tf.cpp 54.2 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
Khalique's avatar
Khalique committed
20
#include <migraphx/pad_calc.hpp>
Khalique's avatar
Khalique committed
21
22
23
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Paul's avatar
Paul committed
28
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
kahmed10's avatar
kahmed10 committed
29
30
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
31

Khalique's avatar
Khalique committed
32
33
34
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
35
    program prog            = program();
36
    module* mm              = prog.get_main_module();
37
38
    bool is_nhwc            = true;
    unsigned int batch_size = 1;
Khalique's avatar
Khalique committed
39
40
41

    std::unordered_map<std::string, op_func> ops;

Paul's avatar
Paul committed
42
    bool should_transpose(instruction_ref ins) const
Paul's avatar
Paul committed
43
44
45
46
    {
        return is_nhwc and ins->get_shape().lens().size() == 4;
    }

47
    instruction_ref to_nhwc(instruction_ref ins) const
Paul's avatar
Paul committed
48
    {
Paul's avatar
Paul committed
49
        if(should_transpose(ins))
50
            return mm->add_instruction(op::transpose{{0, 2, 3, 1}}, ins);
Paul's avatar
Paul committed
51
52
53
        return ins;
    }

54
    instruction_ref to_nchw(instruction_ref ins) const
Paul's avatar
Paul committed
55
    {
Paul's avatar
Paul committed
56
        if(should_transpose(ins))
57
            return mm->add_instruction(op::transpose{{0, 3, 1, 2}}, ins);
Paul's avatar
Paul committed
58
59
60
        return ins;
    }

61
    instruction_ref to_kcxy(instruction_ref ins) const
Paul's avatar
Paul committed
62
    {
Paul's avatar
Paul committed
63
        if(should_transpose(ins))
64
            return mm->add_instruction(op::transpose{{3, 2, 0, 1}}, ins);
Paul's avatar
Paul committed
65
66
67
        return ins;
    }

68
    instruction_ref make_contiguous(instruction_ref ins) const
Paul's avatar
Paul committed
69
    {
Paul's avatar
Paul committed
70
        if(ins->get_shape().standard())
Paul's avatar
Paul committed
71
72
            return ins;
        else
73
            return mm->add_instruction(op::contiguous{}, ins);
Paul's avatar
Paul committed
74
75
76
77
78
    }

    std::vector<instruction_ref> to_nchw(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
Paul's avatar
Paul committed
79
        std::transform(
Paul's avatar
Paul committed
80
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nchw(ins); });
Paul's avatar
Paul committed
81
82
83
        return result;
    }

kahmed10's avatar
kahmed10 committed
84
85
86
87
88
89
90
91
    std::vector<instruction_ref> to_nhwc(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
        std::transform(
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nhwc(ins); });
        return result;
    }

Khalique's avatar
Khalique committed
92
    std::vector<size_t>
93
    parse_axes(const attribute_map& attributes, const std::string& s, const size_t num_dims) const
94
    {
95
96
97
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
98
        if(is_nhwc)
99
        {
Khalique's avatar
Khalique committed
100
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
Khalique's avatar
Khalique committed
101
                return parse_axis(axis, num_dims);
Khalique's avatar
Khalique committed
102
            });
103
104
105
106
        }
        return axes;
    }

Khalique's avatar
Khalique committed
107
    template <class T>
108
    std::vector<T> parse_axes(std::vector<T> axes, const size_t num_dims) const
Khalique's avatar
Khalique committed
109
110
111
    {
        if(is_nhwc)
        {
112
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
113
114
115
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
Khalique's avatar
Khalique committed
116
                           [&](size_t axis) { return parse_axis(axis, num_dims); });
117
            return new_axes;
Khalique's avatar
Khalique committed
118
        }
119
        return axes;
Khalique's avatar
Khalique committed
120
121
    }

Khalique's avatar
Khalique committed
122
123
124
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
125
    template <class T>
126
    void reorder_data(std::vector<T>& prev_data) const
127
128
    {
        std::vector<T> new_data(prev_data.size());
129
        for(size_t i = 0; i < new_data.size(); i++)
130
        {
Khalique's avatar
Khalique committed
131
            auto new_idx         = parse_axis(i, new_data.size());
132
            new_data.at(new_idx) = prev_data.at(i);
133
        }
134
135
136
137
        prev_data = new_data;
    }

    template <class T>
138
    T parse_axis(const T& dim, const size_t num_dims) const
139
    {
Khalique's avatar
Khalique committed
140
        T new_dim = dim;
Khalique's avatar
Khalique committed
141
        if(is_nhwc and num_dims >= 4)
142
143
144
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
145
146
147
148
149
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
150
151
            }
        }
Khalique's avatar
Khalique committed
152
        return new_dim;
153
154
    }

155
156
157
158
159
160
161
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
162
    std::vector<int64_t> get_axes_from_mask(const size_t num_axes, const uint32_t mask)
Khalique's avatar
Khalique committed
163
    {
Khalique's avatar
Khalique committed
164
        uint32_t bitwise_compare = 1;
Khalique's avatar
Khalique committed
165
166
167
168
169
170
171
172
173
174
175
176
        std::vector<int64_t> axes;
        for(size_t i = 0; i < num_axes; i++)
        {
            // the LSB corresponds to axis 0 when determining which axes to begin
            if(((mask >> i) & bitwise_compare) == 1)
                axes.push_back(1);
            else
                axes.push_back(0);
        }
        return axes;
    }

Khalique's avatar
Khalique committed
177
178
    tf_parser()
    {
Khalique's avatar
Khalique committed
179
        add_generic_op("All", op::identity{});
Khalique's avatar
Khalique committed
180
        add_generic_op("Identity", op::identity{});
Khalique's avatar
Khalique committed
181
        add_generic_op("LessEqual", op::identity{});
Khalique's avatar
Khalique committed
182
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
183
        add_generic_op("Rsqrt", op::rsqrt{});
Khalique's avatar
Khalique committed
184
        add_generic_op("Tanh", op::tanh{});
Khalique's avatar
Khalique committed
185
        add_generic_op("StopGradient", op::identity{});
Khalique's avatar
Khalique committed
186

187
        add_binary_op("Add", op::add{});
kahmed10's avatar
kahmed10 committed
188
        add_binary_op("AddV2", op::add{});
Khalique's avatar
Khalique committed
189
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
190
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
191
        add_binary_op("SquaredDifference", op::sqdiff{});
Khalique's avatar
Khalique committed
192
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
193

194
195
        add_mem_op("ArgMax", &tf_parser::parse_arg_op<op::argmax>, false);
        add_mem_op("ArgMin", &tf_parser::parse_arg_op<op::argmin>, false);
196
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
197
        add_mem_op("BatchMatMul", &tf_parser::parse_matmul, false);
Khalique's avatar
Khalique committed
198
        add_mem_op("BatchMatMulV2", &tf_parser::parse_matmul, false);
199
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
Khalique's avatar
Khalique committed
200
        add_mem_op("Cast", &tf_parser::parse_cast, false);
Paul's avatar
Paul committed
201
        add_mem_op("ConcatV2", &tf_parser::parse_concat, false);
Khalique's avatar
Khalique committed
202
        add_mem_op("Const", &tf_parser::parse_constant);
Paul's avatar
Paul committed
203
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Paul's avatar
Paul committed
204
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
205
        add_mem_op("ExpandDims", &tf_parser::parse_expanddims, false);
Khalique's avatar
Khalique committed
206
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
kahmed10's avatar
kahmed10 committed
207
        add_mem_op("FusedBatchNormV3", &tf_parser::parse_batchnorm);
Khalique's avatar
Khalique committed
208
        add_mem_op("GatherV2", &tf_parser::parse_gather, false);
Paul's avatar
Paul committed
209
        add_mem_op("MatMul", &tf_parser::parse_matmul, false);
210
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
211
        add_mem_op("Mean", &tf_parser::parse_mean, false);
Khalique's avatar
Khalique committed
212
        add_mem_op("OneHot", &tf_parser::parse_onehot, false);
Paul's avatar
Paul committed
213
        add_mem_op("Pack", &tf_parser::parse_pack, false);
Paul's avatar
Paul committed
214
        add_mem_op("Pad", &tf_parser::parse_pad);
kahmed10's avatar
kahmed10 committed
215
        add_mem_op("Relu6", &tf_parser::parse_relu6);
Paul's avatar
Paul committed
216
        add_mem_op("Reshape", &tf_parser::parse_reshape, false);
217
        add_mem_op("Shape", &tf_parser::parse_shape, false);
Khalique's avatar
Khalique committed
218
        add_mem_op("Slice", &tf_parser::parse_slice, false);
kahmed10's avatar
kahmed10 committed
219
220
        add_mem_op("Split", &tf_parser::parse_split, false);
        add_mem_op("SplitV", &tf_parser::parse_split, false);
Khalique's avatar
Khalique committed
221
        add_mem_op("Softmax", &tf_parser::parse_softmax<op::softmax>, false);
Paul's avatar
Paul committed
222
        add_mem_op("Squeeze", &tf_parser::parse_squeeze, false);
223
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice, false);
Khalique's avatar
Khalique committed
224
        add_mem_op("Transpose", &tf_parser::parse_transpose, false);
Khalique's avatar
Khalique committed
225
226
    }

227
    template <class F>
kahmed10's avatar
kahmed10 committed
228
    void add_op(const std::string& name, F f, bool transpose = true)
229
    {
Paul's avatar
Paul committed
230
        if(transpose)
Paul's avatar
Paul committed
231
        {
kahmed10's avatar
kahmed10 committed
232
233
234
235
236
237
            ops.emplace(
                name,
                op_func{
                    [=](const attribute_map& attributes, const std::vector<instruction_ref>& args) {
                        return std::vector<instruction_ref>{to_nhwc(f(attributes, to_nchw(args)))};
                    }});
Paul's avatar
Paul committed
238
239
240
        }
        else
        {
kahmed10's avatar
kahmed10 committed
241
242
243
244
245
            ops.emplace(name,
                        op_func{[=](const attribute_map& attributes,
                                    const std::vector<instruction_ref>& args) {
                            return std::vector<instruction_ref>{f(attributes, args)};
                        }});
Paul's avatar
Paul committed
246
        }
247
248
    }

Khalique's avatar
Khalique committed
249
    template <class F>
Paul's avatar
Paul committed
250
    void add_mem_op(std::string name, F f, bool transpose = true)
Khalique's avatar
Khalique committed
251
    {
Paul's avatar
Paul committed
252
253
254
255
256
        add_op(name,
               [=](auto&&... xs) {
                   return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
               },
               transpose);
Khalique's avatar
Khalique committed
257
258
259
260
261
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
262
263
264
265
266
267
268
269
270
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   if(args.size() != 2)
                       MIGRAPHX_THROW("binary operators should have 2 operands");
                   // TODO
                   // if(contains(attributes, "data_format"))
                   // {
                   //     if(is_nhwc)
                   //     {
271
                   //         l0 = mm->add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
Paul's avatar
Paul committed
272
273
274
275
276
                   //     }
                   // }
                   return add_broadcastable_binary_op(args[0], args[1], x);
               },
               false);
Khalique's avatar
Khalique committed
277
278
279
280
281
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
282
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
298
299
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
300
301
302
303
304

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

305
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
306
307
308
309
310
311
312
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

313
314
315
            auto l0 = mm->add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = mm->add_instruction(op::multibroadcast{output_lens}, arg1);
            return to_nhwc(mm->add_instruction(x, to_nchw(l0), to_nchw(l1)));
Khalique's avatar
Khalique committed
316
317
318
        }
        else
        {
319
            return to_nhwc(mm->add_instruction(x, {to_nchw(arg0), to_nchw(arg1)}));
Khalique's avatar
Khalique committed
320
321
322
323
        }
    }

    template <class T>
Paul's avatar
Paul committed
324
    void add_generic_op(std::string name, T x, bool transpose = true)
Khalique's avatar
Khalique committed
325
    {
Paul's avatar
Paul committed
326
327
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
328
                   return mm->add_instruction(x, args);
Paul's avatar
Paul committed
329
330
               },
               transpose);
Khalique's avatar
Khalique committed
331
332
    }

333
334
335
336
337
338
    template <class Op>
    instruction_ref
    parse_arg_op(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        axis         = args[1]->eval().at<int64_t>();
339
340
        auto ins     = mm->add_instruction(Op{axis}, args.front());
        return mm->add_instruction(op::squeeze{{axis}}, ins);
341
342
    }

343
344
345
    instruction_ref parse_batchnorm(const std::string&,
                                    attribute_map attributes,
                                    std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
346
    {
Khalique's avatar
Khalique committed
347
348
349
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
350
351
352
353
354
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
355
        return mm->add_instruction(op, std::move(args));
Khalique's avatar
Khalique committed
356
357
    }

358
    instruction_ref
359
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args) const
360
    {
361
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
362
363
        auto l0 = mm->add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
        return mm->add_instruction(op::add{}, args[0], l0);
364
365
    }

366
367
368
    instruction_ref parse_cast(const std::string&,
                               attribute_map attributes,
                               std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
369
370
    {
        shape::type_t type = parse_type(attributes.at("DstT").type());
371
        return mm->add_instruction(op::convert{type}, std::move(args));
Khalique's avatar
Khalique committed
372
373
    }

374
375
376
    instruction_ref parse_concat(const std::string&,
                                 attribute_map attributes,
                                 std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
377
378
    {
        // get index for axis within args
379
        size_t axis_idx = attributes.at("N").i();
Shucai Xiao's avatar
Shucai Xiao committed
380
        int64_t axis    = args[axis_idx]->eval().at<int64_t>();
Khalique's avatar
Khalique committed
381
        op::concat op{axis};
382
        // return only first N arguments (assuming last index is the axis value)
383
        return mm->add_instruction(
Paul's avatar
Paul committed
384
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
385
386
387
388
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
389
                                   const std::vector<instruction_ref>&) const
Khalique's avatar
Khalique committed
390
    {
Paul's avatar
Paul committed
391
        literal v = parse_tensor(attributes.at("value").tensor());
392
        return mm->add_literal(v);
Khalique's avatar
Khalique committed
393
394
    }

395
396
397
    instruction_ref parse_conv(const std::string&,
                               attribute_map attributes,
                               std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
398
399
400
401
    {
        op::convolution op;
        if(contains(attributes, "strides"))
        {
402
            std::vector<size_t> stride;
403
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
404
            reorder_data(stride);
405
406
            if(stride.size() != 4)
            {
407
                MIGRAPHX_THROW("strides should have 4 values");
408
            }
409
410
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
411
412
413
        }
        if(contains(attributes, "dilations"))
        {
414
            std::vector<size_t> dilation;
415
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
416
            reorder_data(dilation);
417
418
419
420
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
421
422
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
423
        }
Khalique's avatar
Khalique committed
424

Paul's avatar
Paul committed
425
        auto weights = to_kcxy(args[1]);
Paul's avatar
Paul committed
426
        auto l0      = args[0];
Khalique's avatar
Khalique committed
427
428
429
430
431
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
432
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
433
434
435
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];
Khalique's avatar
Khalique committed
436
437
438

                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> pads(input_dims.size());
439
440
                calculate_padding(0, pads, input_dims[2], op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_dims[3], op.stride[1], op.dilation[1], weight_w);
Khalique's avatar
Khalique committed
441
442
443
444

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
445
                    l0 = mm->add_instruction(migraphx::op::pad{padding}, l0);
Khalique's avatar
Khalique committed
446
447
448
                }
                else
                {
Khalique's avatar
Khalique committed
449
450
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
451
                }
452
453
454
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
455
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
456
            }
Khalique's avatar
Khalique committed
457
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
458
            {
459
                std::vector<size_t> padding;
460
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
461
462
463
464
465
466
467
468
469
470
471
472
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
473
        return mm->add_instruction(op, {l0, to_kcxy(args[1])});
Khalique's avatar
Khalique committed
474
475
    }

Khalique's avatar
Khalique committed
476
477
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
478
                                        std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
479
480
481
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
482
        op.group            = num_channels;
Khalique's avatar
Khalique committed
483

Khalique's avatar
Khalique committed
484
485
        if(contains(attributes, "strides"))
        {
486
            std::vector<size_t> stride;
487
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
488
            reorder_data(stride);
489
490
            if(stride.size() != 4)
            {
491
                MIGRAPHX_THROW("strides should have 4 values");
492
            }
493
494
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
495
        }
Paul's avatar
Paul committed
496
497

        auto weights = to_kcxy(args[1]);
Khalique's avatar
Khalique committed
498
499
        if(contains(attributes, "dilations"))
        {
500
            std::vector<size_t> dilation;
501
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
502
            reorder_data(dilation);
503
504
505
506
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
507
508
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
509
510
        }

Khalique's avatar
Khalique committed
511
        auto l0 = args[0];
Khalique's avatar
Khalique committed
512
513
514
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
Khalique's avatar
Khalique committed
515

Khalique's avatar
Khalique committed
516
517
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
518
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
519
520
521
522
523
524
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> pads(input_dims.size());
525
526
                calculate_padding(0, pads, input_dims[2], op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_dims[3], op.stride[1], op.dilation[1], weight_w);
Khalique's avatar
Khalique committed
527
528
529
530

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
531
                    l0 = mm->add_instruction(migraphx::op::pad{padding}, l0);
Khalique's avatar
Khalique committed
532
533
534
                }
                else
                {
Khalique's avatar
Khalique committed
535
536
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
537
                }
Khalique's avatar
Khalique committed
538
            }
Khalique's avatar
Khalique committed
539
            else if(pad_mode.find("VALID") != std::string::npos)
Khalique's avatar
Khalique committed
540
            {
Khalique's avatar
Khalique committed
541
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
542
543
            }
        }
Khalique's avatar
Khalique committed
544

Khalique's avatar
Khalique committed
545
546
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
547
548
549
550

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
551
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
552
553
554
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
555
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
556
        auto new_weights =
557
            mm->add_instruction(op::reshape{new_weights_shape}, make_contiguous(weights));
Khalique's avatar
Khalique committed
558

559
        return mm->add_instruction(op, {l0, new_weights});
Khalique's avatar
Khalique committed
560
561
    }

562
563
564
    instruction_ref parse_expanddims(const std::string&,
                                     const attribute_map&,
                                     std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
565
566
    {
        std::vector<size_t> input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
567
        std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
Khalique's avatar
Khalique committed
568
        size_t num_dims = input_dims.size();
569
        int32_t dim     = args[1]->eval().at<int32_t>();
Khalique's avatar
Khalique committed
570
571

        if(dim < 0)
Khalique's avatar
Khalique committed
572
573
574
575
576
577
578
        {
            new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
        }
        else
        {
            new_dims.insert(new_dims.begin() + dim, 1);
        }
579
        return mm->add_instruction(op::reshape{new_dims}, args[0]);
Khalique's avatar
Khalique committed
580
581
    }

Khalique's avatar
Khalique committed
582
    instruction_ref
583
    parse_gather(const std::string&, const attribute_map&, std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
584
585
586
    {
        int axis = args[2]->eval().at<int32_t>();
        op::gather op{axis};
587
        return mm->add_instruction(op, {args[0], args[1]});
Khalique's avatar
Khalique committed
588
589
    }

590
591
592
    instruction_ref parse_matmul(const std::string&,
                                 attribute_map attributes,
                                 std::vector<instruction_ref> args) const
593
594
595
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
596

597
598
599
600
601
602
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
Khalique's avatar
Khalique committed
603
            transb = attributes.at("transpose_b").b();
604
605
        }

Khalique's avatar
Khalique committed
606
607
608
609
610
611
612
613
614
        if(contains(attributes, "adj_x"))
        {
            transa = attributes.at("adj_x").b();
        }
        if(contains(attributes, "adj_y"))
        {
            transb = attributes.at("adj_y").b();
        }

615
616
617
        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
618
        std::iter_swap(perm.end() - 1, perm.end() - 2);
619

620
621
        auto l1 = (transa) ? mm->add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? mm->add_instruction(op::transpose{perm}, args[1]) : args[1];
622

623
        return mm->add_instruction(op::dot{}, l1, l2);
624
625
    }

626
627
628
    instruction_ref parse_mean(const std::string&,
                               attribute_map attributes,
                               std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
629
    {
Khalique's avatar
Khalique committed
630
631
        bool keep_dims = attributes.at("keep_dims").b();
        auto axes      = args[1]->eval().get<int32_t>().to_vector<int64_t>();
Khalique's avatar
Khalique committed
632
633

        if(keep_dims)
Khalique's avatar
Khalique committed
634
        {
635
            return mm->add_instruction(op::reduce_mean{axes}, args[0]);
636
637
638
        }
        else
        {
639
640
            auto ins = mm->add_instruction(op::reduce_mean{axes}, args[0]);
            return mm->add_instruction(op::squeeze{axes}, ins);
Khalique's avatar
Khalique committed
641
642
643
        }
    }

644
645
646
    instruction_ref parse_onehot(const std::string&,
                                 attribute_map attributes,
                                 std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
647
    {
Khalique's avatar
Khalique committed
648
649
        size_t depth = static_cast<size_t>(args[1]->eval().at<int32_t>());

Khalique's avatar
Khalique committed
650
        int64_t axis    = -1;
Khalique's avatar
Khalique committed
651
652
        float on_value  = args[2]->eval().at<float>();
        float off_value = args[3]->eval().at<float>();
Khalique's avatar
Khalique committed
653

Khalique's avatar
Khalique committed
654
        std::vector<float> depth_input(depth * depth, off_value);
Khalique's avatar
Khalique committed
655
656
        for(int i = 0; i < depth; i++)
        {
Khalique's avatar
Khalique committed
657
            depth_input[depth * i + i] = on_value;
Khalique's avatar
Khalique committed
658
        }
Khalique's avatar
Khalique committed
659

Khalique's avatar
Khalique committed
660
        if(contains(attributes, "axis"))
Khalique's avatar
Khalique committed
661
662
663
            axis = attributes.at("axis").i();
        if(axis == -1)
        {
Khalique's avatar
Khalique committed
664
            shape s{shape::float_type, {depth, depth}};
665
666
            auto l0 = mm->add_literal({s, depth_input});
            return mm->add_instruction(op::gather{0}, {l0, args[0]});
Khalique's avatar
Khalique committed
667
668
669
670
        }
        MIGRAPHX_THROW("MIGraphX does not support axis != -1");
    }

Khalique's avatar
Khalique committed
671
672
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
673
                               std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
674
675
676
677
678
679
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
680
681
682
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
683
684
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
685
686
        }

Khalique's avatar
Khalique committed
687
688
689
690
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
691
692
            [&](instruction_ref arg) { return mm->add_instruction(op::unsqueeze{{axis}}, arg); });
        return to_nhwc(mm->add_instruction(op::concat{axis}, unsqueezed_args));
Khalique's avatar
Khalique committed
693
694
    }

Khalique's avatar
Khalique committed
695
    instruction_ref
696
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
697
698
699
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
700
701
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
702
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
Paul's avatar
Paul committed
703
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
704
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
705
        {
Khalique's avatar
Khalique committed
706
707
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
708
709
710
711
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
712
713
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
714
        {
Khalique's avatar
Khalique committed
715
716
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
717
718
        }
        op.pads = pads;
719
        return mm->add_instruction(op, args.front());
Khalique's avatar
Khalique committed
720
721
    }

722
723
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
724
                                  std::vector<instruction_ref> args) const
725
726
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
727

728
729
        if(contains(attributes, "strides"))
        {
730
            std::vector<size_t> stride;
731
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
732
            reorder_data(stride);
733
734
735
736
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
737
738
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
739
740
741
        }
        if(contains(attributes, "ksize"))
        {
742
            std::vector<size_t> ksize;
743
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
744
            reorder_data(ksize);
745
746
747
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
748
            }
749
750
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
751
        }
Khalique's avatar
Khalique committed
752
753

        auto l0 = args[0];
Khalique's avatar
Khalique committed
754
755
756
757
758
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
759
760
                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> pads(input_dims.size());
761
762
                calculate_padding(0, pads, input_dims[2], op.stride[0], 1, op.lengths[0]);
                calculate_padding(1, pads, input_dims[3], op.stride[1], 1, op.lengths[1]);
Khalique's avatar
Khalique committed
763
764
765
766

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
767
                    l0                           = mm->add_instruction(
Khalique's avatar
Khalique committed
768
                        migraphx::op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
Khalique's avatar
Khalique committed
769
770
771
                }
                else
                {
Khalique's avatar
Khalique committed
772
773
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
774
                }
Khalique's avatar
Khalique committed
775
776
            }
        }
777
        return mm->add_instruction(op, l0);
778
    }
Khalique's avatar
Khalique committed
779

kahmed10's avatar
kahmed10 committed
780
    instruction_ref
781
    parse_relu6(const std::string&, const attribute_map&, std::vector<instruction_ref> args) const
kahmed10's avatar
kahmed10 committed
782
783
    {
        auto input_lens = args[0]->get_shape().lens();
784
785
        auto min_val    = mm->add_literal(0.0f);
        auto max_val    = mm->add_literal(6.0f);
kahmed10's avatar
kahmed10 committed
786

787
788
789
        min_val = mm->add_instruction(op::multibroadcast{input_lens}, min_val);
        max_val = mm->add_instruction(op::multibroadcast{input_lens}, max_val);
        return mm->add_instruction(op::clip{}, args.front(), min_val, max_val);
kahmed10's avatar
kahmed10 committed
790
791
    }

792
    instruction_ref
793
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args) const
794
795
796
797
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
798
        auto s = args[1]->eval();
799
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
800
        return mm->add_instruction(op, make_contiguous(args[0]));
801
802
    }

803
804
805
    // Use a literal instruction to replace the shape since output of
    // shape operator are literals in migraphx
    instruction_ref
806
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
807
    {
808
809
810
811
812
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int32_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int32_type, {arg_shape.size()});
        std::transform(
            arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) { return i; });
813
        return mm->add_literal(migraphx::literal{s, vec_shape});
Khalique's avatar
Khalique committed
814
815
    }

816
    instruction_ref
817
    parse_slice(const std::string&, const attribute_map&, std::vector<instruction_ref> args) const
818
    {
Khalique's avatar
Khalique committed
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
        op::slice op;
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto size       = args[2]->eval().get<int32_t>().to_vector();
        auto axes       = args[0]->get_shape().lens();
        size_t num_axes = axes.size();

        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(num_axes);
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
        for(size_t i = 0; i < num_axes; i++)
        {
            if(size[i] == -1)
                op.ends[i] = axes[i];
            else
                op.ends[i] = starts[i] + size[i];
        }
836
        return mm->add_instruction(op, make_contiguous(args[0]));
Khalique's avatar
Khalique committed
837
838
    }

Khalique's avatar
Khalique committed
839
840
841
842
843
    // template to facilitate the logsoftmax later
    template <class Op>
    instruction_ref parse_softmax(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
844
    {
Khalique's avatar
Khalique committed
845
        int axis      = -1;
Khalique's avatar
Khalique committed
846
847
848
849
850
851
852
853
854
855
        auto num_dims = args[0]->get_shape().lens().size();
        if(contains(attributes, "axis"))
        {
            axis = static_cast<int>(attributes.at("axis").i());
        }
        if(axis < 0)
        {
            axis += num_dims;
        }

856
        return mm->add_instruction(Op{axis}, make_contiguous(args[0]));
857
858
    }

kahmed10's avatar
kahmed10 committed
859
860
    std::vector<instruction_ref> parse_split(const std::string&,
                                             const attribute_map& attributes,
861
                                             std::vector<instruction_ref> args) const
kahmed10's avatar
kahmed10 committed
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
    {
        bool vector_as_input = args.size() == 3;
        int num_outputs      = 1;
        auto axis_arg        = args[0];
        auto input_arg       = args[1];
        if(vector_as_input)
        {
            input_arg = args[0];
            axis_arg  = args[2];
        }

        if(contains(attributes, "num_split"))
            num_outputs = attributes.at("num_split").i();

        std::vector<int> splits(num_outputs);
        std::vector<int> slice_pos{0};
        if(vector_as_input)
        {
            splits      = args[1]->eval().get<int32_t>().to_vector();
            num_outputs = splits.size();
        }

        assert(num_outputs > 0);

        if(num_outputs == 1)
887
            return std::vector<instruction_ref>{mm->add_instruction(op::identity{}, input_arg)};
kahmed10's avatar
kahmed10 committed
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

        auto lens     = input_arg->get_shape().lens();
        auto num_dims = lens.size();
        int axis      = axis_arg->eval().at<int32_t>();

        // ensure split is made evenly if "num_split" is used
        assert(vector_as_input or lens[axis] % num_outputs == 0);

        auto split_size = lens[axis] / num_outputs;

        // push back first end point of slice
        if(vector_as_input)
        {
            slice_pos.push_back(splits[0]);
        }
        else
        {
            slice_pos.push_back(split_size);
        }

        // calculate remaining end points for each slice
        for(auto i = 1; i < num_outputs; i++)
        {
            if(vector_as_input)
            {
                splits[i] += splits[i - 1];
                slice_pos.push_back(splits[i]);
            }
            else
            {
                slice_pos.push_back((i + 1) * split_size);
            }
        }
        std::vector<instruction_ref> result;
        for(auto i = 0; i < num_outputs; i++)
        {
            op::slice op;
            op.axes = std::vector<int64_t>(num_dims);
            std::iota(op.axes.begin(), op.axes.end(), 0);
            op.starts = std::vector<int64_t>(num_dims, 0);
            op.ends   = std::vector<int64_t>(lens.begin(), lens.end());

            op.starts[axis] = slice_pos[i];
            op.ends[axis]   = slice_pos[i + 1];
932
            result.push_back(mm->add_instruction(op, input_arg));
kahmed10's avatar
kahmed10 committed
933
934
935
936
        }
        return result;
    }

Khalique's avatar
Khalique committed
937
938
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
939
                                  std::vector<instruction_ref> args) const
940
941
    {
        op::squeeze op;
Khalique's avatar
Khalique committed
942
        auto input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
943
        auto axes       = attributes.at("squeeze_dims").list().i();
944
        copy(axes, std::back_inserter(op.axes));
Khalique's avatar
Khalique committed
945

946
947
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
Khalique's avatar
Khalique committed
948
            for(size_t i = 0; i < input_dims.size(); i++)
949
            {
Khalique's avatar
Khalique committed
950
                if(input_dims.at(i) == 1)
951
952
953
954
                {
                    op.axes.push_back(i);
                }
            }
955
        }
956
        return mm->add_instruction(op, make_contiguous(args[0]));
957
958
    }

Khalique's avatar
Khalique committed
959
960
961
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
962
963
    {
        op::slice op;
Khalique's avatar
Khalique committed
964
965
966
967
        auto starts              = args[1]->eval().get<int32_t>().to_vector();
        auto ends                = args[2]->eval().get<int32_t>().to_vector();
        auto l0                  = args[0];
        size_t num_axes          = l0->get_shape().lens().size();
968
        std::vector<size_t> axes = l0->get_shape().lens();
969

Khalique's avatar
Khalique committed
970
971
972
973
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
Khalique's avatar
Khalique committed
974
975
        uint32_t begin_mask       = 0;
        uint32_t end_mask         = 0;
976
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
977
        uint32_t bitwise_compare  = 1;
978
979
        std::vector<int64_t> squeeze_axes;

Khalique's avatar
Khalique committed
980
981
982
983
984
985
        if(contains(attributes, "begin_mask"))
            begin_mask = static_cast<uint32_t>(attributes.at("begin_mask").i());

        if(contains(attributes, "end_mask"))
            end_mask = static_cast<uint32_t>(attributes.at("end_mask").i());

986
        if(contains(attributes, "shrink_axis_mask"))
987
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
988

Khalique's avatar
Khalique committed
989
        std::vector<int64_t> begin_axes = get_axes_from_mask(num_axes, begin_mask);
Khalique's avatar
Khalique committed
990
        std::vector<int64_t> end_axes   = get_axes_from_mask(num_axes, end_mask);
Khalique's avatar
Khalique committed
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003

        for(size_t i = 0; i < num_axes; i++)
        {
            if(begin_axes.at(i) == 1)
            {
                op.starts.at(i) = 0;
            }
            if(end_axes.at(i) == 1)
            {
                op.ends.at(i) = axes.at(i);
            }
        }

1004
        auto l1 = mm->add_instruction(op, l0);
Khalique's avatar
Khalique committed
1005
        if(shrink_axis_mask == 0)
1006
            return l1;
Khalique's avatar
Khalique committed
1007

Khalique's avatar
Khalique committed
1008
        for(size_t i = 0; i < num_axes; i++)
1009
        {
1010
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
1011
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
1012
1013
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
1014

1015
        return mm->add_instruction(op::squeeze{squeeze_axes}, l1);
1016
1017
    }

1018
1019
1020
    instruction_ref parse_transpose(const std::string&,
                                    const attribute_map&,
                                    std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
1021
1022
1023
1024
1025
    {
        auto perm = args[1]->eval().get<int32_t>().to_vector();
        op::transpose op;
        op.dims = std::vector<int64_t>(perm.begin(), perm.end());

1026
        return mm->add_instruction(op, args.front());
Khalique's avatar
Khalique committed
1027
1028
    }

Khalique's avatar
Khalique committed
1029
1030
1031
1032
1033
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
1034
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
1035
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
1036
1037
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
1038
            if(is_nhwc and dims.size() >= 4)
1039
            {
1040
                reorder_data(dims);
1041
            }
1042
1043
1044
            std::transform(dims.begin(), dims.end(), dims.begin(), [&](auto dim) {
                return static_cast<int>(dim) <= 0 ? batch_size : dim;
            });
Khalique's avatar
Khalique committed
1045
            shape s            = shape{shape_type, dims};
1046
            instructions[name] = to_nhwc(mm->add_parameter(name, s));
Khalique's avatar
Khalique committed
1047
1048
1049
        }
        for(auto&& p : nodes)
        {
1050
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
1051
        }
1052
1053
1054

        // Needs to add a ret instruction at the end of
        // the program
Khalique's avatar
Khalique committed
1055
1056
1057
1058
1059
1060
1061
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
Khalique's avatar
Khalique committed
1062
1063
1064
            // assert ops ignored
            if(node.op() == "Assert" or contains(name, "Assert"))
                return;
kahmed10's avatar
kahmed10 committed
1065
1066
1067
            // noOps ignored
            if(node.op() == "NoOp" or contains(name, "NoOp"))
                return;
Khalique's avatar
Khalique committed
1068
1069
1070
1071
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
Khalique's avatar
Khalique committed
1072
1073
1074
                // control dependencies (signified by ^ before the name) are ignored
                if(contains(input, "^"))
                    continue;
Khalique's avatar
Khalique committed
1075
1076
                if(nodes.count(input) > 0)
                {
kahmed10's avatar
kahmed10 committed
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
                    std::string iname;
                    // input was from a node with multiple outputs
                    if(contains(input, ':'))
                    {
                        iname = input.substr(0, input.find(':'));
                    }
                    else
                    {
                        iname = get_name(nodes.at(input));
                    }
Khalique's avatar
Khalique committed
1087
1088
                    assert(name != iname);
                    this->parse_node(iname);
kahmed10's avatar
kahmed10 committed
1089
                    args.push_back(instructions.at(input));
Khalique's avatar
Khalique committed
1090
1091
1092
1093
1094
1095
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
kahmed10's avatar
kahmed10 committed
1096
1097

            std::vector<instruction_ref> result;
Khalique's avatar
Khalique committed
1098
1099
            if(ops.count(node.op()) == 0)
            {
1100
                result.push_back(mm->add_instruction(op::unknown{node.op()}, args));
Khalique's avatar
Khalique committed
1101
1102
1103
            }
            else
            {
kahmed10's avatar
kahmed10 committed
1104
1105
1106
1107
1108
1109
1110
1111
1112
                result = ops[node.op()](get_attributes(node), args);
            }

            assert(!result.empty());
            // First output has no ":" delimiter
            instructions[name] = result.front();
            for(size_t i = 1; i < result.size(); i++)
            {
                instructions[name + ":" + std::to_string(i)] = result.at(i);
Khalique's avatar
Khalique committed
1113
1114
1115
1116
            }
        }
    }

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
            throw std::runtime_error("Failed reading tf file");
        }
    }

Khalique's avatar
Khalique committed
1130
1131
1132
    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
1133
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
1134
1135
1136
1137
1138
1139
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
1140
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
1141

Khalique's avatar
Khalique committed
1142
1143
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
Paul's avatar
Paul committed
1171
1172
1173
1174
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Paul's avatar
Paul committed
1175
        case tensorflow::DataType::DT_UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
1176
1177
1178

        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
Khalique's avatar
Khalique committed
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_BOOL:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
Khalique's avatar
Khalique committed
1191
        // tf pb should not use these types
Paul's avatar
Paul committed
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Paul's avatar
Paul committed
1215
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
Khalique's avatar
Khalique committed
1216
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
1217
1218
1219
1220
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
1221
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
1222
1223
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
1224
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
1225
1226
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
1227
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
1228
1229
            switch(t.dtype())
            {
Khalique's avatar
Khalique committed
1230
1231
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Paul's avatar
Paul committed
1232
            case tensorflow::DataType::DT_BOOL:
1233
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1234
1235
            case tensorflow::DataType::DT_UINT16:
            case tensorflow::DataType::DT_INT16:
1236
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1237
1238
1239
1240
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1241
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1242
1243
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Paul's avatar
Paul committed
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
            case tensorflow::DataType::DT_INVALID:
            case tensorflow::DataType::DT_UINT8:
            case tensorflow::DataType::DT_STRING:
            case tensorflow::DataType::DT_UINT32:
            case tensorflow::DataType::DT_UINT64:
            case tensorflow::DataType::DT_COMPLEX64:
            case tensorflow::DataType::DT_COMPLEX128:
            case tensorflow::DataType::DT_QINT8:
            case tensorflow::DataType::DT_QUINT8:
            case tensorflow::DataType::DT_QINT32:
            case tensorflow::DataType::DT_BFLOAT16:
            case tensorflow::DataType::DT_QINT16:
            case tensorflow::DataType::DT_QUINT16:
            case tensorflow::DataType::DT_RESOURCE:
            case tensorflow::DataType::DT_VARIANT:
            case tensorflow::DataType::DT_FLOAT_REF:
            case tensorflow::DataType::DT_DOUBLE_REF:
            case tensorflow::DataType::DT_INT32_REF:
            case tensorflow::DataType::DT_UINT8_REF:
            case tensorflow::DataType::DT_INT16_REF:
            case tensorflow::DataType::DT_INT8_REF:
            case tensorflow::DataType::DT_STRING_REF:
            case tensorflow::DataType::DT_COMPLEX64_REF:
            case tensorflow::DataType::DT_INT64_REF:
            case tensorflow::DataType::DT_BOOL_REF:
            case tensorflow::DataType::DT_QINT8_REF:
            case tensorflow::DataType::DT_QUINT8_REF:
            case tensorflow::DataType::DT_QINT32_REF:
            case tensorflow::DataType::DT_BFLOAT16_REF:
            case tensorflow::DataType::DT_QINT16_REF:
            case tensorflow::DataType::DT_QUINT16_REF:
            case tensorflow::DataType::DT_UINT16_REF:
            case tensorflow::DataType::DT_COMPLEX128_REF:
            case tensorflow::DataType::DT_HALF_REF:
            case tensorflow::DataType::DT_RESOURCE_REF:
            case tensorflow::DataType::DT_VARIANT_REF:
            case tensorflow::DataType::DT_UINT32_REF:
            case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1282
1283
1284
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
1285
1286
1287
1288
1289
1290
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
1291
1292
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
1293
        case tensorflow::DataType::DT_INT8:
1294
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1295
        case tensorflow::DataType::DT_UINT16:
1296
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1297
        case tensorflow::DataType::DT_INT16:
1298
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1299
        case tensorflow::DataType::DT_INT32:
1300
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1301
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
1302
1303
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
1304
        case tensorflow::DataType::DT_BOOL:
1305
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
1306
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
1307
        {
1308
1309
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
1310
1311
1312
1313
1314
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1315
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1316
        }
Khalique's avatar
Khalique committed
1317
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
1318
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Paul's avatar
Paul committed
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_UINT32:
        case tensorflow::DataType::DT_UINT64:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1357
1358
1359
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
1360
1361
1362
1363
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

1364
    template <class T>
Khalique's avatar
Khalique committed
1365
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
1366
                                        const size_t& shape_size)
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
1379
1380
1381
1382
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
1383
1384
1385
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
1386
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
1387
1388
        return dims;
    }
1389
1390

    template <class T>
Khalique's avatar
Khalique committed
1391
    static literal
1392
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
1393
    {
Khalique's avatar
Khalique committed
1394
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
1395
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1396
            return literal{{shape_type}, data};
1397
1398
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1399
1400
};

1401
program parse_tf(const std::string& name, tf_options options)
Khalique's avatar
Khalique committed
1402
1403
1404
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
1405
1406
    parser.is_nhwc    = options.is_nhwc;
    parser.batch_size = options.batch_size;
Khalique's avatar
Khalique committed
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
1422
    parser.to_nchw(std::prev(parser.mm->end()));
Khalique's avatar
Khalique committed
1423
1424
1425
1426
1427
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx