427
1428
        """Get parameters for affine transformation

        Returns:
1429
            params to be passed to the affine transformation
1430
        """
1431
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1432
        if translate is not None:
1433
1434
1435
1436
1437
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1438
1439
1440
1441
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1442
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1443
1444
1445
        else:
            scale = 1.0

1446
        shear_x = shear_y = 0.0
1447
        if shears is not None:
1448
1449
1450
1451
1452
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1453
1454
1455

        return angle, translations, scale, shear

1456
    def forward(self, img):
1457
        """
1458
            img (PIL Image or Tensor): Image to be transformed.
1459
1460

        Returns:
1461
            PIL Image or Tensor: Affine transformed image.
1462
        """
1463
        fill = self.fill
1464
        channels, height, width = F.get_dimensions(img)
1465
1466
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
1467
                fill = [float(fill)] * channels
1468
1469
            else:
                fill = [float(f) for f in fill]
1470

1471
        img_size = [width, height]  # flip for keeping BC on get_params call
1472
1473

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1474

1475
        return F.affine(img, *ret, interpolation=self.interpolation, fill=fill, center=self.center)
1476

Joao Gomes's avatar
Joao Gomes committed
1477
1478
1479
1480
1481
1482
1483
1484
    def __repr__(self) -> str:
        s = f"{self.__class__.__name__}(degrees={self.degrees}"
        s += f", translate={self.translate}" if self.translate is not None else ""
        s += f", scale={self.scale}" if self.scale is not None else ""
        s += f", shear={self.shear}" if self.shear is not None else ""
        s += f", interpolation={self.interpolation.value}" if self.interpolation != InterpolationMode.NEAREST else ""
        s += f", fill={self.fill}" if self.fill != 0 else ""
        s += f", center={self.center}" if self.center is not None else ""
1485
        s += ")"
Joao Gomes's avatar
Joao Gomes committed
1486
1487

        return s
1488
1489


1490
class Grayscale(torch.nn.Module):
1491
    """Convert image to grayscale.
1492
1493
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1494

1495
1496
1497
1498
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1499
        PIL Image: Grayscale version of the input.
1500
1501
1502

        - If ``num_output_channels == 1`` : returned image is single channel
        - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1503
1504
1505
1506

    """

    def __init__(self, num_output_channels=1):
1507
        super().__init__()
1508
        _log_api_usage_once(self)
1509
1510
        self.num_output_channels = num_output_channels

vfdev's avatar
vfdev committed
1511
    def forward(self, img):
1512
1513
        """
        Args:
1514
            img (PIL Image or Tensor): Image to be converted to grayscale.
1515
1516

        Returns:
1517
            PIL Image or Tensor: Grayscaled image.
1518
        """
1519
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1520

Joao Gomes's avatar
Joao Gomes committed
1521
1522
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(num_output_channels={self.num_output_channels})"
1523

1524

1525
class RandomGrayscale(torch.nn.Module):
1526
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1527
1528
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1529

1530
1531
1532
1533
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1534
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1535
1536
1537
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1538
1539
1540
1541

    """

    def __init__(self, p=0.1):
1542
        super().__init__()
1543
        _log_api_usage_once(self)
1544
1545
        self.p = p

vfdev's avatar
vfdev committed
1546
    def forward(self, img):
1547
1548
        """
        Args:
1549
            img (PIL Image or Tensor): Image to be converted to grayscale.
1550
1551

        Returns:
1552
            PIL Image or Tensor: Randomly grayscaled image.
1553
        """
1554
        num_output_channels, _, _ = F.get_dimensions(img)
1555
1556
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1557
        return img
1558

Joao Gomes's avatar
Joao Gomes committed
1559
1560
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
1561
1562


1563
class RandomErasing(torch.nn.Module):
1564
    """Randomly selects a rectangle region in a torch.Tensor image and erases its pixels.
1565
    This transform does not support PIL Image.
vfdev's avatar
vfdev committed
1566
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1567

1568
1569
1570
1571
1572
1573
1574
1575
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1576
         inplace: boolean to make this transform inplace. Default set to False.
1577

1578
1579
    Returns:
        Erased Image.
1580

vfdev's avatar
vfdev committed
1581
    Example:
1582
        >>> transform = transforms.Compose([
1583
        >>>   transforms.RandomHorizontalFlip(),
1584
1585
        >>>   transforms.PILToTensor(),
        >>>   transforms.ConvertImageDtype(torch.float),
1586
1587
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1588
1589
1590
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1591
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1592
        super().__init__()
1593
        _log_api_usage_once(self)
1594
1595
1596
1597
1598
1599
1600
1601
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1602
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1603
            warnings.warn("Scale and ratio should be of kind (min, max)")
1604
        if scale[0] < 0 or scale[1] > 1:
1605
            raise ValueError("Scale should be between 0 and 1")
1606
        if p < 0 or p > 1:
1607
            raise ValueError("Random erasing probability should be between 0 and 1")
1608
1609
1610
1611
1612

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1613
        self.inplace = inplace
1614
1615

    @staticmethod
1616
    def get_params(
1617
        img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
1618
    ) -> Tuple[int, int, int, int, Tensor]:
1619
1620
1621
        """Get parameters for ``erase`` for a random erasing.

        Args:
vfdev's avatar
vfdev committed
1622
            img (Tensor): Tensor image to be erased.
1623
1624
            scale (sequence): range of proportion of erased area against input image.
            ratio (sequence): range of aspect ratio of erased area.
1625
1626
1627
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1628
1629
1630
1631

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1632
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1633
        area = img_h * img_w
1634

1635
        log_ratio = torch.log(torch.tensor(ratio))
1636
        for _ in range(10):
1637
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
1638
            aspect_ratio = torch.exp(torch.empty(1).uniform_(log_ratio[0], log_ratio[1])).item()
1639
1640
1641

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1642
1643
1644
1645
1646
1647
1648
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1649

1650
1651
            i = torch.randint(0, img_h - h + 1, size=(1,)).item()
            j = torch.randint(0, img_w - w + 1, size=(1,)).item()
1652
            return i, j, h, w, v
1653

Zhun Zhong's avatar
Zhun Zhong committed
1654
1655
1656
        # Return original image
        return 0, 0, img_h, img_w, img

1657
    def forward(self, img):
1658
1659
        """
        Args:
vfdev's avatar
vfdev committed
1660
            img (Tensor): Tensor image to be erased.
1661
1662
1663
1664

        Returns:
            img (Tensor): Erased Tensor image.
        """
1665
1666
1667
1668
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
1669
                value = [float(self.value)]
1670
1671
            elif isinstance(self.value, str):
                value = None
1672
1673
            elif isinstance(self.value, (list, tuple)):
                value = [float(v) for v in self.value]
1674
1675
1676
1677
1678
1679
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
1680
                    f"{img.shape[-3]} (number of input channels)"
1681
1682
1683
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1684
            return F.erase(img, x, y, h, w, v, self.inplace)
1685
        return img
1686

Joao Gomes's avatar
Joao Gomes committed
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
    def __repr__(self) -> str:
        s = (
            f"{self.__class__.__name__}"
            f"(p={self.p}, "
            f"scale={self.scale}, "
            f"ratio={self.ratio}, "
            f"value={self.value}, "
            f"inplace={self.inplace})"
        )
        return s
1697

1698

1699
1700
class GaussianBlur(torch.nn.Module):
    """Blurs image with randomly chosen Gaussian blur.
1701
1702
    If the image is torch Tensor, it is expected
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading dimensions.
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.

    Returns:
        PIL Image or Tensor: Gaussian blurred version of the input image.

    """

    def __init__(self, kernel_size, sigma=(0.1, 2.0)):
        super().__init__()
1718
        _log_api_usage_once(self)
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, numbers.Number):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = (sigma, sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
1729
            if not 0.0 < sigma[0] <= sigma[1]:
1730
1731
1732
1733
1734
1735
1736
1737
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise ValueError("sigma should be a single number or a list/tuple with length 2.")

        self.sigma = sigma

    @staticmethod
    def get_params(sigma_min: float, sigma_max: float) -> float:
vfdev's avatar
vfdev committed
1738
        """Choose sigma for random gaussian blurring.
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751

        Args:
            sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
            sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.

        Returns:
            float: Standard deviation to be passed to calculate kernel for gaussian blurring.
        """
        return torch.empty(1).uniform_(sigma_min, sigma_max).item()

    def forward(self, img: Tensor) -> Tensor:
        """
        Args:
vfdev's avatar
vfdev committed
1752
            img (PIL Image or Tensor): image to be blurred.
1753
1754
1755
1756
1757
1758
1759

        Returns:
            PIL Image or Tensor: Gaussian blurred image
        """
        sigma = self.get_params(self.sigma[0], self.sigma[1])
        return F.gaussian_blur(img, self.kernel_size, [sigma, sigma])

Joao Gomes's avatar
Joao Gomes committed
1760
1761
1762
    def __repr__(self) -> str:
        s = f"{self.__class__.__name__}(kernel_size={self.kernel_size}, sigma={self.sigma})"
        return s
1763
1764


1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
1781
        raise TypeError(f"{name} should be a sequence of length {msg}.")
1782
    if len(x) not in req_sizes:
1783
        raise ValueError(f"{name} should be a sequence of length {msg}.")
1784
1785


1786
def _setup_angle(x, name, req_sizes=(2,)):
1787
1788
    if isinstance(x, numbers.Number):
        if x < 0:
1789
            raise ValueError(f"If {name} is a single number, it must be positive.")
1790
1791
1792
1793
1794
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]
1795
1796
1797
1798


class RandomInvert(torch.nn.Module):
    """Inverts the colors of the given image randomly with a given probability.
1799
1800
1801
    If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1802
1803
1804
1805
1806
1807
1808

    Args:
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
1809
        _log_api_usage_once(self)
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be inverted.

        Returns:
            PIL Image or Tensor: Randomly color inverted image.
        """
        if torch.rand(1).item() < self.p:
            return F.invert(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
1824
1825
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
1826
1827
1828
1829


class RandomPosterize(torch.nn.Module):
    """Posterize the image randomly with a given probability by reducing the
1830
1831
1832
    number of bits for each color channel. If the image is torch Tensor, it should be of type torch.uint8,
    and it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1833
1834
1835

    Args:
        bits (int): number of bits to keep for each channel (0-8)
1836
        p (float): probability of the image being posterized. Default value is 0.5
1837
1838
1839
1840
    """

    def __init__(self, bits, p=0.5):
        super().__init__()
1841
        _log_api_usage_once(self)
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
        self.bits = bits
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be posterized.

        Returns:
            PIL Image or Tensor: Randomly posterized image.
        """
        if torch.rand(1).item() < self.p:
            return F.posterize(img, self.bits)
        return img

Joao Gomes's avatar
Joao Gomes committed
1857
1858
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(bits={self.bits},p={self.p})"
1859
1860
1861
1862


class RandomSolarize(torch.nn.Module):
    """Solarize the image randomly with a given probability by inverting all pixel
1863
1864
1865
    values above a threshold. If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1866
1867
1868

    Args:
        threshold (float): all pixels equal or above this value are inverted.
1869
        p (float): probability of the image being solarized. Default value is 0.5
1870
1871
1872
1873
    """

    def __init__(self, threshold, p=0.5):
        super().__init__()
1874
        _log_api_usage_once(self)
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
        self.threshold = threshold
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be solarized.

        Returns:
            PIL Image or Tensor: Randomly solarized image.
        """
        if torch.rand(1).item() < self.p:
            return F.solarize(img, self.threshold)
        return img

Joao Gomes's avatar
Joao Gomes committed
1890
1891
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(threshold={self.threshold},p={self.p})"
1892
1893
1894


class RandomAdjustSharpness(torch.nn.Module):
1895
1896
    """Adjust the sharpness of the image randomly with a given probability. If the image is torch Tensor,
    it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
1897
1898
1899

    Args:
        sharpness_factor (float):  How much to adjust the sharpness. Can be
1900
            any non-negative number. 0 gives a blurred image, 1 gives the
1901
            original image while 2 increases the sharpness by a factor of 2.
1902
        p (float): probability of the image being sharpened. Default value is 0.5
1903
1904
1905
1906
    """

    def __init__(self, sharpness_factor, p=0.5):
        super().__init__()
1907
        _log_api_usage_once(self)
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
        self.sharpness_factor = sharpness_factor
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be sharpened.

        Returns:
            PIL Image or Tensor: Randomly sharpened image.
        """
        if torch.rand(1).item() < self.p:
            return F.adjust_sharpness(img, self.sharpness_factor)
        return img

Joao Gomes's avatar
Joao Gomes committed
1923
1924
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(sharpness_factor={self.sharpness_factor},p={self.p})"
1925
1926
1927
1928


class RandomAutocontrast(torch.nn.Module):
    """Autocontrast the pixels of the given image randomly with a given probability.
1929
1930
1931
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1932
1933
1934
1935
1936
1937
1938

    Args:
        p (float): probability of the image being autocontrasted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
1939
        _log_api_usage_once(self)
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be autocontrasted.

        Returns:
            PIL Image or Tensor: Randomly autocontrasted image.
        """
        if torch.rand(1).item() < self.p:
            return F.autocontrast(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
1954
1955
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
1956
1957
1958
1959


class RandomEqualize(torch.nn.Module):
    """Equalize the histogram of the given image randomly with a given probability.
1960
1961
1962
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1963
1964
1965
1966
1967
1968
1969

    Args:
        p (float): probability of the image being equalized. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
1970
        _log_api_usage_once(self)
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be equalized.

        Returns:
            PIL Image or Tensor: Randomly equalized image.
        """
        if torch.rand(1).item() < self.p:
            return F.equalize(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
1985
1986
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056


class ElasticTransform(torch.nn.Module):
    """Transform a tensor image with elastic transformations.
    Given alpha and sigma, it will generate displacement
    vectors for all pixels based on random offsets. Alpha controls the strength
    and sigma controls the smoothness of the displacements.
    The displacements are added to an identity grid and the resulting grid is
    used to grid_sample from the image.

    Applications:
        Randomly transforms the morphology of objects in images and produces a
        see-through-water-like effect.

    Args:
        alpha (float or sequence of floats): Magnitude of displacements. Default is 50.0.
        sigma (float or sequence of floats): Smoothness of displacements. Default is 5.0.
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.

    """

    def __init__(self, alpha=50.0, sigma=5.0, interpolation=InterpolationMode.BILINEAR, fill=0):
        super().__init__()
        _log_api_usage_once(self)
        if not isinstance(alpha, (float, Sequence)):
            raise TypeError(f"alpha should be float or a sequence of floats. Got {type(alpha)}")
        if isinstance(alpha, Sequence) and len(alpha) != 2:
            raise ValueError(f"If alpha is a sequence its length should be 2. Got {len(alpha)}")
        if isinstance(alpha, Sequence):
            for element in alpha:
                if not isinstance(element, float):
                    raise TypeError(f"alpha should be a sequence of floats. Got {type(element)}")

        if isinstance(alpha, float):
            alpha = [float(alpha), float(alpha)]
        if isinstance(alpha, (list, tuple)) and len(alpha) == 1:
            alpha = [alpha[0], alpha[0]]

        self.alpha = alpha

        if not isinstance(sigma, (float, Sequence)):
            raise TypeError(f"sigma should be float or a sequence of floats. Got {type(sigma)}")
        if isinstance(sigma, Sequence) and len(sigma) != 2:
            raise ValueError(f"If sigma is a sequence its length should be 2. Got {len(sigma)}")
        if isinstance(sigma, Sequence):
            for element in sigma:
                if not isinstance(element, float):
                    raise TypeError(f"sigma should be a sequence of floats. Got {type(element)}")

        if isinstance(sigma, float):
            sigma = [float(sigma), float(sigma)]
        if isinstance(sigma, (list, tuple)) and len(sigma) == 1:
            sigma = [sigma[0], sigma[0]]

        self.sigma = sigma

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
            )
            interpolation = _interpolation_modes_from_int(interpolation)
        self.interpolation = interpolation

2057
2058
2059
2060
2061
2062
        if isinstance(fill, (int, float)):
            fill = [float(fill)]
        elif isinstance(fill, (list, tuple)):
            fill = [float(f) for f in fill]
        else:
            raise TypeError(f"fill should be int or float or a list or tuple of them. Got {type(fill)}")
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
        self.fill = fill

    @staticmethod
    def get_params(alpha: List[float], sigma: List[float], size: List[int]) -> Tensor:
        dx = torch.rand([1, 1] + size) * 2 - 1
        if sigma[0] > 0.0:
            kx = int(8 * sigma[0] + 1)
            # if kernel size is even we have to make it odd
            if kx % 2 == 0:
                kx += 1
            dx = F.gaussian_blur(dx, [kx, kx], sigma)
        dx = dx * alpha[0] / size[0]

        dy = torch.rand([1, 1] + size) * 2 - 1
        if sigma[1] > 0.0:
            ky = int(8 * sigma[1] + 1)
            # if kernel size is even we have to make it odd
            if ky % 2 == 0:
                ky += 1
            dy = F.gaussian_blur(dy, [ky, ky], sigma)
        dy = dy * alpha[1] / size[1]
        return torch.concat([dx, dy], 1).permute([0, 2, 3, 1])  # 1 x H x W x 2

    def forward(self, tensor: Tensor) -> Tensor:
        """
        Args:
2089
            tensor (PIL Image or Tensor): Image to be transformed.
2090
2091
2092
2093

        Returns:
            PIL Image or Tensor: Transformed image.
        """
2094
2095
        _, height, width = F.get_dimensions(tensor)
        displacement = self.get_params(self.alpha, self.sigma, [height, width])
2096
2097
2098
        return F.elastic_transform(tensor, displacement, self.interpolation, self.fill)

    def __repr__(self):
2099
2100
2101
2102
2103
        format_string = self.__class__.__name__
        format_string += f"(alpha={self.alpha}"
        format_string += f", sigma={self.sigma}"
        format_string += f", interpolation={self.interpolation}"
        format_string += f", fill={self.fill})"
2104
        return format_string