tf.cpp 31.7 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Khalique's avatar
Khalique committed
27
    using node_map      = std::unordered_map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
28
29
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
30

Khalique's avatar
Khalique committed
31
32
33
34
35
36
37
38
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

39
    std::vector<size_t> parse_axes(attribute_map& attributes, const std::string& s) const
40
    {
41
42
43
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
44
        if(is_nhwc)
45
        {
Khalique's avatar
Khalique committed
46
            for(size_t& axis : axes)
47
            {
48
                parse_axis(axis);
49
50
51
52
53
54
            }
        }
        return axes;
    }

    template <class T>
55
    void reorder_data(std::vector<T>& prev_data) const
56
57
    {
        std::vector<T> new_data(prev_data.size());
58
        for(size_t i = 0; i < new_data.size(); i++)
59
60
61
62
        {
            auto new_idx = i;
            parse_axis(new_idx);
            new_data.at(new_idx) = prev_data.at(i);
63
        }
64
65
66
67
        prev_data = new_data;
    }

    template <class T>
68
    void parse_axis(T& dim) const
69
70
71
72
73
74
75
76
77
78
79
80
    {
        if(is_nhwc)
        {
            switch(dim)
            {
            case 0: dim = 0; break;
            case 1: dim = 2; break;
            case 2: dim = 3; break;
            case 3: dim = 1; break;
            default: break;
            }
        }
81
82
    }

83
84
85
86
87
88
89
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
90
91
92
93
94
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});

95
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
96

97
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
98
99
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
        add_mem_op("ConcatV2", &tf_parser::parse_concat);
Khalique's avatar
Khalique committed
100
101
102
        add_mem_op("Const", &tf_parser::parse_constant);
        add_mem_op("Conv2D", &tf_parser::parse_conv);
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
103
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
104
105
106
        add_mem_op("Reshape", &tf_parser::parse_reshape);
        add_mem_op("Softmax", &tf_parser::parse_softmax);
        add_mem_op("Squeeze", &tf_parser::parse_squeeze);
Khalique's avatar
Khalique committed
107
108
    }

109
110
111
112
113
114
115
116
117
118
119
120
121
    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

Khalique's avatar
Khalique committed
122
123
124
    template <class F>
    void add_mem_op(std::string name, F f)
    {
125
        add_op(name, [=](auto&&... xs) {
Khalique's avatar
Khalique committed
126
127
128
129
130
131
132
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Khalique's avatar
Khalique committed
133
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
134
135
            if(args.size() != 2)
                MIGRAPHX_THROW("binary operators should have 2 operands");
136
137
138
139
140
            auto l0 = args[1];
            if(contains(attributes, "data_format"))
            {
                if(is_nhwc)
                {
Khalique's avatar
Khalique committed
141
                    l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
142
143
144
                }
            }
            return add_broadcastable_binary_op(args[0], l0, x);
Khalique's avatar
Khalique committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
167
168
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
169
170
171
172
173

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

174
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
    }

    template <class T>
    void add_generic_op(std::string name, T x)
    {
195
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
196
197
198
199
200
201
202
            return prog.add_instruction(x, args);
        });
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
203
204
205
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
206
207
208
209
210
211
212
213
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

214
    instruction_ref
Khalique's avatar
Khalique committed
215
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
216
    {
217
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Khalique's avatar
Khalique committed
218
        auto l0       = prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
219
        return prog.add_instruction(op::add{}, args[0], l0);
220
221
    }

Khalique's avatar
Khalique committed
222
223
224
225
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
226
227
228
        size_t axis_idx = attributes.at("N").i();
        size_t axis     = args[axis_idx]->eval().at<int64_t>();
        parse_axis(axis);
Khalique's avatar
Khalique committed
229
        op::concat op{axis};
230
        // return only first N arguments (assuming last index is the axis value)
Khalique's avatar
Khalique committed
231
        return prog.add_instruction(
232
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
233
234
235
236
237
238
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Khalique's avatar
Khalique committed
239
240
        literal v       = parse_tensor(attributes.at("value").tensor());
        auto l0         = prog.add_literal(v);
241
242
243
244
245
246
        size_t num_axes = l0->get_shape().lens().size();
        if(num_axes >= 4)
        {
            std::vector<int64_t> transpose_axes = get_axes(num_axes);
            reorder_data(transpose_axes);
            l0 = prog.add_instruction(op::transpose{transpose_axes}, l0);
Khalique's avatar
Khalique committed
247
        }
248
        return l0;
Khalique's avatar
Khalique committed
249
250
251
252
253
254
255
256
257
258
259
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
260
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
261
            }
Khalique's avatar
Khalique committed
262
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
263
            {
264
                std::vector<size_t> padding;
265
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
266
                reorder_data(padding);
Khalique's avatar
Khalique committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
        if(contains(attributes, "strides"))
        {
281
            std::vector<size_t> stride;
282
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
283
            reorder_data(stride);
284
285
            if(stride.size() != 4)
            {
286
                MIGRAPHX_THROW("strides should have 4 values");
287
            }
288
289
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
290
291
292
        }
        if(contains(attributes, "dilations"))
        {
293
            std::vector<size_t> dilation;
294
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
295
            reorder_data(dilation);
296
297
298
299
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
300
301
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
302
        }
Khalique's avatar
Khalique committed
303
        auto weights = args[1];
304
        // check if weights are from a constant
Khalique's avatar
Khalique committed
305
306

        if(weights->name() != "@param")
307
        {
Khalique's avatar
Khalique committed
308
309
310
311
312
313
314
315
            if(is_nhwc)
            {
                weights = prog.add_instruction(op::transpose{{1, 3, 0, 2}}, args[1]);
            }
            else
            {
                weights = prog.add_instruction(op::transpose{{3, 2, 0, 1}}, args[1]);
            }
316
        }
Khalique's avatar
Khalique committed
317
318
        
        return prog.add_instruction(op, {args[0], weights});
Khalique's avatar
Khalique committed
319
320
    }

321
322
323
324
325
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
326

327
328
329
330
331
332
333
334
335
336
337
338
339
340
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
        if(contains(attributes, "strides"))
        {
341
            std::vector<size_t> stride;
342
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
343
            reorder_data(stride);
344
345
346
347
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
348
349
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
350
351
352
        }
        if(contains(attributes, "ksize"))
        {
353
            std::vector<size_t> ksize;
354
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
355
            reorder_data(ksize);
356
357
358
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
359
            }
360
361
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
362
        }
363
        return prog.add_instruction(op, args[0]);
364
    }
Khalique's avatar
Khalique committed
365

366
    instruction_ref
Khalique's avatar
Khalique committed
367
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
368
369
370
371
372
373
374
375
376
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
        literal s = args[1]->get_literal();
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        return prog.add_instruction(op, args[0]);
    }

Khalique's avatar
Khalique committed
377
378
379
380
381
382
383
384
385
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
386
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
387
388
389
        }
    }

390
391
392
393
394
395
396
397
398
399
400
401
402
403
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    }

    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
404
        auto axes = parse_axes(attributes, "squeeze_dims");
405
        copy(axes, std::back_inserter(op.axes));
406
        auto args0_dims = args[0]->get_shape().lens();
407
408
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
409
            for(size_t i = 0; i < args0_dims.size(); i++)
410
            {
411
                if(args0_dims.at(i) == 1)
412
413
414
415
                {
                    op.axes.push_back(i);
                }
            }
416
        }
417
        return prog.add_instruction(op, args[0]);
418
419
    }

Khalique's avatar
Khalique committed
420
421
422
423
424
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
425
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
426
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
427
428
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
429
            if(is_nhwc and dims.size() >= 4)
430
            {
431
                reorder_data(dims);
432
            }
Khalique's avatar
Khalique committed
433
434
            shape s            = shape{shape_type, dims};
            instructions[name] = prog.add_parameter(name, s);
Khalique's avatar
Khalique committed
435
436
437
        }
        for(auto&& p : nodes)
        {
438
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op()}, args);
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
477
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
478
479
480
481
482
483
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
484
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
485

Khalique's avatar
Khalique committed
486
487
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_INVALID:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
        case tensorflow::DataType::DT_STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case tensorflow::DataType::DT_COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case tensorflow::DataType::DT_QINT8:
            break; // throw std::runtime_error("Unsupported type QINT8");
        case tensorflow::DataType::DT_QUINT8:
            break; // throw std::runtime_error("Unsupported type QUINT8");
        case tensorflow::DataType::DT_QINT32:
            break; // throw std::runtime_error("Unsupported type QINT32");
        case tensorflow::DataType::DT_BFLOAT16:
            break; // throw std::runtime_error("Unsupported type BFLOAT16");
        case tensorflow::DataType::DT_QINT16:
            break; // throw std::runtime_error("Unsupported type QINT16");
        case tensorflow::DataType::DT_QUINT16:
            break; // throw std::runtime_error("Unsupported type QUINT16");
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_RESOURCE:
            break; // throw std::runtime_error("Unsupported type RESOURCE");
        case tensorflow::DataType::DT_VARIANT:
            break; // throw std::runtime_error("Unsupported type VARIANT");
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Khalique's avatar
Khalique committed
547
548
549
        case tensorflow::DataType::DT_UINT64:
            shape_type = shape::uint64_type;
            break;
Khalique's avatar
Khalique committed
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576

        // tf pb should not use these types
        case tensorflow::DataType::DT_FLOAT_REF: break;
        case tensorflow::DataType::DT_DOUBLE_REF: break;
        case tensorflow::DataType::DT_INT32_REF: break;
        case tensorflow::DataType::DT_UINT8_REF: break;
        case tensorflow::DataType::DT_INT16_REF: break;
        case tensorflow::DataType::DT_INT8_REF: break;
        case tensorflow::DataType::DT_STRING_REF: break;
        case tensorflow::DataType::DT_COMPLEX64_REF: break;
        case tensorflow::DataType::DT_INT64_REF: break;
        case tensorflow::DataType::DT_BOOL_REF: break;
        case tensorflow::DataType::DT_QINT8_REF: break;
        case tensorflow::DataType::DT_QUINT8_REF: break;
        case tensorflow::DataType::DT_QINT32_REF: break;
        case tensorflow::DataType::DT_BFLOAT16_REF: break;
        case tensorflow::DataType::DT_QINT16_REF: break;
        case tensorflow::DataType::DT_QUINT16_REF: break;
        case tensorflow::DataType::DT_UINT16_REF: break;
        case tensorflow::DataType::DT_COMPLEX128_REF: break;
        case tensorflow::DataType::DT_HALF_REF: break;
        case tensorflow::DataType::DT_RESOURCE_REF: break;
        case tensorflow::DataType::DT_VARIANT_REF: break;
        case tensorflow::DataType::DT_UINT32_REF: break;
        case tensorflow::DataType::DT_UINT64_REF: break;
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_: break;
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
577
578
579
580
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
581
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
582
583
584
585
586
587
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
        if(dims.empty())
        {
            dims = {1};
        }
588
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
589
590
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
591
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
592
593
594
            switch(t.dtype())
            {
            case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
Khalique's avatar
Khalique committed
595
596
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Khalique's avatar
Khalique committed
597
598
            case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8: return literal{{shape::int32_type, dims}, s.data()};
Khalique's avatar
Khalique committed
599
600
601
602
603
604
605
606
            case tensorflow::DataType::DT_UINT16:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT16:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
607
608
609
            case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL: return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
610
611
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Khalique's avatar
Khalique committed
612
613
614
615
            case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
            case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
            case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
647
648
649
650
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
651
652
653
654
655
656
657
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT:
658
            return literal{{shape::float_type, dims}, get_data_vals(t.float_val(), shape_size)};
Khalique's avatar
Khalique committed
659
660
        case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8:
661
            return literal{{shape::int32_type, dims}, get_data_vals(t.int_val(), shape_size)};
Khalique's avatar
Khalique committed
662
        case tensorflow::DataType::DT_UINT16:
663
            return literal{{shape::int32_type, dims}, get_data_vals(t.int_val(), shape_size)};
Khalique's avatar
Khalique committed
664
        case tensorflow::DataType::DT_INT16:
665
            return literal{{shape::int32_type, dims}, get_data_vals(t.int_val(), shape_size)};
Khalique's avatar
Khalique committed
666
        case tensorflow::DataType::DT_INT32:
667
            return literal{{shape::int32_type, dims}, get_data_vals(t.int_val(), shape_size)};
Khalique's avatar
Khalique committed
668
        case tensorflow::DataType::DT_INT64:
669
            return literal{{shape::int64_type, dims}, get_data_vals(t.int64_val(), shape_size)};
Khalique's avatar
Khalique committed
670
671
        case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL:
672
            return literal{{shape::int32_type, dims}, get_data_vals(t.bool_val(), shape_size)};
Khalique's avatar
Khalique committed
673
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
674
        {
675
676
677
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
            return literal{{shape::half_type, dims}, data_uint16};
Khalique's avatar
Khalique committed
678
        }
Khalique's avatar
Khalique committed
679
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
680
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Khalique's avatar
Khalique committed
681
682
683
684
        case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
        case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
716
717
718
719
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
720
721
722
723
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

724
    template <class T>
Khalique's avatar
Khalique committed
725
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
726
                                        const size_t& shape_size)
727
728
729
730
731
732
733
734
735
736
737
738
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
739
740
741
742
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
743
744
745
746
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
                       [](tensorflow::TensorShapeProto_Dim dim) { return dim.size(); });
Khalique's avatar
Khalique committed
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
        return dims;
    }
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx