transforms.py 74.4 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8
9
10

import torch
from torch import Tensor

11
12
13
14
15
16
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F
17
from .functional import InterpolationMode, _interpolation_modes_from_int
18

19

20
21
22
23
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
24
25
           "RandomPerspective", "RandomErasing", "GaussianBlur", "InterpolationMode", "RandomInvert", "RandomPosterize",
           "RandomSolarize", "RandomAdjustSharpness", "RandomAutocontrast", "RandomEqualize"]
26

27

28
class Compose:
29
30
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.
31
32
33
34
35
36
37
38
39

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
40
41
42
43
44
45
46
47
48
49
50
51
52

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

53
54
55
56
57
58
59
60
61
62
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

63
64
65
66
67
68
69
70
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

71

72
class ToTensor:
73
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
74
75

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
76
77
78
79
80
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
81
82
83
84
85
86

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

    .. _references: https://github.com/pytorch/vision/tree/master/references/segmentation
87
88
89
90
91
92
93
94
95
96
97
98
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

99
100
101
    def __repr__(self):
        return self.__class__.__name__ + '()'

102

103
class PILToTensor:
104
    """Convert a ``PIL Image`` to a tensor of the same type. This transform does not support torchscript.
105

vfdev's avatar
vfdev committed
106
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


123
class ConvertImageDtype(torch.nn.Module):
124
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
125
    This function does not support PIL Image.
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
143
        super().__init__()
144
145
        self.dtype = dtype

vfdev's avatar
vfdev committed
146
    def forward(self, image):
147
148
149
        return F.convert_image_dtype(image, self.dtype)


150
class ToPILImage:
151
    """Convert a tensor or an ndarray to PIL Image. This transform does not support torchscript.
152
153
154
155
156
157
158

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
159
160
161
162
163
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
164

csukuangfj's avatar
csukuangfj committed
165
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

181
    def __repr__(self):
182
183
184
185
186
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
187

188

189
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
190
    """Normalize a tensor image with mean and standard deviation.
191
    This transform does not support PIL Image.
192
193
194
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
195
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
196

197
    .. note::
198
        This transform acts out of place, i.e., it does not mutate the input tensor.
199

200
201
202
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
203
204
        inplace(bool,optional): Bool to make this operation in-place.

205
206
    """

surgan12's avatar
surgan12 committed
207
    def __init__(self, mean, std, inplace=False):
208
        super().__init__()
209
210
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
211
        self.inplace = inplace
212

213
    def forward(self, tensor: Tensor) -> Tensor:
214
215
        """
        Args:
vfdev's avatar
vfdev committed
216
            tensor (Tensor): Tensor image to be normalized.
217
218
219
220

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
221
        return F.normalize(tensor, self.mean, self.std, self.inplace)
222

223
224
225
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

226

vfdev's avatar
vfdev committed
227
228
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
229
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
230
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
231
232
233
234
235
236

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
237
            (size * height / width, size).
238
            In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
239
240
241
242
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
243
244
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

245
246
    """

247
    def __init__(self, size, interpolation=InterpolationMode.BILINEAR):
vfdev's avatar
vfdev committed
248
        super().__init__()
249
250
251
252
253
        if not isinstance(size, (int, Sequence)):
            raise TypeError("Size should be int or sequence. Got {}".format(type(size)))
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")
        self.size = size
254
255
256
257

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
258
259
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
260
261
262
            )
            interpolation = _interpolation_modes_from_int(interpolation)

263
264
        self.interpolation = interpolation

vfdev's avatar
vfdev committed
265
    def forward(self, img):
266
267
        """
        Args:
vfdev's avatar
vfdev committed
268
            img (PIL Image or Tensor): Image to be scaled.
269
270

        Returns:
vfdev's avatar
vfdev committed
271
            PIL Image or Tensor: Rescaled image.
272
273
274
        """
        return F.resize(img, self.size, self.interpolation)

275
    def __repr__(self):
276
        interpolate_str = self.interpolation.value
277
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
278

279
280
281
282
283
284
285
286
287
288
289

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
290
291
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
292
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
293
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
294
295
296
297

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
298
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
299
300
301
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
302
        super().__init__()
303
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
304

vfdev's avatar
vfdev committed
305
    def forward(self, img):
306
307
        """
        Args:
vfdev's avatar
vfdev committed
308
            img (PIL Image or Tensor): Image to be cropped.
309
310

        Returns:
vfdev's avatar
vfdev committed
311
            PIL Image or Tensor: Cropped image.
312
313
314
        """
        return F.center_crop(img, self.size)

315
316
317
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

318

319
320
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
321
    If the image is torch Tensor, it is expected
322
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
323
324

    Args:
325
326
327
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
328
            this is the padding for the left, top, right and bottom borders respectively.
329
330
            In torchscript mode padding as single int is not supported, use a sequence of length 1: ``[padding, ]``.
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
331
            length 3, it is used to fill R, G, B channels respectively.
332
333
334
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
335
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
336
            Default is constant.
337
338
339
340
341
342
343
344

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
345
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
346
347
348
349

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
350
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
351
352
    """

353
354
355
356
357
358
359
360
361
362
363
364
365
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
366
367
368
369
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
370
        self.padding_mode = padding_mode
371

372
    def forward(self, img):
373
374
        """
        Args:
375
            img (PIL Image or Tensor): Image to be padded.
376
377

        Returns:
378
            PIL Image or Tensor: Padded image.
379
        """
380
        return F.pad(img, self.padding, self.fill, self.padding_mode)
381

382
    def __repr__(self):
383
384
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
385

386

387
class Lambda:
388
    """Apply a user-defined lambda as a transform. This transform does not support torchscript.
389
390
391
392
393
394

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
395
396
        if not callable(lambd):
            raise TypeError("Argument lambd should be callable, got {}".format(repr(type(lambd).__name__)))
397
398
399
400
401
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

402
403
404
    def __repr__(self):
        return self.__class__.__name__ + '()'

405

406
class RandomTransforms:
407
408
409
    """Base class for a list of transformations with randomness

    Args:
410
        transforms (sequence): list of transformations
411
412
413
    """

    def __init__(self, transforms):
414
415
        if not isinstance(transforms, Sequence):
            raise TypeError("Argument transforms should be a sequence")
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


430
class RandomApply(torch.nn.Module):
431
    """Apply randomly a list of transformations with a given probability.
432
433
434
435
436
437
438
439
440
441
442
443

    .. note::
        In order to script the transformation, please use ``torch.nn.ModuleList`` as input instead of list/tuple of
        transforms as shown below:

        >>> transforms = transforms.RandomApply(torch.nn.ModuleList([
        >>>     transforms.ColorJitter(),
        >>> ]), p=0.3)
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.
444
445

    Args:
446
        transforms (sequence or torch.nn.Module): list of transformations
447
448
449
450
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
451
452
        super().__init__()
        self.transforms = transforms
453
454
        self.p = p

455
456
    def forward(self, img):
        if self.p < torch.rand(1):
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
473
    """Apply a list of transformations in a random order. This transform does not support torchscript.
474
475
476
477
478
479
480
481
482
483
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
484
    """Apply single transformation randomly picked from a list. This transform does not support torchscript.
485
486
487
488
489
490
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


vfdev's avatar
vfdev committed
491
492
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
493
494
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
495
496
497
498

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
499
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
500
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
501
            of the image. Default is None. If a single int is provided this
502
503
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
vfdev's avatar
vfdev committed
504
            this is the padding for the left, top, right and bottom borders respectively.
505
            In torchscript mode padding as single int is not supported, use a sequence of length 1: ``[padding, ]``.
506
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
507
            desired size to avoid raising an exception. Since cropping is done
508
            after padding, the padding seems to be done at a random offset.
509
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
510
            length 3, it is used to fill R, G, B channels respectively.
511
512
513
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
vfdev's avatar
vfdev committed
514
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

530
531
532
    """

    @staticmethod
vfdev's avatar
vfdev committed
533
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
534
535
536
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
537
            img (PIL Image or Tensor): Image to be cropped.
538
539
540
541
542
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
vfdev's avatar
vfdev committed
543
        w, h = F._get_image_size(img)
544
        th, tw = output_size
vfdev's avatar
vfdev committed
545
546
547
548
549
550

        if h + 1 < th or w + 1 < tw:
            raise ValueError(
                "Required crop size {} is larger then input image size {}".format((th, tw), (h, w))
            )

551
552
553
        if w == tw and h == th:
            return 0, 0, h, w

554
555
        i = torch.randint(0, h - th + 1, size=(1, )).item()
        j = torch.randint(0, w - tw + 1, size=(1, )).item()
556
557
        return i, j, th, tw

vfdev's avatar
vfdev committed
558
559
560
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()

561
562
563
564
        self.size = tuple(_setup_size(
            size, error_msg="Please provide only two dimensions (h, w) for size."
        ))

vfdev's avatar
vfdev committed
565
566
567
568
569
570
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
571
572
        """
        Args:
vfdev's avatar
vfdev committed
573
            img (PIL Image or Tensor): Image to be cropped.
574
575

        Returns:
vfdev's avatar
vfdev committed
576
            PIL Image or Tensor: Cropped image.
577
        """
578
579
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
580

vfdev's avatar
vfdev committed
581
        width, height = F._get_image_size(img)
582
        # pad the width if needed
vfdev's avatar
vfdev committed
583
584
585
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
586
        # pad the height if needed
vfdev's avatar
vfdev committed
587
588
589
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
590

591
592
593
594
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

595
    def __repr__(self):
vfdev's avatar
vfdev committed
596
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
597

598

599
600
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
601
    If the image is torch Tensor, it is expected
602
603
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
604
605
606
607
608
609

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
610
        super().__init__()
611
        self.p = p
612

613
    def forward(self, img):
614
615
        """
        Args:
616
            img (PIL Image or Tensor): Image to be flipped.
617
618

        Returns:
619
            PIL Image or Tensor: Randomly flipped image.
620
        """
621
        if torch.rand(1) < self.p:
622
623
624
            return F.hflip(img)
        return img

625
    def __repr__(self):
626
        return self.__class__.__name__ + '(p={})'.format(self.p)
627

628

629
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
630
    """Vertically flip the given image randomly with a given probability.
631
    If the image is torch Tensor, it is expected
632
633
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
634
635
636
637
638
639

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
640
        super().__init__()
641
        self.p = p
642

643
    def forward(self, img):
644
645
        """
        Args:
646
            img (PIL Image or Tensor): Image to be flipped.
647
648

        Returns:
649
            PIL Image or Tensor: Randomly flipped image.
650
        """
651
        if torch.rand(1) < self.p:
652
653
654
            return F.vflip(img)
        return img

655
    def __repr__(self):
656
        return self.__class__.__name__ + '(p={})'.format(self.p)
657

658

659
660
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
661
    If the image is torch Tensor, it is expected
662
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
663
664

    Args:
665
666
667
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
668
669
670
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
671
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
672
673
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
674
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
675
676
    """

677
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=InterpolationMode.BILINEAR, fill=0):
678
        super().__init__()
679
        self.p = p
680
681
682
683

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
684
685
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
686
687
688
            )
            interpolation = _interpolation_modes_from_int(interpolation)

689
690
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
691
        self.fill = fill
692

693
    def forward(self, img):
694
695
        """
        Args:
696
            img (PIL Image or Tensor): Image to be Perspectively transformed.
697
698

        Returns:
699
            PIL Image or Tensor: Randomly transformed image.
700
        """
701
702
703
704
705
706
707
708

        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]

709
710
        if torch.rand(1) < self.p:
            width, height = F._get_image_size(img)
711
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
712
            return F.perspective(img, startpoints, endpoints, self.interpolation, fill)
713
714
715
        return img

    @staticmethod
716
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
717
718
719
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
720
721
722
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
723
724

        Returns:
725
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
726
727
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
        half_height = height // 2
        half_width = width // 2
        topleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        topright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        botright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        botleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
747
748
749
750
751
752
753
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


754
755
class RandomResizedCrop(torch.nn.Module):
    """Crop the given image to random size and aspect ratio.
756
    If the image is torch Tensor, it is expected
757
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
758

759
760
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
761
762
763
764
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
765
766
        size (int or sequence): expected output size of each edge. If size is an
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
767
768
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
            In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
769
770
        scale (tuple of float): scale range of the cropped image before resizing, relatively to the origin image.
        ratio (tuple of float): aspect ratio range of the cropped image before resizing.
771
772
773
774
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
775
776
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

777
778
    """

779
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=InterpolationMode.BILINEAR):
780
        super().__init__()
781
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
782

783
        if not isinstance(scale, Sequence):
784
            raise TypeError("Scale should be a sequence")
785
        if not isinstance(ratio, Sequence):
786
            raise TypeError("Ratio should be a sequence")
787
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
788
            warnings.warn("Scale and ratio should be of kind (min, max)")
789

790
791
792
        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
793
794
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
795
796
797
            )
            interpolation = _interpolation_modes_from_int(interpolation)

798
        self.interpolation = interpolation
799
800
        self.scale = scale
        self.ratio = ratio
801
802

    @staticmethod
803
    def get_params(
804
            img: Tensor, scale: List[float], ratio: List[float]
805
    ) -> Tuple[int, int, int, int]:
806
807
808
        """Get parameters for ``crop`` for a random sized crop.

        Args:
809
            img (PIL Image or Tensor): Input image.
810
811
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
812
813
814
815
816

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
vfdev's avatar
vfdev committed
817
        width, height = F._get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
818
        area = height * width
819

820
        for _ in range(10):
821
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
822
823
824
825
            log_ratio = torch.log(torch.tensor(ratio))
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
826
827
828
829

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
830
            if 0 < w <= width and 0 < h <= height:
831
832
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
833
834
                return i, j, h, w

835
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
836
        in_ratio = float(width) / float(height)
837
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
838
            w = width
839
            h = int(round(w / min(ratio)))
840
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
841
            h = height
842
            w = int(round(h * max(ratio)))
843
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
844
845
846
847
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
848
        return i, j, h, w
849

850
    def forward(self, img):
851
852
        """
        Args:
853
            img (PIL Image or Tensor): Image to be cropped and resized.
854
855

        Returns:
856
            PIL Image or Tensor: Randomly cropped and resized image.
857
        """
858
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
859
860
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

861
    def __repr__(self):
862
        interpolate_str = self.interpolation.value
863
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
864
865
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
866
867
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
868

869
870
871
872
873
874
875
876
877
878
879

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
880
881
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
882
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
883
884
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
885
886
887
888
889
890
891
892
893

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
894
            If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
895
896
897
898
899
900
901
902
903
904
905
906
907
908

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
909
        super().__init__()
910
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
911

vfdev's avatar
vfdev committed
912
913
914
915
916
917
918
919
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
920
921
        return F.five_crop(img, self.size)

922
923
924
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

925

vfdev's avatar
vfdev committed
926
927
928
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
929
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
930
931
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
932
933
934
935
936
937
938
939
940

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
941
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
942
        vertical_flip (bool): Use vertical flipping instead of horizontal
943
944
945
946
947
948
949
950
951
952
953
954
955
956

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
957
        super().__init__()
958
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
959
960
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
961
962
963
964
965
966
967
968
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
969
970
        return F.ten_crop(img, self.size, self.vertical_flip)

971
    def __repr__(self):
972
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
973

974

975
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
976
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
977
    offline.
978
    This transform does not support PIL Image.
ekka's avatar
ekka committed
979
980
981
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
982
    original shape.
983

984
    Applications:
985
        whitening transformation: Suppose X is a column vector zero-centered data.
986
987
988
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

989
990
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
991
        mean_vector (Tensor): tensor [D], D = C x H x W
992
993
    """

ekka's avatar
ekka committed
994
    def __init__(self, transformation_matrix, mean_vector):
995
        super().__init__()
996
997
998
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
999
1000
1001

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
1002
1003
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
1004

1005
1006
1007
1008
        if transformation_matrix.device != mean_vector.device:
            raise ValueError("Input tensors should be on the same device. Got {} and {}"
                             .format(transformation_matrix.device, mean_vector.device))

1009
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
1010
        self.mean_vector = mean_vector
1011

1012
    def forward(self, tensor: Tensor) -> Tensor:
1013
1014
        """
        Args:
vfdev's avatar
vfdev committed
1015
            tensor (Tensor): Tensor image to be whitened.
1016
1017
1018
1019

        Returns:
            Tensor: Transformed image.
        """
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
            raise ValueError("Input tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(shape[-3], shape[-2], shape[-1]) +
                             "{}".format(self.transformation_matrix.shape[0]))

        if tensor.device.type != self.mean_vector.device.type:
            raise ValueError("Input tensor should be on the same device as transformation matrix and mean vector. "
                             "Got {} vs {}".format(tensor.device, self.mean_vector.device))

        flat_tensor = tensor.view(-1, n) - self.mean_vector
1032
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
1033
        tensor = transformed_tensor.view(shape)
1034
1035
        return tensor

1036
    def __repr__(self):
ekka's avatar
ekka committed
1037
1038
1039
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
1040
1041
        return format_string

1042

1043
class ColorJitter(torch.nn.Module):
1044
    """Randomly change the brightness, contrast, saturation and hue of an image.
1045
1046
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1047
1048

    Args:
yaox12's avatar
yaox12 committed
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1061
    """
1062

1063
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1064
        super().__init__()
yaox12's avatar
yaox12 committed
1065
1066
1067
1068
1069
1070
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

1071
    @torch.jit.unused
yaox12's avatar
yaox12 committed
1072
1073
1074
1075
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
1076
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1077
            if clip_first_on_zero:
1078
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1090
1091

    @staticmethod
1092
1093
1094
1095
1096
1097
    def get_params(brightness: Optional[List[float]],
                   contrast: Optional[List[float]],
                   saturation: Optional[List[float]],
                   hue: Optional[List[float]]
                   ) -> Tuple[Tensor, Optional[float], Optional[float], Optional[float], Optional[float]]:
        """Get the parameters for the randomized transform to be applied on image.
1098

1099
1100
1101
1102
1103
1104
1105
1106
1107
        Args:
            brightness (tuple of float (min, max), optional): The range from which the brightness_factor is chosen
                uniformly. Pass None to turn off the transformation.
            contrast (tuple of float (min, max), optional): The range from which the contrast_factor is chosen
                uniformly. Pass None to turn off the transformation.
            saturation (tuple of float (min, max), optional): The range from which the saturation_factor is chosen
                uniformly. Pass None to turn off the transformation.
            hue (tuple of float (min, max), optional): The range from which the hue_factor is chosen uniformly.
                Pass None to turn off the transformation.
1108
1109

        Returns:
1110
1111
            tuple: The parameters used to apply the randomized transform
            along with their random order.
1112
        """
1113
        fn_idx = torch.randperm(4)
1114

1115
1116
1117
1118
        b = None if brightness is None else float(torch.empty(1).uniform_(brightness[0], brightness[1]))
        c = None if contrast is None else float(torch.empty(1).uniform_(contrast[0], contrast[1]))
        s = None if saturation is None else float(torch.empty(1).uniform_(saturation[0], saturation[1]))
        h = None if hue is None else float(torch.empty(1).uniform_(hue[0], hue[1]))
1119

1120
        return fn_idx, b, c, s, h
1121

1122
    def forward(self, img):
1123
1124
        """
        Args:
1125
            img (PIL Image or Tensor): Input image.
1126
1127

        Returns:
1128
1129
            PIL Image or Tensor: Color jittered image.
        """
1130
1131
1132
        fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = \
            self.get_params(self.brightness, self.contrast, self.saturation, self.hue)

1133
        for fn_id in fn_idx:
1134
            if fn_id == 0 and brightness_factor is not None:
1135
                img = F.adjust_brightness(img, brightness_factor)
1136
            elif fn_id == 1 and contrast_factor is not None:
1137
                img = F.adjust_contrast(img, contrast_factor)
1138
            elif fn_id == 2 and saturation_factor is not None:
1139
                img = F.adjust_saturation(img, saturation_factor)
1140
            elif fn_id == 3 and hue_factor is not None:
1141
1142
1143
                img = F.adjust_hue(img, hue_factor)

        return img
1144

1145
    def __repr__(self):
1146
1147
1148
1149
1150
1151
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1152

1153

1154
class RandomRotation(torch.nn.Module):
1155
    """Rotate the image by angle.
1156
    If the image is torch Tensor, it is expected
1157
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1158
1159

    Args:
1160
        degrees (sequence or number): Range of degrees to select from.
1161
1162
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1163
1164
1165
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1166
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1167
1168
1169
1170
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1171
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1172
            Default is the center of the image.
1173
1174
        fill (sequence or number, optional): Pixel fill value for the area outside the rotated
            image. If given a number, the value is used for all bands respectively.
1175
            If input is PIL Image, the options is only available for ``Pillow>=5.2.0``.
1176
1177
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
            Please use `arg`:interpolation: instead.
1178
1179
1180

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1181
1182
    """

1183
    def __init__(
1184
        self, degrees, interpolation=InterpolationMode.NEAREST, expand=False, center=None, fill=None, resample=None
1185
    ):
1186
        super().__init__()
1187
1188
1189
1190
1191
1192
1193
1194
1195
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1196
1197
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1198
1199
1200
            )
            interpolation = _interpolation_modes_from_int(interpolation)

1201
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1202
1203

        if center is not None:
1204
            _check_sequence_input(center, "center", req_sizes=(2, ))
1205
1206

        self.center = center
1207

1208
        self.resample = self.interpolation = interpolation
1209
        self.expand = expand
1210
        self.fill = fill
1211
1212

    @staticmethod
1213
    def get_params(degrees: List[float]) -> float:
1214
1215
1216
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1217
            float: angle parameter to be passed to ``rotate`` for random rotation.
1218
        """
1219
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1220
1221
        return angle

1222
    def forward(self, img):
1223
        """
1224
        Args:
1225
            img (PIL Image or Tensor): Image to be rotated.
1226
1227

        Returns:
1228
            PIL Image or Tensor: Rotated image.
1229
        """
1230
1231
1232
1233
1234
1235
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]
1236
        angle = self.get_params(self.degrees)
1237
1238

        return F.rotate(img, angle, self.resample, self.expand, self.center, fill)
1239

1240
    def __repr__(self):
1241
        interpolate_str = self.interpolation.value
1242
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
1243
        format_string += ', interpolation={0}'.format(interpolate_str)
1244
1245
1246
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1247
1248
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1249
1250
        format_string += ')'
        return format_string
1251

1252

1253
1254
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
1255
    If the image is torch Tensor, it is expected
1256
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1257
1258

    Args:
1259
        degrees (sequence or number): Range of degrees to select from.
1260
            If degrees is a number instead of sequence like (min, max), the range of degrees
1261
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1262
1263
1264
1265
1266
1267
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
1268
        shear (sequence or number, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1269
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1270
1271
            will be applied. Else if shear is a sequence of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a sequence of 4 values,
ptrblck's avatar
ptrblck committed
1272
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1273
            Will not apply shear by default.
1274
1275
1276
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1277
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1278
1279
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
1280
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
1281
        fillcolor (sequence or number, optional): deprecated argument and will be removed since v0.10.0.
1282
1283
1284
            Please use `arg`:fill: instead.
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
            Please use `arg`:interpolation: instead.
1285
1286
1287

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1288
1289
    """

1290
    def __init__(
1291
        self, degrees, translate=None, scale=None, shear=None, interpolation=InterpolationMode.NEAREST, fill=0,
1292
1293
        fillcolor=None, resample=None
    ):
1294
        super().__init__()
1295
1296
1297
1298
1299
1300
1301
1302
1303
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1304
1305
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1306
1307
1308
1309
1310
1311
1312
1313
1314
            )
            interpolation = _interpolation_modes_from_int(interpolation)

        if fillcolor is not None:
            warnings.warn(
                "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
            )
            fill = fillcolor

1315
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1316
1317

        if translate is not None:
1318
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
1319
1320
1321
1322
1323
1324
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1325
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
1326
1327
1328
1329
1330
1331
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1332
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1333
1334
1335
        else:
            self.shear = shear

1336
1337
        self.resample = self.interpolation = interpolation
        self.fillcolor = self.fill = fill
1338
1339

    @staticmethod
1340
1341
1342
1343
1344
1345
1346
    def get_params(
            degrees: List[float],
            translate: Optional[List[float]],
            scale_ranges: Optional[List[float]],
            shears: Optional[List[float]],
            img_size: List[int]
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1347
1348
1349
        """Get parameters for affine transformation

        Returns:
1350
            params to be passed to the affine transformation
1351
        """
1352
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1353
        if translate is not None:
1354
1355
1356
1357
1358
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1359
1360
1361
1362
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1363
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1364
1365
1366
        else:
            scale = 1.0

1367
        shear_x = shear_y = 0.0
1368
        if shears is not None:
1369
1370
1371
1372
1373
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1374
1375
1376

        return angle, translations, scale, shear

1377
    def forward(self, img):
1378
        """
1379
            img (PIL Image or Tensor): Image to be transformed.
1380
1381

        Returns:
1382
            PIL Image or Tensor: Affine transformed image.
1383
        """
1384
1385
1386
1387
1388
1389
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]
1390
1391
1392
1393

        img_size = F._get_image_size(img)

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1394
1395

        return F.affine(img, *ret, interpolation=self.interpolation, fill=fill)
1396
1397
1398
1399
1400
1401
1402
1403
1404

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
1405
        if self.interpolation != InterpolationMode.NEAREST:
1406
1407
1408
            s += ', interpolation={interpolation}'
        if self.fill != 0:
            s += ', fill={fill}'
1409
1410
        s += ')'
        d = dict(self.__dict__)
1411
        d['interpolation'] = self.interpolation.value
1412
1413
1414
        return s.format(name=self.__class__.__name__, **d)


1415
class Grayscale(torch.nn.Module):
1416
    """Convert image to grayscale.
1417
1418
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1419

1420
1421
1422
1423
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1424
        PIL Image: Grayscale version of the input.
1425
1426
         - If ``num_output_channels == 1`` : returned image is single channel
         - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1427
1428
1429
1430

    """

    def __init__(self, num_output_channels=1):
1431
        super().__init__()
1432
1433
        self.num_output_channels = num_output_channels

vfdev's avatar
vfdev committed
1434
    def forward(self, img):
1435
1436
        """
        Args:
1437
            img (PIL Image or Tensor): Image to be converted to grayscale.
1438
1439

        Returns:
1440
            PIL Image or Tensor: Grayscaled image.
1441
        """
1442
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1443

1444
    def __repr__(self):
1445
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1446

1447

1448
class RandomGrayscale(torch.nn.Module):
1449
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1450
1451
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1452

1453
1454
1455
1456
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1457
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1458
1459
1460
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1461
1462
1463
1464

    """

    def __init__(self, p=0.1):
1465
        super().__init__()
1466
1467
        self.p = p

vfdev's avatar
vfdev committed
1468
    def forward(self, img):
1469
1470
        """
        Args:
1471
            img (PIL Image or Tensor): Image to be converted to grayscale.
1472
1473

        Returns:
1474
            PIL Image or Tensor: Randomly grayscaled image.
1475
        """
1476
1477
1478
        num_output_channels = F._get_image_num_channels(img)
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1479
        return img
1480
1481

    def __repr__(self):
1482
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1483
1484


1485
class RandomErasing(torch.nn.Module):
1486
1487
    """ Randomly selects a rectangle region in an torch Tensor image and erases its pixels.
    This transform does not support PIL Image.
vfdev's avatar
vfdev committed
1488
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1489

1490
1491
1492
1493
1494
1495
1496
1497
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1498
         inplace: boolean to make this transform inplace. Default set to False.
1499

1500
1501
    Returns:
        Erased Image.
1502

vfdev's avatar
vfdev committed
1503
    Example:
1504
        >>> transform = transforms.Compose([
1505
1506
1507
1508
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1509
1510
1511
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1512
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1513
1514
1515
1516
1517
1518
1519
1520
1521
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1522
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1523
            warnings.warn("Scale and ratio should be of kind (min, max)")
1524
        if scale[0] < 0 or scale[1] > 1:
1525
            raise ValueError("Scale should be between 0 and 1")
1526
        if p < 0 or p > 1:
1527
            raise ValueError("Random erasing probability should be between 0 and 1")
1528
1529
1530
1531
1532

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1533
        self.inplace = inplace
1534
1535

    @staticmethod
1536
1537
1538
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
    ) -> Tuple[int, int, int, int, Tensor]:
1539
1540
1541
        """Get parameters for ``erase`` for a random erasing.

        Args:
vfdev's avatar
vfdev committed
1542
            img (Tensor): Tensor image to be erased.
1543
1544
            scale (sequence): range of proportion of erased area against input image.
            ratio (sequence): range of aspect ratio of erased area.
1545
1546
1547
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1548
1549
1550
1551

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1552
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1553
        area = img_h * img_w
1554

1555
        for _ in range(10):
1556
1557
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
            aspect_ratio = torch.empty(1).uniform_(ratio[0], ratio[1]).item()
1558
1559
1560

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1561
1562
1563
1564
1565
1566
1567
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1568

1569
1570
            i = torch.randint(0, img_h - h + 1, size=(1, )).item()
            j = torch.randint(0, img_w - w + 1, size=(1, )).item()
1571
            return i, j, h, w, v
1572

Zhun Zhong's avatar
Zhun Zhong committed
1573
1574
1575
        # Return original image
        return 0, 0, img_h, img_w, img

1576
    def forward(self, img):
1577
1578
        """
        Args:
vfdev's avatar
vfdev committed
1579
            img (Tensor): Tensor image to be erased.
1580
1581
1582
1583

        Returns:
            img (Tensor): Erased Tensor image.
        """
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
                value = [self.value, ]
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1603
            return F.erase(img, x, y, h, w, v, self.inplace)
1604
        return img
1605
1606


1607
1608
class GaussianBlur(torch.nn.Module):
    """Blurs image with randomly chosen Gaussian blur.
1609
1610
    If the image is torch Tensor, it is expected
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading dimensions.
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.

    Returns:
        PIL Image or Tensor: Gaussian blurred version of the input image.

    """

    def __init__(self, kernel_size, sigma=(0.1, 2.0)):
        super().__init__()
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, numbers.Number):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = (sigma, sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
            if not 0. < sigma[0] <= sigma[1]:
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise ValueError("sigma should be a single number or a list/tuple with length 2.")

        self.sigma = sigma

    @staticmethod
    def get_params(sigma_min: float, sigma_max: float) -> float:
vfdev's avatar
vfdev committed
1645
        """Choose sigma for random gaussian blurring.
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658

        Args:
            sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
            sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.

        Returns:
            float: Standard deviation to be passed to calculate kernel for gaussian blurring.
        """
        return torch.empty(1).uniform_(sigma_min, sigma_max).item()

    def forward(self, img: Tensor) -> Tensor:
        """
        Args:
vfdev's avatar
vfdev committed
1659
            img (PIL Image or Tensor): image to be blurred.
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672

        Returns:
            PIL Image or Tensor: Gaussian blurred image
        """
        sigma = self.get_params(self.sigma[0], self.sigma[1])
        return F.gaussian_blur(img, self.kernel_size, [sigma, sigma])

    def __repr__(self):
        s = '(kernel_size={}, '.format(self.kernel_size)
        s += 'sigma={})'.format(self.sigma)
        return self.__class__.__name__ + s


1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError("{} should be a sequence of length {}.".format(name, msg))
    if len(x) not in req_sizes:
        raise ValueError("{} should be sequence of length {}.".format(name, msg))


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError("If {} is a single number, it must be positive.".format(name))
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]
1703
1704
1705
1706


class RandomInvert(torch.nn.Module):
    """Inverts the colors of the given image randomly with a given probability.
1707
1708
1709
    If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736

    Args:
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be inverted.

        Returns:
            PIL Image or Tensor: Randomly color inverted image.
        """
        if torch.rand(1).item() < self.p:
            return F.invert(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class RandomPosterize(torch.nn.Module):
    """Posterize the image randomly with a given probability by reducing the
1737
1738
1739
    number of bits for each color channel. If the image is torch Tensor, it should be of type torch.uint8,
    and it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768

    Args:
        bits (int): number of bits to keep for each channel (0-8)
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, bits, p=0.5):
        super().__init__()
        self.bits = bits
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be posterized.

        Returns:
            PIL Image or Tensor: Randomly posterized image.
        """
        if torch.rand(1).item() < self.p:
            return F.posterize(img, self.bits)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(bits={},p={})'.format(self.bits, self.p)


class RandomSolarize(torch.nn.Module):
    """Solarize the image randomly with a given probability by inverting all pixel
1769
1770
1771
    values above a threshold. If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799

    Args:
        threshold (float): all pixels equal or above this value are inverted.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, threshold, p=0.5):
        super().__init__()
        self.threshold = threshold
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be solarized.

        Returns:
            PIL Image or Tensor: Randomly solarized image.
        """
        if torch.rand(1).item() < self.p:
            return F.solarize(img, self.threshold)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(threshold={},p={})'.format(self.threshold, self.p)


class RandomAdjustSharpness(torch.nn.Module):
1800
1801
    """Adjust the sharpness of the image randomly with a given probability. If the image is torch Tensor,
    it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832

    Args:
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, sharpness_factor, p=0.5):
        super().__init__()
        self.sharpness_factor = sharpness_factor
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be sharpened.

        Returns:
            PIL Image or Tensor: Randomly sharpened image.
        """
        if torch.rand(1).item() < self.p:
            return F.adjust_sharpness(img, self.sharpness_factor)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(sharpness_factor={},p={})'.format(self.sharpness_factor, self.p)


class RandomAutocontrast(torch.nn.Module):
    """Autocontrast the pixels of the given image randomly with a given probability.
1833
1834
1835
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862

    Args:
        p (float): probability of the image being autocontrasted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be autocontrasted.

        Returns:
            PIL Image or Tensor: Randomly autocontrasted image.
        """
        if torch.rand(1).item() < self.p:
            return F.autocontrast(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class RandomEqualize(torch.nn.Module):
    """Equalize the histogram of the given image randomly with a given probability.
1863
1864
1865
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888

    Args:
        p (float): probability of the image being equalized. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be equalized.

        Returns:
            PIL Image or Tensor: Randomly equalized image.
        """
        if torch.rand(1).item() < self.p:
            return F.equalize(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)