transforms.py 79.7 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8
9
10

import torch
from torch import Tensor

11
12
13
14
15
try:
    import accimage
except ImportError:
    accimage = None

16
from ..utils import _log_api_usage_once
17
from . import functional as F
18
from .functional import InterpolationMode, _interpolation_modes_from_int
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
__all__ = [
    "Compose",
    "ToTensor",
    "PILToTensor",
    "ConvertImageDtype",
    "ToPILImage",
    "Normalize",
    "Resize",
    "CenterCrop",
    "Pad",
    "Lambda",
    "RandomApply",
    "RandomChoice",
    "RandomOrder",
    "RandomCrop",
    "RandomHorizontalFlip",
    "RandomVerticalFlip",
    "RandomResizedCrop",
    "FiveCrop",
    "TenCrop",
    "LinearTransformation",
    "ColorJitter",
    "RandomRotation",
    "RandomAffine",
    "Grayscale",
    "RandomGrayscale",
    "RandomPerspective",
    "RandomErasing",
    "GaussianBlur",
    "InterpolationMode",
    "RandomInvert",
    "RandomPosterize",
    "RandomSolarize",
    "RandomAdjustSharpness",
    "RandomAutocontrast",
    "RandomEqualize",
]
57

58

59
class Compose:
60
61
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.
62
63
64
65
66
67
68

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
69
70
        >>>     transforms.PILToTensor(),
        >>>     transforms.ConvertImageDtype(torch.float),
71
        >>> ])
72
73
74
75
76
77
78
79
80
81
82
83
84

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

85
86
87
    """

    def __init__(self, transforms):
88
89
        if not torch.jit.is_scripting() and not torch.jit.is_tracing():
            _log_api_usage_once(self)
90
91
92
93
94
95
96
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
97
    def __repr__(self) -> str:
98
        format_string = self.__class__.__name__ + "("
99
        for t in self.transforms:
100
            format_string += "\n"
101
            format_string += f"    {t}"
102
        format_string += "\n)"
103
104
        return format_string

105

106
class ToTensor:
107
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
108
109

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
110
111
112
113
114
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
115
116
117
118
119

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

120
    .. _references: https://github.com/pytorch/vision/tree/main/references/segmentation
121
122
    """

123
124
125
    def __init__(self) -> None:
        _log_api_usage_once(self)

126
127
128
129
130
131
132
133
134
135
    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

Joao Gomes's avatar
Joao Gomes committed
136
137
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}()"
138

139

140
class PILToTensor:
141
    """Convert a ``PIL Image`` to a tensor of the same type. This transform does not support torchscript.
142

vfdev's avatar
vfdev committed
143
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
144
145
    """

146
147
148
    def __init__(self) -> None:
        _log_api_usage_once(self)

149
150
    def __call__(self, pic):
        """
151
152
153
154
        .. note::

            A deep copy of the underlying array is performed.

155
156
157
158
159
160
161
162
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

Joao Gomes's avatar
Joao Gomes committed
163
164
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}()"
165
166


167
class ConvertImageDtype(torch.nn.Module):
168
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
169
    This function does not support PIL Image.
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
187
        super().__init__()
188
        _log_api_usage_once(self)
189
190
        self.dtype = dtype

vfdev's avatar
vfdev committed
191
    def forward(self, image):
192
193
194
        return F.convert_image_dtype(image, self.dtype)


195
class ToPILImage:
196
    """Convert a tensor or an ndarray to PIL Image. This transform does not support torchscript.
197
198
199
200
201
202
203

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
204
205
206
207
208
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
209

csukuangfj's avatar
csukuangfj committed
210
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
211
    """
212

213
    def __init__(self, mode=None):
214
        _log_api_usage_once(self)
215
216
217
218
219
220
221
222
223
224
225
226
227
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

Joao Gomes's avatar
Joao Gomes committed
228
    def __repr__(self) -> str:
229
        format_string = self.__class__.__name__ + "("
230
        if self.mode is not None:
231
            format_string += f"mode={self.mode}"
232
        format_string += ")"
233
        return format_string
234

235

236
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
237
    """Normalize a tensor image with mean and standard deviation.
238
    This transform does not support PIL Image.
239
240
241
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
242
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
243

244
    .. note::
245
        This transform acts out of place, i.e., it does not mutate the input tensor.
246

247
248
249
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
250
251
        inplace(bool,optional): Bool to make this operation in-place.

252
253
    """

surgan12's avatar
surgan12 committed
254
    def __init__(self, mean, std, inplace=False):
255
        super().__init__()
256
        _log_api_usage_once(self)
257
258
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
259
        self.inplace = inplace
260

261
    def forward(self, tensor: Tensor) -> Tensor:
262
263
        """
        Args:
vfdev's avatar
vfdev committed
264
            tensor (Tensor): Tensor image to be normalized.
265
266
267
268

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
269
        return F.normalize(tensor, self.mean, self.std, self.inplace)
270

Joao Gomes's avatar
Joao Gomes committed
271
272
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(mean={self.mean}, std={self.std})"
273

274

vfdev's avatar
vfdev committed
275
276
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
277
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
278
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
279

280
281
282
283
    .. warning::
        The output image might be different depending on its type: when downsampling, the interpolation of PIL images
        and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences
        in the performance of a network. Therefore, it is preferable to train and serve a model with the same input
284
285
        types. See also below the ``antialias`` parameter, which can help making the output of PIL images and tensors
        closer.
286

287
288
289
290
291
    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
292
            (size * height / width, size).
293
294
295

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
296
297
298
299
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
300
301
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still accepted,
            but deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
302
303
304
305
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
306
            ``max_size``. As a result, ``size`` might be overruled, i.e the
307
308
309
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
310
        antialias (bool, optional): antialias flag. If ``img`` is PIL Image, the flag is ignored and anti-alias
311
312
313
            is always used. If ``img`` is Tensor, the flag is False by default and can be set to True for
            ``InterpolationMode.BILINEAR`` only mode. This can help making the output for PIL images and tensors
            closer.
314
315
316

            .. warning::
                There is no autodiff support for ``antialias=True`` option with input ``img`` as Tensor.
317

318
319
    """

320
    def __init__(self, size, interpolation=InterpolationMode.BILINEAR, max_size=None, antialias=None):
vfdev's avatar
vfdev committed
321
        super().__init__()
322
        _log_api_usage_once(self)
323
        if not isinstance(size, (int, Sequence)):
324
            raise TypeError(f"Size should be int or sequence. Got {type(size)}")
325
326
327
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")
        self.size = size
328
        self.max_size = max_size
329
330
331
332

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
333
334
                "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
                "Please use InterpolationMode enum."
335
336
337
            )
            interpolation = _interpolation_modes_from_int(interpolation)

338
        self.interpolation = interpolation
339
        self.antialias = antialias
340

vfdev's avatar
vfdev committed
341
    def forward(self, img):
342
343
        """
        Args:
vfdev's avatar
vfdev committed
344
            img (PIL Image or Tensor): Image to be scaled.
345
346

        Returns:
vfdev's avatar
vfdev committed
347
            PIL Image or Tensor: Rescaled image.
348
        """
349
        return F.resize(img, self.size, self.interpolation, self.max_size, self.antialias)
350

Joao Gomes's avatar
Joao Gomes committed
351
    def __repr__(self) -> str:
352
        detail = f"(size={self.size}, interpolation={self.interpolation.value}, max_size={self.max_size}, antialias={self.antialias})"
Joao Gomes's avatar
Joao Gomes committed
353
        return f"{self.__class__.__name__}{detail}"
354

355

vfdev's avatar
vfdev committed
356
357
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
358
    If the image is torch Tensor, it is expected
359
360
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
361
362
363
364

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
365
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
366
367
368
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
369
        super().__init__()
370
        _log_api_usage_once(self)
371
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
372

vfdev's avatar
vfdev committed
373
    def forward(self, img):
374
375
        """
        Args:
vfdev's avatar
vfdev committed
376
            img (PIL Image or Tensor): Image to be cropped.
377
378

        Returns:
vfdev's avatar
vfdev committed
379
            PIL Image or Tensor: Cropped image.
380
381
382
        """
        return F.center_crop(img, self.size)

Joao Gomes's avatar
Joao Gomes committed
383
384
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(size={self.size})"
385

386

387
388
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
389
    If the image is torch Tensor, it is expected
390
391
392
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
393
394

    Args:
395
396
397
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
398
            this is the padding for the left, top, right and bottom borders respectively.
399
400
401
402

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
403
        fill (number or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
404
            length 3, it is used to fill R, G, B channels respectively.
405
406
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
407
            Only int or tuple value is supported for PIL Image.
408
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
409
            Default is constant.
410
411
412

            - constant: pads with a constant value, this value is specified with fill

413
414
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
415

416
417
418
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
419

420
421
422
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
423
424
    """

425
426
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
427
        _log_api_usage_once(self)
428
429
430
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

431
        if not isinstance(fill, (numbers.Number, tuple, list)):
432
433
434
435
436
437
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
438
            raise ValueError(
439
                f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple"
440
            )
441
442
443

        self.padding = padding
        self.fill = fill
444
        self.padding_mode = padding_mode
445

446
    def forward(self, img):
447
448
        """
        Args:
449
            img (PIL Image or Tensor): Image to be padded.
450
451

        Returns:
452
            PIL Image or Tensor: Padded image.
453
        """
454
        return F.pad(img, self.padding, self.fill, self.padding_mode)
455

Joao Gomes's avatar
Joao Gomes committed
456
457
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(padding={self.padding}, fill={self.fill}, padding_mode={self.padding_mode})"
458

459

460
class Lambda:
461
    """Apply a user-defined lambda as a transform. This transform does not support torchscript.
462
463
464
465
466
467

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
468
        _log_api_usage_once(self)
469
        if not callable(lambd):
470
            raise TypeError(f"Argument lambd should be callable, got {repr(type(lambd).__name__)}")
471
472
473
474
475
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

Joao Gomes's avatar
Joao Gomes committed
476
477
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}()"
478

479

480
class RandomTransforms:
481
482
483
    """Base class for a list of transformations with randomness

    Args:
484
        transforms (sequence): list of transformations
485
486
487
    """

    def __init__(self, transforms):
488
        _log_api_usage_once(self)
489
490
        if not isinstance(transforms, Sequence):
            raise TypeError("Argument transforms should be a sequence")
491
492
493
494
495
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

Joao Gomes's avatar
Joao Gomes committed
496
    def __repr__(self) -> str:
497
        format_string = self.__class__.__name__ + "("
498
        for t in self.transforms:
499
            format_string += "\n"
500
            format_string += f"    {t}"
501
        format_string += "\n)"
502
503
504
        return format_string


505
class RandomApply(torch.nn.Module):
506
    """Apply randomly a list of transformations with a given probability.
507
508
509
510
511
512
513
514
515
516
517
518

    .. note::
        In order to script the transformation, please use ``torch.nn.ModuleList`` as input instead of list/tuple of
        transforms as shown below:

        >>> transforms = transforms.RandomApply(torch.nn.ModuleList([
        >>>     transforms.ColorJitter(),
        >>> ]), p=0.3)
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.
519
520

    Args:
521
        transforms (sequence or torch.nn.Module): list of transformations
522
523
524
525
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
526
        super().__init__()
527
        _log_api_usage_once(self)
528
        self.transforms = transforms
529
530
        self.p = p

531
532
    def forward(self, img):
        if self.p < torch.rand(1):
533
534
535
536
537
            return img
        for t in self.transforms:
            img = t(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
538
    def __repr__(self) -> str:
539
        format_string = self.__class__.__name__ + "("
540
        format_string += f"\n    p={self.p}"
541
        for t in self.transforms:
542
            format_string += "\n"
543
            format_string += f"    {t}"
544
        format_string += "\n)"
545
546
547
548
        return format_string


class RandomOrder(RandomTransforms):
549
550
    """Apply a list of transformations in a random order. This transform does not support torchscript."""

551
552
553
554
555
556
557
558
559
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
560
561
    """Apply single transformation randomly picked from a list. This transform does not support torchscript."""

562
563
564
    def __init__(self, transforms, p=None):
        super().__init__(transforms)
        if p is not None and not isinstance(p, Sequence):
565
            raise TypeError("Argument p should be a sequence")
566
567
568
569
570
571
        self.p = p

    def __call__(self, *args):
        t = random.choices(self.transforms, weights=self.p)[0]
        return t(*args)

Joao Gomes's avatar
Joao Gomes committed
572
573
    def __repr__(self) -> str:
        return f"{super().__repr__()}(p={self.p})"
574
575


vfdev's avatar
vfdev committed
576
577
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
578
    If the image is torch Tensor, it is expected
579
580
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions,
    but if non-constant padding is used, the input is expected to have at most 2 leading dimensions
581
582
583
584

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
585
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
586
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
587
            of the image. Default is None. If a single int is provided this
588
589
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
vfdev's avatar
vfdev committed
590
            this is the padding for the left, top, right and bottom borders respectively.
591
592
593
594

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
595
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
596
            desired size to avoid raising an exception. Since cropping is done
597
            after padding, the padding seems to be done at a random offset.
598
        fill (number or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
599
            length 3, it is used to fill R, G, B channels respectively.
600
601
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
602
            Only int or tuple value is supported for PIL Image.
603
604
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.
605

606
            - constant: pads with a constant value, this value is specified with fill
607

608
609
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
610

611
612
613
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
614

615
616
617
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
618
619
620
    """

    @staticmethod
vfdev's avatar
vfdev committed
621
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
622
623
624
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
625
            img (PIL Image or Tensor): Image to be cropped.
626
627
628
629
630
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
631
        _, h, w = F.get_dimensions(img)
632
        th, tw = output_size
vfdev's avatar
vfdev committed
633
634

        if h + 1 < th or w + 1 < tw:
635
            raise ValueError(f"Required crop size {(th, tw)} is larger then input image size {(h, w)}")
vfdev's avatar
vfdev committed
636

637
638
639
        if w == tw and h == th:
            return 0, 0, h, w

640
641
        i = torch.randint(0, h - th + 1, size=(1,)).item()
        j = torch.randint(0, w - tw + 1, size=(1,)).item()
642
643
        return i, j, th, tw

vfdev's avatar
vfdev committed
644
645
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()
646
        _log_api_usage_once(self)
vfdev's avatar
vfdev committed
647

648
        self.size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size."))
649

vfdev's avatar
vfdev committed
650
651
652
653
654
655
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
656
657
        """
        Args:
vfdev's avatar
vfdev committed
658
            img (PIL Image or Tensor): Image to be cropped.
659
660

        Returns:
vfdev's avatar
vfdev committed
661
            PIL Image or Tensor: Cropped image.
662
        """
663
664
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
665

666
        _, height, width = F.get_dimensions(img)
667
        # pad the width if needed
vfdev's avatar
vfdev committed
668
669
670
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
671
        # pad the height if needed
vfdev's avatar
vfdev committed
672
673
674
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
675

676
677
678
679
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

Joao Gomes's avatar
Joao Gomes committed
680
681
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(size={self.size}, padding={self.padding})"
682

683

684
685
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
686
    If the image is torch Tensor, it is expected
687
688
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
689
690
691
692
693
694

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
695
        super().__init__()
696
        _log_api_usage_once(self)
697
        self.p = p
698

699
    def forward(self, img):
700
701
        """
        Args:
702
            img (PIL Image or Tensor): Image to be flipped.
703
704

        Returns:
705
            PIL Image or Tensor: Randomly flipped image.
706
        """
707
        if torch.rand(1) < self.p:
708
709
710
            return F.hflip(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
711
712
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
713

714

715
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
716
    """Vertically flip the given image randomly with a given probability.
717
    If the image is torch Tensor, it is expected
718
719
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
720
721
722
723
724
725

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
726
        super().__init__()
727
        _log_api_usage_once(self)
728
        self.p = p
729

730
    def forward(self, img):
731
732
        """
        Args:
733
            img (PIL Image or Tensor): Image to be flipped.
734
735

        Returns:
736
            PIL Image or Tensor: Randomly flipped image.
737
        """
738
        if torch.rand(1) < self.p:
739
740
741
            return F.vflip(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
742
743
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
744

745

746
747
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
748
    If the image is torch Tensor, it is expected
749
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
750
751

    Args:
752
753
754
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
755
756
757
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
758
759
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still accepted,
            but deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
760
761
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
762
763
    """

764
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=InterpolationMode.BILINEAR, fill=0):
765
        super().__init__()
766
        _log_api_usage_once(self)
767
        self.p = p
768
769
770
771

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
772
773
                "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
                "Please use InterpolationMode enum."
774
775
776
            )
            interpolation = _interpolation_modes_from_int(interpolation)

777
778
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
779
780
781
782
783
784

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

785
        self.fill = fill
786

787
    def forward(self, img):
788
789
        """
        Args:
790
            img (PIL Image or Tensor): Image to be Perspectively transformed.
791
792

        Returns:
793
            PIL Image or Tensor: Randomly transformed image.
794
        """
795
796

        fill = self.fill
797
        channels, height, width = F.get_dimensions(img)
798
799
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
800
                fill = [float(fill)] * channels
801
802
803
            else:
                fill = [float(f) for f in fill]

804
        if torch.rand(1) < self.p:
805
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
806
            return F.perspective(img, startpoints, endpoints, self.interpolation, fill)
807
808
809
        return img

    @staticmethod
810
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
811
812
813
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
814
815
816
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
817
818

        Returns:
819
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
820
821
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
822
823
824
        half_height = height // 2
        half_width = width // 2
        topleft = [
825
826
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1,)).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1,)).item()),
827
828
        ]
        topright = [
829
830
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1,)).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1,)).item()),
831
832
        ]
        botright = [
833
834
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1,)).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1,)).item()),
835
836
        ]
        botleft = [
837
838
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1,)).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1,)).item()),
839
840
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
841
842
843
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

Joao Gomes's avatar
Joao Gomes committed
844
845
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
846
847


848
class RandomResizedCrop(torch.nn.Module):
849
850
    """Crop a random portion of image and resize it to a given size.

851
    If the image is torch Tensor, it is expected
852
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
853

854
855
856
    A crop of the original image is made: the crop has a random area (H * W)
    and a random aspect ratio. This crop is finally resized to the given
    size. This is popularly used to train the Inception networks.
857
858

    Args:
859
        size (int or sequence): expected output size of the crop, for each edge. If size is an
860
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
861
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
862
863
864

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
Nicolas Hug's avatar
Nicolas Hug committed
865
866
        scale (tuple of float): Specifies the lower and upper bounds for the random area of the crop,
            before resizing. The scale is defined with respect to the area of the original image.
867
868
        ratio (tuple of float): lower and upper bounds for the random aspect ratio of the crop, before
            resizing.
869
870
871
872
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
873
874
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still accepted,
            but deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
875
876
    """

877
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), interpolation=InterpolationMode.BILINEAR):
878
        super().__init__()
879
        _log_api_usage_once(self)
880
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
881

882
        if not isinstance(scale, Sequence):
883
            raise TypeError("Scale should be a sequence")
884
        if not isinstance(ratio, Sequence):
885
            raise TypeError("Ratio should be a sequence")
886
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
887
            warnings.warn("Scale and ratio should be of kind (min, max)")
888

889
890
891
        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
892
893
                "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
                "Please use InterpolationMode enum."
894
895
896
            )
            interpolation = _interpolation_modes_from_int(interpolation)

897
        self.interpolation = interpolation
898
899
        self.scale = scale
        self.ratio = ratio
900
901

    @staticmethod
902
    def get_params(img: Tensor, scale: List[float], ratio: List[float]) -> Tuple[int, int, int, int]:
903
904
905
        """Get parameters for ``crop`` for a random sized crop.

        Args:
906
            img (PIL Image or Tensor): Input image.
907
908
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
909
910
911

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
912
            sized crop.
913
        """
914
        _, height, width = F.get_dimensions(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
915
        area = height * width
916

917
        log_ratio = torch.log(torch.tensor(ratio))
918
        for _ in range(10):
919
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
920
            aspect_ratio = torch.exp(torch.empty(1).uniform_(log_ratio[0], log_ratio[1])).item()
921
922
923
924

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
925
            if 0 < w <= width and 0 < h <= height:
926
927
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
928
929
                return i, j, h, w

930
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
931
        in_ratio = float(width) / float(height)
932
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
933
            w = width
934
            h = int(round(w / min(ratio)))
935
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
936
            h = height
937
            w = int(round(h * max(ratio)))
938
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
939
940
941
942
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
943
        return i, j, h, w
944

945
    def forward(self, img):
946
947
        """
        Args:
948
            img (PIL Image or Tensor): Image to be cropped and resized.
949
950

        Returns:
951
            PIL Image or Tensor: Randomly cropped and resized image.
952
        """
953
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
954
955
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

Joao Gomes's avatar
Joao Gomes committed
956
    def __repr__(self) -> str:
957
        interpolate_str = self.interpolation.value
958
959
960
961
        format_string = self.__class__.__name__ + f"(size={self.size}"
        format_string += f", scale={tuple(round(s, 4) for s in self.scale)}"
        format_string += f", ratio={tuple(round(r, 4) for r in self.ratio)}"
        format_string += f", interpolation={interpolate_str})"
962
        return format_string
963

964

vfdev's avatar
vfdev committed
965
966
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
967
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
968
969
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
970
971
972
973
974
975
976
977
978

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
979
            If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
980
981
982
983

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
984
         >>>    Lambda(lambda crops: torch.stack([PILToTensor()(crop) for crop in crops])) # returns a 4D tensor
985
986
987
988
989
990
991
992
993
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
994
        super().__init__()
995
        _log_api_usage_once(self)
996
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
997

vfdev's avatar
vfdev committed
998
999
1000
1001
1002
1003
1004
1005
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
1006
1007
        return F.five_crop(img, self.size)

Joao Gomes's avatar
Joao Gomes committed
1008
1009
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(size={self.size})"
1010

1011

vfdev's avatar
vfdev committed
1012
1013
1014
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
1015
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1016
1017
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
1018
1019
1020
1021
1022
1023
1024
1025
1026

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
1027
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
1028
        vertical_flip (bool): Use vertical flipping instead of horizontal
1029
1030
1031
1032

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
1033
         >>>    Lambda(lambda crops: torch.stack([PILToTensor()(crop) for crop in crops])) # returns a 4D tensor
1034
1035
1036
1037
1038
1039
1040
1041
1042
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
1043
        super().__init__()
1044
        _log_api_usage_once(self)
1045
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
1046
1047
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
1048
1049
1050
1051
1052
1053
1054
1055
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
1056
1057
        return F.ten_crop(img, self.size, self.vertical_flip)

Joao Gomes's avatar
Joao Gomes committed
1058
1059
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(size={self.size}, vertical_flip={self.vertical_flip})"
1060

1061

1062
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
1063
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
1064
    offline.
1065
    This transform does not support PIL Image.
ekka's avatar
ekka committed
1066
1067
1068
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
1069
    original shape.
1070

1071
    Applications:
1072
        whitening transformation: Suppose X is a column vector zero-centered data.
1073
1074
1075
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

1076
1077
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
1078
        mean_vector (Tensor): tensor [D], D = C x H x W
1079
1080
    """

ekka's avatar
ekka committed
1081
    def __init__(self, transformation_matrix, mean_vector):
1082
        super().__init__()
1083
        _log_api_usage_once(self)
1084
        if transformation_matrix.size(0) != transformation_matrix.size(1):
1085
1086
            raise ValueError(
                "transformation_matrix should be square. Got "
1087
                f"{tuple(transformation_matrix.size())} rectangular matrix."
1088
            )
ekka's avatar
ekka committed
1089
1090

        if mean_vector.size(0) != transformation_matrix.size(0):
1091
            raise ValueError(
1092
1093
                f"mean_vector should have the same length {mean_vector.size(0)}"
                f" as any one of the dimensions of the transformation_matrix [{tuple(transformation_matrix.size())}]"
1094
            )
ekka's avatar
ekka committed
1095

1096
        if transformation_matrix.device != mean_vector.device:
1097
            raise ValueError(
1098
                f"Input tensors should be on the same device. Got {transformation_matrix.device} and {mean_vector.device}"
1099
            )
1100

1101
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
1102
        self.mean_vector = mean_vector
1103

1104
    def forward(self, tensor: Tensor) -> Tensor:
1105
1106
        """
        Args:
vfdev's avatar
vfdev committed
1107
            tensor (Tensor): Tensor image to be whitened.
1108
1109
1110
1111

        Returns:
            Tensor: Transformed image.
        """
1112
1113
1114
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
1115
1116
            raise ValueError(
                "Input tensor and transformation matrix have incompatible shape."
1117
1118
                + f"[{shape[-3]} x {shape[-2]} x {shape[-1]}] != "
                + f"{self.transformation_matrix.shape[0]}"
1119
            )
1120
1121

        if tensor.device.type != self.mean_vector.device.type:
1122
1123
            raise ValueError(
                "Input tensor should be on the same device as transformation matrix and mean vector. "
1124
                f"Got {tensor.device} vs {self.mean_vector.device}"
1125
            )
1126
1127

        flat_tensor = tensor.view(-1, n) - self.mean_vector
1128
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
1129
        tensor = transformed_tensor.view(shape)
1130
1131
        return tensor

Joao Gomes's avatar
Joao Gomes committed
1132
1133
1134
1135
1136
1137
1138
    def __repr__(self) -> str:
        s = (
            f"{self.__class__.__name__}(transformation_matrix="
            f"{self.transformation_matrix.tolist()}"
            f", mean_vector={self.mean_vector.tolist()})"
        )
        return s
1139

1140

1141
class ColorJitter(torch.nn.Module):
1142
    """Randomly change the brightness, contrast, saturation and hue of an image.
1143
    If the image is torch Tensor, it is expected
1144
1145
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, mode "1", "I", "F" and modes with transparency (alpha channel) are not supported.
1146
1147

    Args:
yaox12's avatar
yaox12 committed
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1160
1161
1162
            To jitter hue, the pixel values of the input image has to be non-negative for conversion to HSV space;
            thus it does not work if you normalize your image to an interval with negative values,
            or use an interpolation that generates negative values before using this function.
1163
    """
1164

1165
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1166
        super().__init__()
1167
        _log_api_usage_once(self)
1168
1169
1170
1171
        self.brightness = self._check_input(brightness, "brightness")
        self.contrast = self._check_input(contrast, "contrast")
        self.saturation = self._check_input(saturation, "saturation")
        self.hue = self._check_input(hue, "hue", center=0, bound=(-0.5, 0.5), clip_first_on_zero=False)
yaox12's avatar
yaox12 committed
1172

1173
    @torch.jit.unused
1174
    def _check_input(self, value, name, center=1, bound=(0, float("inf")), clip_first_on_zero=True):
yaox12's avatar
yaox12 committed
1175
1176
        if isinstance(value, numbers.Number):
            if value < 0:
1177
                raise ValueError(f"If {name} is a single number, it must be non negative.")
1178
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1179
            if clip_first_on_zero:
1180
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1181
1182
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
1183
                raise ValueError(f"{name} values should be between {bound}")
yaox12's avatar
yaox12 committed
1184
        else:
1185
            raise TypeError(f"{name} should be a single number or a list/tuple with length 2.")
yaox12's avatar
yaox12 committed
1186
1187
1188
1189
1190
1191

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1192
1193

    @staticmethod
1194
1195
1196
1197
1198
1199
    def get_params(
        brightness: Optional[List[float]],
        contrast: Optional[List[float]],
        saturation: Optional[List[float]],
        hue: Optional[List[float]],
    ) -> Tuple[Tensor, Optional[float], Optional[float], Optional[float], Optional[float]]:
1200
        """Get the parameters for the randomized transform to be applied on image.
1201

1202
1203
1204
1205
1206
1207
1208
1209
1210
        Args:
            brightness (tuple of float (min, max), optional): The range from which the brightness_factor is chosen
                uniformly. Pass None to turn off the transformation.
            contrast (tuple of float (min, max), optional): The range from which the contrast_factor is chosen
                uniformly. Pass None to turn off the transformation.
            saturation (tuple of float (min, max), optional): The range from which the saturation_factor is chosen
                uniformly. Pass None to turn off the transformation.
            hue (tuple of float (min, max), optional): The range from which the hue_factor is chosen uniformly.
                Pass None to turn off the transformation.
1211
1212

        Returns:
1213
1214
            tuple: The parameters used to apply the randomized transform
            along with their random order.
1215
        """
1216
        fn_idx = torch.randperm(4)
1217

1218
1219
1220
1221
        b = None if brightness is None else float(torch.empty(1).uniform_(brightness[0], brightness[1]))
        c = None if contrast is None else float(torch.empty(1).uniform_(contrast[0], contrast[1]))
        s = None if saturation is None else float(torch.empty(1).uniform_(saturation[0], saturation[1]))
        h = None if hue is None else float(torch.empty(1).uniform_(hue[0], hue[1]))
1222

1223
        return fn_idx, b, c, s, h
1224

1225
    def forward(self, img):
1226
1227
        """
        Args:
1228
            img (PIL Image or Tensor): Input image.
1229
1230

        Returns:
1231
1232
            PIL Image or Tensor: Color jittered image.
        """
1233
1234
1235
        fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = self.get_params(
            self.brightness, self.contrast, self.saturation, self.hue
        )
1236

1237
        for fn_id in fn_idx:
1238
            if fn_id == 0 and brightness_factor is not None:
1239
                img = F.adjust_brightness(img, brightness_factor)
1240
            elif fn_id == 1 and contrast_factor is not None:
1241
                img = F.adjust_contrast(img, contrast_factor)
1242
            elif fn_id == 2 and saturation_factor is not None:
1243
                img = F.adjust_saturation(img, saturation_factor)
1244
            elif fn_id == 3 and hue_factor is not None:
1245
1246
1247
                img = F.adjust_hue(img, hue_factor)

        return img
1248

Joao Gomes's avatar
Joao Gomes committed
1249
1250
1251
1252
1253
1254
1255
1256
1257
    def __repr__(self) -> str:
        s = (
            f"{self.__class__.__name__}("
            f"brightness={self.brightness}"
            f", contrast={self.contrast}"
            f", saturation={self.saturation}"
            f", hue={self.hue})"
        )
        return s
1258

1259

1260
class RandomRotation(torch.nn.Module):
1261
    """Rotate the image by angle.
1262
    If the image is torch Tensor, it is expected
1263
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1264
1265

    Args:
1266
        degrees (sequence or number): Range of degrees to select from.
1267
1268
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1269
1270
1271
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1272
1273
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still accepted,
            but deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
1274
1275
1276
1277
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1278
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1279
            Default is the center of the image.
1280
1281
        fill (sequence or number): Pixel fill value for the area outside the rotated
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1282
1283
1284
1285
        resample (int, optional):
            .. warning::
                This parameter was deprecated in ``0.12`` and will be removed in ``0.14``. Please use ``interpolation``
                instead.
1286
1287
1288

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1289
1290
    """

1291
    def __init__(
1292
        self, degrees, interpolation=InterpolationMode.NEAREST, expand=False, center=None, fill=0, resample=None
1293
    ):
1294
        super().__init__()
1295
        _log_api_usage_once(self)
1296
1297
        if resample is not None:
            warnings.warn(
1298
1299
                "The parameter 'resample' is deprecated since 0.12 and will be removed 0.14. "
                "Please use 'interpolation' instead."
1300
1301
1302
1303
1304
1305
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1306
1307
                "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
                "Please use InterpolationMode enum."
1308
1309
1310
            )
            interpolation = _interpolation_modes_from_int(interpolation)

1311
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
1312
1313

        if center is not None:
1314
            _check_sequence_input(center, "center", req_sizes=(2,))
1315
1316

        self.center = center
1317

1318
        self.resample = self.interpolation = interpolation
1319
        self.expand = expand
1320
1321
1322
1323
1324
1325

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1326
        self.fill = fill
1327
1328

    @staticmethod
1329
    def get_params(degrees: List[float]) -> float:
1330
1331
1332
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1333
            float: angle parameter to be passed to ``rotate`` for random rotation.
1334
        """
1335
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1336
1337
        return angle

1338
    def forward(self, img):
1339
        """
1340
        Args:
1341
            img (PIL Image or Tensor): Image to be rotated.
1342
1343

        Returns:
1344
            PIL Image or Tensor: Rotated image.
1345
        """
1346
        fill = self.fill
1347
        channels, _, _ = F.get_dimensions(img)
1348
1349
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
1350
                fill = [float(fill)] * channels
1351
1352
            else:
                fill = [float(f) for f in fill]
1353
        angle = self.get_params(self.degrees)
1354
1355

        return F.rotate(img, angle, self.resample, self.expand, self.center, fill)
1356

Joao Gomes's avatar
Joao Gomes committed
1357
    def __repr__(self) -> str:
1358
        interpolate_str = self.interpolation.value
1359
1360
1361
        format_string = self.__class__.__name__ + f"(degrees={self.degrees}"
        format_string += f", interpolation={interpolate_str}"
        format_string += f", expand={self.expand}"
1362
        if self.center is not None:
1363
            format_string += f", center={self.center}"
1364
        if self.fill is not None:
1365
            format_string += f", fill={self.fill}"
1366
        format_string += ")"
1367
        return format_string
1368

1369

1370
1371
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
1372
    If the image is torch Tensor, it is expected
1373
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1374
1375

    Args:
1376
        degrees (sequence or number): Range of degrees to select from.
1377
            If degrees is a number instead of sequence like (min, max), the range of degrees
1378
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1379
1380
1381
1382
1383
1384
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
1385
        shear (sequence or number, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1386
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1387
1388
            will be applied. Else if shear is a sequence of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a sequence of 4 values,
ptrblck's avatar
ptrblck committed
1389
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1390
            Will not apply shear by default.
1391
1392
1393
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1394
1395
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still accepted,
            but deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
1396
1397
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1398
1399
1400
1401
1402
1403
1404
        fillcolor (sequence or number, optional):
            .. warning::
                This parameter was deprecated in ``0.12`` and will be removed in ``0.14``. Please use ``fill`` instead.
        resample (int, optional):
            .. warning::
                This parameter was deprecated in ``0.12`` and will be removed in ``0.14``. Please use ``interpolation``
                instead.
1405
1406
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
            Default is the center of the image.
1407
1408
1409

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1410
1411
    """

1412
    def __init__(
1413
1414
1415
1416
1417
1418
1419
1420
1421
        self,
        degrees,
        translate=None,
        scale=None,
        shear=None,
        interpolation=InterpolationMode.NEAREST,
        fill=0,
        fillcolor=None,
        resample=None,
1422
        center=None,
1423
    ):
1424
        super().__init__()
1425
        _log_api_usage_once(self)
1426
1427
        if resample is not None:
            warnings.warn(
1428
1429
                "The parameter 'resample' is deprecated since 0.12 and will be removed in 0.14. "
                "Please use 'interpolation' instead."
1430
1431
1432
1433
1434
1435
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1436
1437
                "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
                "Please use InterpolationMode enum."
1438
1439
1440
1441
1442
            )
            interpolation = _interpolation_modes_from_int(interpolation)

        if fillcolor is not None:
            warnings.warn(
1443
1444
                "The parameter 'fillcolor' is deprecated since 0.12 and will be removed in 0.14. "
                "Please use 'fill' instead."
1445
1446
1447
            )
            fill = fillcolor

1448
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
1449
1450

        if translate is not None:
1451
            _check_sequence_input(translate, "translate", req_sizes=(2,))
1452
1453
1454
1455
1456
1457
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1458
            _check_sequence_input(scale, "scale", req_sizes=(2,))
1459
1460
1461
1462
1463
1464
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1465
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1466
1467
1468
        else:
            self.shear = shear

1469
        self.resample = self.interpolation = interpolation
1470
1471
1472
1473
1474
1475

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1476
        self.fillcolor = self.fill = fill
1477

1478
1479
1480
1481
1482
        if center is not None:
            _check_sequence_input(center, "center", req_sizes=(2,))

        self.center = center

1483
    @staticmethod
1484
    def get_params(
1485
1486
1487
1488
1489
        degrees: List[float],
        translate: Optional[List[float]],
        scale_ranges: Optional[List[float]],
        shears: Optional[List[float]],
        img_size: List[int],
1490
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1491
1492
1493
        """Get parameters for affine transformation

        Returns:
1494
            params to be passed to the affine transformation
1495
        """
1496
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1497
        if translate is not None:
1498
1499
1500
1501
1502
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1503
1504
1505
1506
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1507
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1508
1509
1510
        else:
            scale = 1.0

1511
        shear_x = shear_y = 0.0
1512
        if shears is not None:
1513
1514
1515
1516
1517
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1518
1519
1520

        return angle, translations, scale, shear

1521
    def forward(self, img):
1522
        """
1523
            img (PIL Image or Tensor): Image to be transformed.
1524
1525

        Returns:
1526
            PIL Image or Tensor: Affine transformed image.
1527
        """
1528
        fill = self.fill
1529
        channels, height, width = F.get_dimensions(img)
1530
1531
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
1532
                fill = [float(fill)] * channels
1533
1534
            else:
                fill = [float(f) for f in fill]
1535

1536
        img_size = [width, height]  # flip for keeping BC on get_params call
1537
1538

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1539

1540
        return F.affine(img, *ret, interpolation=self.interpolation, fill=fill, center=self.center)
1541

Joao Gomes's avatar
Joao Gomes committed
1542
1543
1544
1545
1546
1547
1548
1549
    def __repr__(self) -> str:
        s = f"{self.__class__.__name__}(degrees={self.degrees}"
        s += f", translate={self.translate}" if self.translate is not None else ""
        s += f", scale={self.scale}" if self.scale is not None else ""
        s += f", shear={self.shear}" if self.shear is not None else ""
        s += f", interpolation={self.interpolation.value}" if self.interpolation != InterpolationMode.NEAREST else ""
        s += f", fill={self.fill}" if self.fill != 0 else ""
        s += f", center={self.center}" if self.center is not None else ""
1550
        s += ")"
Joao Gomes's avatar
Joao Gomes committed
1551
1552

        return s
1553
1554


1555
class Grayscale(torch.nn.Module):
1556
    """Convert image to grayscale.
1557
1558
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1559

1560
1561
1562
1563
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1564
        PIL Image: Grayscale version of the input.
1565
1566
1567

        - If ``num_output_channels == 1`` : returned image is single channel
        - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1568
1569
1570
1571

    """

    def __init__(self, num_output_channels=1):
1572
        super().__init__()
1573
        _log_api_usage_once(self)
1574
1575
        self.num_output_channels = num_output_channels

vfdev's avatar
vfdev committed
1576
    def forward(self, img):
1577
1578
        """
        Args:
1579
            img (PIL Image or Tensor): Image to be converted to grayscale.
1580
1581

        Returns:
1582
            PIL Image or Tensor: Grayscaled image.
1583
        """
1584
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1585

Joao Gomes's avatar
Joao Gomes committed
1586
1587
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(num_output_channels={self.num_output_channels})"
1588

1589

1590
class RandomGrayscale(torch.nn.Module):
1591
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1592
1593
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1594

1595
1596
1597
1598
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1599
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1600
1601
1602
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1603
1604
1605
1606

    """

    def __init__(self, p=0.1):
1607
        super().__init__()
1608
        _log_api_usage_once(self)
1609
1610
        self.p = p

vfdev's avatar
vfdev committed
1611
    def forward(self, img):
1612
1613
        """
        Args:
1614
            img (PIL Image or Tensor): Image to be converted to grayscale.
1615
1616

        Returns:
1617
            PIL Image or Tensor: Randomly grayscaled image.
1618
        """
1619
        num_output_channels, _, _ = F.get_dimensions(img)
1620
1621
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1622
        return img
1623

Joao Gomes's avatar
Joao Gomes committed
1624
1625
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
1626
1627


1628
class RandomErasing(torch.nn.Module):
1629
    """Randomly selects a rectangle region in an torch Tensor image and erases its pixels.
1630
    This transform does not support PIL Image.
vfdev's avatar
vfdev committed
1631
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1632

1633
1634
1635
1636
1637
1638
1639
1640
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1641
         inplace: boolean to make this transform inplace. Default set to False.
1642

1643
1644
    Returns:
        Erased Image.
1645

vfdev's avatar
vfdev committed
1646
    Example:
1647
        >>> transform = transforms.Compose([
1648
        >>>   transforms.RandomHorizontalFlip(),
1649
1650
        >>>   transforms.PILToTensor(),
        >>>   transforms.ConvertImageDtype(torch.float),
1651
1652
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1653
1654
1655
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1656
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1657
        super().__init__()
1658
        _log_api_usage_once(self)
1659
1660
1661
1662
1663
1664
1665
1666
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1667
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1668
            warnings.warn("Scale and ratio should be of kind (min, max)")
1669
        if scale[0] < 0 or scale[1] > 1:
1670
            raise ValueError("Scale should be between 0 and 1")
1671
        if p < 0 or p > 1:
1672
            raise ValueError("Random erasing probability should be between 0 and 1")
1673
1674
1675
1676
1677

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1678
        self.inplace = inplace
1679
1680

    @staticmethod
1681
    def get_params(
1682
        img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
1683
    ) -> Tuple[int, int, int, int, Tensor]:
1684
1685
1686
        """Get parameters for ``erase`` for a random erasing.

        Args:
vfdev's avatar
vfdev committed
1687
            img (Tensor): Tensor image to be erased.
1688
1689
            scale (sequence): range of proportion of erased area against input image.
            ratio (sequence): range of aspect ratio of erased area.
1690
1691
1692
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1693
1694
1695
1696

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1697
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1698
        area = img_h * img_w
1699

1700
        log_ratio = torch.log(torch.tensor(ratio))
1701
        for _ in range(10):
1702
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
1703
            aspect_ratio = torch.exp(torch.empty(1).uniform_(log_ratio[0], log_ratio[1])).item()
1704
1705
1706

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1707
1708
1709
1710
1711
1712
1713
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1714

1715
1716
            i = torch.randint(0, img_h - h + 1, size=(1,)).item()
            j = torch.randint(0, img_w - w + 1, size=(1,)).item()
1717
            return i, j, h, w, v
1718

Zhun Zhong's avatar
Zhun Zhong committed
1719
1720
1721
        # Return original image
        return 0, 0, img_h, img_w, img

1722
    def forward(self, img):
1723
1724
        """
        Args:
vfdev's avatar
vfdev committed
1725
            img (Tensor): Tensor image to be erased.
1726
1727
1728
1729

        Returns:
            img (Tensor): Erased Tensor image.
        """
1730
1731
1732
1733
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
1734
                value = [self.value]
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
1745
                    f"{img.shape[-3]} (number of input channels)"
1746
1747
1748
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1749
            return F.erase(img, x, y, h, w, v, self.inplace)
1750
        return img
1751

Joao Gomes's avatar
Joao Gomes committed
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
    def __repr__(self) -> str:
        s = (
            f"{self.__class__.__name__}"
            f"(p={self.p}, "
            f"scale={self.scale}, "
            f"ratio={self.ratio}, "
            f"value={self.value}, "
            f"inplace={self.inplace})"
        )
        return s
1762

1763

1764
1765
class GaussianBlur(torch.nn.Module):
    """Blurs image with randomly chosen Gaussian blur.
1766
1767
    If the image is torch Tensor, it is expected
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading dimensions.
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.

    Returns:
        PIL Image or Tensor: Gaussian blurred version of the input image.

    """

    def __init__(self, kernel_size, sigma=(0.1, 2.0)):
        super().__init__()
1783
        _log_api_usage_once(self)
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, numbers.Number):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = (sigma, sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
1794
            if not 0.0 < sigma[0] <= sigma[1]:
1795
1796
1797
1798
1799
1800
1801
1802
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise ValueError("sigma should be a single number or a list/tuple with length 2.")

        self.sigma = sigma

    @staticmethod
    def get_params(sigma_min: float, sigma_max: float) -> float:
vfdev's avatar
vfdev committed
1803
        """Choose sigma for random gaussian blurring.
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816

        Args:
            sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
            sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.

        Returns:
            float: Standard deviation to be passed to calculate kernel for gaussian blurring.
        """
        return torch.empty(1).uniform_(sigma_min, sigma_max).item()

    def forward(self, img: Tensor) -> Tensor:
        """
        Args:
vfdev's avatar
vfdev committed
1817
            img (PIL Image or Tensor): image to be blurred.
1818
1819
1820
1821
1822
1823
1824

        Returns:
            PIL Image or Tensor: Gaussian blurred image
        """
        sigma = self.get_params(self.sigma[0], self.sigma[1])
        return F.gaussian_blur(img, self.kernel_size, [sigma, sigma])

Joao Gomes's avatar
Joao Gomes committed
1825
1826
1827
    def __repr__(self) -> str:
        s = f"{self.__class__.__name__}(kernel_size={self.kernel_size}, sigma={self.sigma})"
        return s
1828
1829


1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
1846
        raise TypeError(f"{name} should be a sequence of length {msg}.")
1847
    if len(x) not in req_sizes:
1848
        raise ValueError(f"{name} should be sequence of length {msg}.")
1849
1850


1851
def _setup_angle(x, name, req_sizes=(2,)):
1852
1853
    if isinstance(x, numbers.Number):
        if x < 0:
1854
            raise ValueError(f"If {name} is a single number, it must be positive.")
1855
1856
1857
1858
1859
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]
1860
1861
1862
1863


class RandomInvert(torch.nn.Module):
    """Inverts the colors of the given image randomly with a given probability.
1864
1865
1866
    If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1867
1868
1869
1870
1871
1872
1873

    Args:
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
1874
        _log_api_usage_once(self)
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be inverted.

        Returns:
            PIL Image or Tensor: Randomly color inverted image.
        """
        if torch.rand(1).item() < self.p:
            return F.invert(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
1889
1890
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
1891
1892
1893
1894


class RandomPosterize(torch.nn.Module):
    """Posterize the image randomly with a given probability by reducing the
1895
1896
1897
    number of bits for each color channel. If the image is torch Tensor, it should be of type torch.uint8,
    and it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1898
1899
1900

    Args:
        bits (int): number of bits to keep for each channel (0-8)
1901
        p (float): probability of the image being posterized. Default value is 0.5
1902
1903
1904
1905
    """

    def __init__(self, bits, p=0.5):
        super().__init__()
1906
        _log_api_usage_once(self)
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
        self.bits = bits
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be posterized.

        Returns:
            PIL Image or Tensor: Randomly posterized image.
        """
        if torch.rand(1).item() < self.p:
            return F.posterize(img, self.bits)
        return img

Joao Gomes's avatar
Joao Gomes committed
1922
1923
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(bits={self.bits},p={self.p})"
1924
1925
1926
1927


class RandomSolarize(torch.nn.Module):
    """Solarize the image randomly with a given probability by inverting all pixel
1928
1929
1930
    values above a threshold. If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1931
1932
1933

    Args:
        threshold (float): all pixels equal or above this value are inverted.
1934
        p (float): probability of the image being solarized. Default value is 0.5
1935
1936
1937
1938
    """

    def __init__(self, threshold, p=0.5):
        super().__init__()
1939
        _log_api_usage_once(self)
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
        self.threshold = threshold
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be solarized.

        Returns:
            PIL Image or Tensor: Randomly solarized image.
        """
        if torch.rand(1).item() < self.p:
            return F.solarize(img, self.threshold)
        return img

Joao Gomes's avatar
Joao Gomes committed
1955
1956
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(threshold={self.threshold},p={self.p})"
1957
1958
1959


class RandomAdjustSharpness(torch.nn.Module):
1960
1961
    """Adjust the sharpness of the image randomly with a given probability. If the image is torch Tensor,
    it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
1962
1963
1964
1965
1966

    Args:
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.
1967
        p (float): probability of the image being sharpened. Default value is 0.5
1968
1969
1970
1971
    """

    def __init__(self, sharpness_factor, p=0.5):
        super().__init__()
1972
        _log_api_usage_once(self)
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
        self.sharpness_factor = sharpness_factor
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be sharpened.

        Returns:
            PIL Image or Tensor: Randomly sharpened image.
        """
        if torch.rand(1).item() < self.p:
            return F.adjust_sharpness(img, self.sharpness_factor)
        return img

Joao Gomes's avatar
Joao Gomes committed
1988
1989
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(sharpness_factor={self.sharpness_factor},p={self.p})"
1990
1991
1992
1993


class RandomAutocontrast(torch.nn.Module):
    """Autocontrast the pixels of the given image randomly with a given probability.
1994
1995
1996
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1997
1998
1999
2000
2001
2002
2003

    Args:
        p (float): probability of the image being autocontrasted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
2004
        _log_api_usage_once(self)
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be autocontrasted.

        Returns:
            PIL Image or Tensor: Randomly autocontrasted image.
        """
        if torch.rand(1).item() < self.p:
            return F.autocontrast(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
2019
2020
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
2021
2022
2023
2024


class RandomEqualize(torch.nn.Module):
    """Equalize the histogram of the given image randomly with a given probability.
2025
2026
2027
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
2028
2029
2030
2031
2032
2033
2034

    Args:
        p (float): probability of the image being equalized. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
2035
        _log_api_usage_once(self)
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be equalized.

        Returns:
            PIL Image or Tensor: Randomly equalized image.
        """
        if torch.rand(1).item() < self.p:
            return F.equalize(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
2050
2051
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"