"include/DetectorYOLOV8.h" did not exist on "56762529d71758145d4ca3056e3fffdd2acde806"
tf.cpp 31.4 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Khalique's avatar
Khalique committed
27
    using node_map      = std::unordered_map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
28
29
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
30

Khalique's avatar
Khalique committed
31
32
33
34
35
36
37
38
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

39
    std::vector<size_t> parse_axes(attribute_map& attributes, const std::string& s)
40
    {
41
42
43
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
44
        if(is_nhwc)
45
        {
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
            for(size_t i = 0; i < axes.size(); ++i)
            {
                parse_axis(axes.at(i));
            }
        }
        return axes;
    }

    template <class T>
    void reorder_data(std::vector<T>& prev_data)
    {
        std::vector<T> new_data(prev_data.size());
        for(auto i = 0; i < new_data.size(); i++)
        {
            auto new_idx = i;
            parse_axis(new_idx);
            new_data.at(new_idx) = prev_data.at(i);
63
        }
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        prev_data = new_data;
    }

    template <class T>
    void parse_axis(T& dim)
    {
        if(is_nhwc)
        {
            switch(dim)
            {
            case 0: dim = 0; break;
            case 1: dim = 2; break;
            case 2: dim = 3; break;
            case 3: dim = 1; break;
            default: break;
            }
        }
81
82
    }

Khalique's avatar
Khalique committed
83
84
85
86
87
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});

88
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
89

90
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
91
92
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
        add_mem_op("ConcatV2", &tf_parser::parse_concat);
Khalique's avatar
Khalique committed
93
94
95
        add_mem_op("Const", &tf_parser::parse_constant);
        add_mem_op("Conv2D", &tf_parser::parse_conv);
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
96
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
97
98
99
        add_mem_op("Reshape", &tf_parser::parse_reshape);
        add_mem_op("Softmax", &tf_parser::parse_softmax);
        add_mem_op("Squeeze", &tf_parser::parse_squeeze);
Khalique's avatar
Khalique committed
100
101
    }

102
103
104
105
106
107
108
109
110
111
112
113
114
    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

Khalique's avatar
Khalique committed
115
116
117
    template <class F>
    void add_mem_op(std::string name, F f)
    {
118
        add_op(name, [=](auto&&... xs) {
Khalique's avatar
Khalique committed
119
120
121
122
123
124
125
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Khalique's avatar
Khalique committed
126
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
127
128
            if(args.size() != 2)
                MIGRAPHX_THROW("binary operators should have 2 operands");
129
130
131
132
133
            auto l0 = args[1];
            if(contains(attributes, "data_format"))
            {
                if(is_nhwc)
                {
Khalique's avatar
Khalique committed
134
                    l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
135
136
137
                }
            }
            return add_broadcastable_binary_op(args[0], l0, x);
Khalique's avatar
Khalique committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
160
161
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
162
163
164
165
166

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

167
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
    }

    template <class T>
    void add_generic_op(std::string name, T x)
    {
188
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
189
190
191
192
193
194
195
            return prog.add_instruction(x, args);
        });
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
196
197
198
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
199
200
201
202
203
204
205
206
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

207
    instruction_ref
Khalique's avatar
Khalique committed
208
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
209
    {
210
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Khalique's avatar
Khalique committed
211
        auto l0       = prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
212
        return prog.add_instruction(op::add{}, args[0], l0);
213
214
    }

Khalique's avatar
Khalique committed
215
216
217
218
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
219
220
221
        size_t axis_idx = attributes.at("N").i();
        size_t axis     = args[axis_idx]->eval().at<int64_t>();
        parse_axis(axis);
Khalique's avatar
Khalique committed
222
        op::concat op{axis};
223
        // return only first N arguments (assuming last index is the axis value)
Khalique's avatar
Khalique committed
224
        return prog.add_instruction(
225
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
        literal v = parse_tensor(attributes.at("value").tensor());
        return prog.add_literal(v);
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
245
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
246
            }
Khalique's avatar
Khalique committed
247
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
248
            {
249
                std::vector<size_t> padding;
250
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
        if(contains(attributes, "strides"))
        {
265
            std::vector<size_t> stride;
266
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
267
            reorder_data(stride);
268
269
            if(stride.size() != 4)
            {
270
                MIGRAPHX_THROW("strides should have 4 values");
271
            }
272
273
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
274
275
276
        }
        if(contains(attributes, "dilations"))
        {
277
            std::vector<size_t> dilation;
278
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
279
            reorder_data(dilation);
280
281
282
283
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
284
285
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
286
        }
287
        auto l0 = args[1];
Khalique's avatar
Khalique committed
288
        if(l0->get_operator().name() == "transpose" and is_nhwc)
289
        {
290
            l0 = prog.add_instruction(op::transpose{{1, 3, 0, 2}}, args[1]);
291
        }
292
293
        else
            l0 = prog.add_instruction(op::transpose{{3, 2, 0, 1}}, args[1]);
Khalique's avatar
Khalique committed
294

295
        return prog.add_instruction(op, {args[0], l0});
Khalique's avatar
Khalique committed
296
297
    }

298
299
300
301
302
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
303

304
305
306
307
308
309
310
311
312
313
314
315
316
317
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
        if(contains(attributes, "strides"))
        {
318
            std::vector<size_t> stride;
319
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
320
            reorder_data(stride);
321
322
323
324
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
325
326
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
327
328
329
        }
        if(contains(attributes, "ksize"))
        {
330
            std::vector<size_t> ksize;
331
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
332
            reorder_data(ksize);
333
334
335
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
336
            }
337
338
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
339
        }
340
        return prog.add_instruction(op, args[0]);
341
    }
Khalique's avatar
Khalique committed
342

343
    instruction_ref
Khalique's avatar
Khalique committed
344
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
345
346
347
348
349
350
351
352
353
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
        literal s = args[1]->get_literal();
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        return prog.add_instruction(op, args[0]);
    }

Khalique's avatar
Khalique committed
354
355
356
357
358
359
360
361
362
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
363
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
364
365
366
        }
    }

367
368
369
370
371
372
373
374
375
376
377
378
379
380
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    }

    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
381
382
        auto temp = args[0]->get_shape().lens();
        auto axes = parse_axes(attributes, "squeeze_dims");
383
        copy(axes, std::back_inserter(op.axes));
384
        auto args0_dims = args[0]->get_shape().lens();
385
386
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
387
            for(auto i = 0; i < args0_dims.size(); i++)
388
            {
389
                if(args0_dims.at(i) == 1)
390
391
392
393
                {
                    op.axes.push_back(i);
                }
            }
394
        }
395
        return prog.add_instruction(op, args[0]);
396
397
    }

Khalique's avatar
Khalique committed
398
399
400
401
402
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
403
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
404
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
405
406
407
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
            shape s                   = shape{shape_type, dims};
408
409
410
411
412
413
414
415
416
            auto in_param             = prog.add_parameter(name, s);
            if(is_nhwc and dims.size() >= 4) // only transpose for NHWC tensors and larger
            {
                std::vector<int64_t> axes(dims.size());
                std::iota(axes.begin(), axes.end(), 0);
                reorder_data(axes);
                in_param = prog.add_instruction(op::transpose{axes}, in_param);
            }
            instructions[name] = in_param;
Khalique's avatar
Khalique committed
417
418
419
        }
        for(auto&& p : nodes)
        {
420
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
421
422
423
424
425
426
427
428
429
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
430
            // std::cout << name << std::endl;
Khalique's avatar
Khalique committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op()}, args);
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
460
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
461
462
463
464
465
466
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
467
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
468

Khalique's avatar
Khalique committed
469
470
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_INVALID:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
        case tensorflow::DataType::DT_STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case tensorflow::DataType::DT_COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case tensorflow::DataType::DT_QINT8:
            break; // throw std::runtime_error("Unsupported type QINT8");
        case tensorflow::DataType::DT_QUINT8:
            break; // throw std::runtime_error("Unsupported type QUINT8");
        case tensorflow::DataType::DT_QINT32:
            break; // throw std::runtime_error("Unsupported type QINT32");
        case tensorflow::DataType::DT_BFLOAT16:
            break; // throw std::runtime_error("Unsupported type BFLOAT16");
        case tensorflow::DataType::DT_QINT16:
            break; // throw std::runtime_error("Unsupported type QINT16");
        case tensorflow::DataType::DT_QUINT16:
            break; // throw std::runtime_error("Unsupported type QUINT16");
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_RESOURCE:
            break; // throw std::runtime_error("Unsupported type RESOURCE");
        case tensorflow::DataType::DT_VARIANT:
            break; // throw std::runtime_error("Unsupported type VARIANT");
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Khalique's avatar
Khalique committed
530
531
532
        case tensorflow::DataType::DT_UINT64:
            shape_type = shape::uint64_type;
            break;
Khalique's avatar
Khalique committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

        // tf pb should not use these types
        case tensorflow::DataType::DT_FLOAT_REF: break;
        case tensorflow::DataType::DT_DOUBLE_REF: break;
        case tensorflow::DataType::DT_INT32_REF: break;
        case tensorflow::DataType::DT_UINT8_REF: break;
        case tensorflow::DataType::DT_INT16_REF: break;
        case tensorflow::DataType::DT_INT8_REF: break;
        case tensorflow::DataType::DT_STRING_REF: break;
        case tensorflow::DataType::DT_COMPLEX64_REF: break;
        case tensorflow::DataType::DT_INT64_REF: break;
        case tensorflow::DataType::DT_BOOL_REF: break;
        case tensorflow::DataType::DT_QINT8_REF: break;
        case tensorflow::DataType::DT_QUINT8_REF: break;
        case tensorflow::DataType::DT_QINT32_REF: break;
        case tensorflow::DataType::DT_BFLOAT16_REF: break;
        case tensorflow::DataType::DT_QINT16_REF: break;
        case tensorflow::DataType::DT_QUINT16_REF: break;
        case tensorflow::DataType::DT_UINT16_REF: break;
        case tensorflow::DataType::DT_COMPLEX128_REF: break;
        case tensorflow::DataType::DT_HALF_REF: break;
        case tensorflow::DataType::DT_RESOURCE_REF: break;
        case tensorflow::DataType::DT_VARIANT_REF: break;
        case tensorflow::DataType::DT_UINT32_REF: break;
        case tensorflow::DataType::DT_UINT64_REF: break;
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_: break;
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
560
561
562
563
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
564
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
565
566
567
568
569
570
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
        if(dims.empty())
        {
            dims = {1};
        }
571
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
572
573
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
574
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
575
576
577
            switch(t.dtype())
            {
            case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
Khalique's avatar
Khalique committed
578
579
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Khalique's avatar
Khalique committed
580
581
            case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8: return literal{{shape::int32_type, dims}, s.data()};
Khalique's avatar
Khalique committed
582
583
584
585
586
587
588
589
            case tensorflow::DataType::DT_UINT16:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT16:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
590
591
592
            case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL: return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
593
594
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Khalique's avatar
Khalique committed
595
596
597
598
            case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
            case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
            case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
630
631
632
633
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
634
635
636
637
638
639
640
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT:
641
            return literal{{shape::float_type, dims}, get_data_vals(t.float_val(), shape_size)};
Khalique's avatar
Khalique committed
642
643
        case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8:
644
            return literal{{shape::int32_type, dims}, get_data_vals(t.int_val(), shape_size)};
Khalique's avatar
Khalique committed
645
        case tensorflow::DataType::DT_UINT16:
646
            return literal{{shape::int32_type, dims}, get_data_vals(t.int_val(), shape_size)};
Khalique's avatar
Khalique committed
647
        case tensorflow::DataType::DT_INT16:
648
            return literal{{shape::int32_type, dims}, get_data_vals(t.int_val(), shape_size)};
Khalique's avatar
Khalique committed
649
        case tensorflow::DataType::DT_INT32:
650
            return literal{{shape::int32_type, dims}, get_data_vals(t.int_val(), shape_size)};
Khalique's avatar
Khalique committed
651
        case tensorflow::DataType::DT_INT64:
652
            return literal{{shape::int64_type, dims}, get_data_vals(t.int64_val(), shape_size)};
Khalique's avatar
Khalique committed
653
654
        case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL:
655
            return literal{{shape::int32_type, dims}, get_data_vals(t.bool_val(), shape_size)};
Khalique's avatar
Khalique committed
656
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
657
        {
658
659
660
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
            return literal{{shape::half_type, dims}, data_uint16};
Khalique's avatar
Khalique committed
661
        }
Khalique's avatar
Khalique committed
662
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
663
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Khalique's avatar
Khalique committed
664
665
666
667
        case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
        case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
699
700
701
702
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
703
704
705
706
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

707
    template <class T>
Khalique's avatar
Khalique committed
708
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
709
                                        const size_t& shape_size)
710
711
712
713
714
715
716
717
718
719
720
721
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
722
723
724
725
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
726
727
728
729
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
                       [](tensorflow::TensorShapeProto_Dim dim) { return dim.size(); });
Khalique's avatar
Khalique committed
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
        return dims;
    }
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx