tf.cpp 41.7 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Paul's avatar
Paul committed
27
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
28
29
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
30

Khalique's avatar
Khalique committed
31
32
33
34
35
36
37
38
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Paul's avatar
Paul committed
39
40
41
42
43
44
45
    bool should_transpose(instruction_ref ins)
    {
        return is_nhwc and ins->get_shape().lens().size() == 4;
    }

    instruction_ref to_nhwc(instruction_ref ins)
    {
Paul's avatar
Paul committed
46
        if(should_transpose(ins))
Paul's avatar
Paul committed
47
48
49
50
51
52
            return prog.add_instruction(op::transpose{{0, 2, 3, 1}}, ins);
        return ins;
    }

    instruction_ref to_nchw(instruction_ref ins)
    {
Paul's avatar
Paul committed
53
        if(should_transpose(ins))
Paul's avatar
Paul committed
54
55
56
57
58
59
            return prog.add_instruction(op::transpose{{0, 3, 1, 2}}, ins);
        return ins;
    }

    instruction_ref to_kcxy(instruction_ref ins)
    {
Paul's avatar
Paul committed
60
        if(should_transpose(ins))
Paul's avatar
Paul committed
61
62
63
64
65
66
            return prog.add_instruction(op::transpose{{3, 2, 0, 1}}, ins);
        return ins;
    }

    instruction_ref make_contiguous(instruction_ref ins)
    {
Paul's avatar
Paul committed
67
        if(ins->get_shape().standard())
Paul's avatar
Paul committed
68
69
70
71
72
73
74
75
            return ins;
        else
            return prog.add_instruction(op::contiguous{}, ins);
    }

    std::vector<instruction_ref> to_nchw(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
Paul's avatar
Paul committed
76
77
        std::transform(
            args.begin(), args.end(), result.begin(), [&](auto ins) { return to_nchw(ins); });
Paul's avatar
Paul committed
78
79
80
        return result;
    }

Khalique's avatar
Khalique committed
81
    std::vector<size_t> parse_axes(const attribute_map& attributes, const std::string& s) const
82
    {
83
84
85
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
86
        if(is_nhwc)
87
        {
Khalique's avatar
Khalique committed
88
89
90
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
                return parse_axis(axis);
            });
91
92
93
94
        }
        return axes;
    }

Khalique's avatar
Khalique committed
95
96
97
98
99
    template <class T>
    std::vector<T> parse_axes(std::vector<T> axes) const
    {
        if(is_nhwc)
        {
100
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
101
102
103
104
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
                           [&](size_t axis) { return parse_axis(axis); });
105
            return new_axes;
Khalique's avatar
Khalique committed
106
        }
107
        return axes;
Khalique's avatar
Khalique committed
108
109
    }

Khalique's avatar
Khalique committed
110
111
112
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
113
    template <class T>
114
    void reorder_data(std::vector<T>& prev_data) const
115
116
    {
        std::vector<T> new_data(prev_data.size());
117
        for(size_t i = 0; i < new_data.size(); i++)
118
        {
Khalique's avatar
Khalique committed
119
            auto new_idx         = parse_axis(i);
120
            new_data.at(new_idx) = prev_data.at(i);
121
        }
122
123
124
125
        prev_data = new_data;
    }

    template <class T>
Khalique's avatar
Khalique committed
126
    T parse_axis(const T& dim) const
127
    {
Khalique's avatar
Khalique committed
128
        T new_dim = dim;
129
130
131
132
        if(is_nhwc)
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
133
134
135
136
137
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
138
139
            }
        }
Khalique's avatar
Khalique committed
140
        return new_dim;
141
142
    }

143
144
145
146
147
148
149
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
150
151
152
153
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
154
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
155

156
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
157
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
158

159
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
160
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
Paul's avatar
Paul committed
161
        add_mem_op("ConcatV2", &tf_parser::parse_concat, false);
Khalique's avatar
Khalique committed
162
        add_mem_op("Const", &tf_parser::parse_constant);
Paul's avatar
Paul committed
163
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Paul's avatar
Paul committed
164
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
Khalique's avatar
Khalique committed
165
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
Paul's avatar
Paul committed
166
        add_mem_op("MatMul", &tf_parser::parse_matmul, false);
167
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
168
        add_mem_op("Mean", &tf_parser::parse_mean);
Paul's avatar
Paul committed
169
170
171
        add_mem_op("Pack", &tf_parser::parse_pack, false);
        add_mem_op("Pad", &tf_parser::parse_pad, false);
        add_mem_op("Reshape", &tf_parser::parse_reshape, false);
172
        add_mem_op("Softmax", &tf_parser::parse_softmax);
Paul's avatar
Paul committed
173
        add_mem_op("Squeeze", &tf_parser::parse_squeeze, false);
174
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice);
Khalique's avatar
Khalique committed
175
176
    }

177
    template <class F>
Paul's avatar
Paul committed
178
    void add_op(std::string name, F f, bool transpose = true)
179
    {
Paul's avatar
Paul committed
180
        if(transpose)
Paul's avatar
Paul committed
181
        {
Paul's avatar
Paul committed
182
183
184
185
186
            ops.emplace(name,
                        op_func{[=](const attribute_map& attributes,
                                    std::vector<instruction_ref> args) -> instruction_ref {
                            return to_nhwc(f(attributes, to_nchw(args)));
                        }});
Paul's avatar
Paul committed
187
188
189
190
191
        }
        else
        {
            ops.emplace(name, f);
        }
192
193
    }

Khalique's avatar
Khalique committed
194
    template <class F>
Paul's avatar
Paul committed
195
    void add_mem_op(std::string name, F f, bool transpose = true)
Khalique's avatar
Khalique committed
196
    {
Paul's avatar
Paul committed
197
198
199
200
201
        add_op(name,
               [=](auto&&... xs) {
                   return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
               },
               transpose);
Khalique's avatar
Khalique committed
202
203
204
205
206
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
207
        add_op(name, [this, x](const attribute_map& attributes, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
208
209
            if(args.size() != 2)
                MIGRAPHX_THROW("binary operators should have 2 operands");
210
211
            if(contains(attributes, "data_format"))
            {
Paul's avatar
Paul committed
212
213
214
215
216
                // TODO
                // if(is_nhwc)
                // {
                //     l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
                // }
217
            }
Paul's avatar
Paul committed
218
            return add_broadcastable_binary_op(args[0], args[1], x);
Khalique's avatar
Khalique committed
219
220
221
222
223
224
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
225
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
241
242
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
243
244
245
246
247

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

248
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
249
250
251
252
253
254
255
256
257
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
Paul's avatar
Paul committed
258
            return to_nhwc(prog.add_instruction(x, to_nchw(l0), to_nchw(l1)));
Khalique's avatar
Khalique committed
259
260
261
        }
        else
        {
Paul's avatar
Paul committed
262
            return to_nhwc(prog.add_instruction(x, {to_nchw(arg0), to_nchw(arg1)}));
Khalique's avatar
Khalique committed
263
264
265
266
        }
    }

    template <class T>
Paul's avatar
Paul committed
267
    void add_generic_op(std::string name, T x, bool transpose = true)
Khalique's avatar
Khalique committed
268
    {
Paul's avatar
Paul committed
269
270
271
272
273
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   return prog.add_instruction(x, args);
               },
               transpose);
Khalique's avatar
Khalique committed
274
275
276
277
278
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
279
280
281
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
282
283
284
285
286
287
288
289
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

290
    instruction_ref
Khalique's avatar
Khalique committed
291
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
292
    {
293
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
294
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
295
        return prog.add_instruction(op::add{}, args[0], l0);
296
297
    }

Khalique's avatar
Khalique committed
298
299
300
301
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
302
        size_t axis_idx = attributes.at("N").i();
Paul's avatar
Paul committed
303
        size_t axis     = args[axis_idx]->eval().at<int64_t>();
Khalique's avatar
Khalique committed
304
        op::concat op{axis};
305
        // return only first N arguments (assuming last index is the axis value)
Paul's avatar
Paul committed
306
307
        return prog.add_instruction(
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
308
309
310
311
312
313
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Paul's avatar
Paul committed
314
        literal v = parse_tensor(attributes.at("value").tensor());
Paul's avatar
Paul committed
315
        return prog.add_literal(v);
Khalique's avatar
Khalique committed
316
317
318
319
320
321
322
323
324
325
326
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
327
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
328
            }
Khalique's avatar
Khalique committed
329
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
330
            {
331
                std::vector<size_t> padding;
332
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
        if(contains(attributes, "strides"))
        {
347
            std::vector<size_t> stride;
348
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
349
            reorder_data(stride);
350
351
            if(stride.size() != 4)
            {
352
                MIGRAPHX_THROW("strides should have 4 values");
353
            }
354
355
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
356
357
358
        }
        if(contains(attributes, "dilations"))
        {
359
            std::vector<size_t> dilation;
360
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
361
            reorder_data(dilation);
362
363
364
365
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
366
367
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
368
        }
Paul's avatar
Paul committed
369
        return prog.add_instruction(op, {args[0], to_kcxy(args[1])});
Khalique's avatar
Khalique committed
370
371
    }

Khalique's avatar
Khalique committed
372
373
374
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
375
376
377
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
378
        op.group            = num_channels;
Khalique's avatar
Khalique committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
        }
        if(contains(attributes, "strides"))
        {
            std::vector<size_t> stride;
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
            reorder_data(stride);
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
        }
Paul's avatar
Paul committed
399
        auto weights = to_kcxy(args[1]);
Khalique's avatar
Khalique committed
400

Khalique's avatar
Khalique committed
401
402
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
403
404
405
406

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
407
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
408
409
410
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
411
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
412
        auto new_weights = prog.add_instruction(op::reshape{new_weights_shape}, make_contiguous(weights));
Khalique's avatar
Khalique committed
413

Khalique's avatar
Khalique committed
414
415
416
        return prog.add_instruction(op, {args[0], new_weights});
    }

Khalique's avatar
Khalique committed
417
418
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
419
420
421
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
422

423
424
425
426
427
428
429
430
431
432
433
434
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
            transb = attributes.at("transpose_a").b();
        }

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
435
        std::iter_swap(perm.end() - 1, perm.end() - 2);
436
437
438
439
440
441
442

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
443
444
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
445
    {
Paul's avatar
Paul committed
446
        auto axes      = parse_axes(args[1]->eval().get<int32_t>().to_vector());
Khalique's avatar
Khalique committed
447
        bool keep_dims = attributes.at("keep_dims").b();
Paul's avatar
Paul committed
448
        std::vector<int32_t> hw_axes{2, 3};
Khalique's avatar
Khalique committed
449
        // check if conditions for GlobalAvgPool are met
Khalique's avatar
Khalique committed
450
451
        auto lens = args[0]->get_shape().lens();
        if(axes == hw_axes and lens.size() == 4)
Khalique's avatar
Khalique committed
452
453
        {
            op::pooling op{"average"};
Khalique's avatar
Khalique committed
454
455
            op.lengths[0] = lens[2];
            op.lengths[1] = lens[3];
Khalique's avatar
Khalique committed
456
457
458
459
460
            auto l0       = prog.add_instruction(op, args.front());
            if(keep_dims)
                return l0;
            return prog.add_instruction(
                op::squeeze{std::vector<int64_t>(hw_axes.begin(), hw_axes.end())}, l0);
Khalique's avatar
Khalique committed
461
462
463
464
        }
        MIGRAPHX_THROW("MIGraphX does not support mean outside of GlobalAvgPool transformation");
    }

Khalique's avatar
Khalique committed
465
466
467
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
468
469
470
471
472
473
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
474
475
476
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
477
478
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
479
480
        }

Khalique's avatar
Khalique committed
481
482
483
484
485
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Paul's avatar
Paul committed
486
487
        return to_nhwc(
            prog.add_instruction(op::concat{static_cast<size_t>(axis)}, unsqueezed_args));
Khalique's avatar
Khalique committed
488
489
    }

Khalique's avatar
Khalique committed
490
491
492
493
494
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
495
496
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
497
498
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
499
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
500
        {
Khalique's avatar
Khalique committed
501
502
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
503
504
505
506
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
507
508
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
509
        {
Khalique's avatar
Khalique committed
510
511
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
512
513
        }
        op.pads = pads;
Paul's avatar
Paul committed
514
        return to_nhwc(prog.add_instruction(op, args.front()));
Khalique's avatar
Khalique committed
515
516
    }

517
518
519
520
521
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
522

523
524
525
526
527
528
529
530
531
532
533
534
535
536
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
        if(contains(attributes, "strides"))
        {
537
            std::vector<size_t> stride;
538
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
539
            reorder_data(stride);
540
541
542
543
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
544
545
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
546
547
548
        }
        if(contains(attributes, "ksize"))
        {
549
            std::vector<size_t> ksize;
550
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
551
            reorder_data(ksize);
552
553
554
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
555
            }
556
557
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
558
        }
559
        return prog.add_instruction(op, args[0]);
560
    }
Khalique's avatar
Khalique committed
561

562
    instruction_ref
Khalique's avatar
Khalique committed
563
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
564
565
566
567
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
568
        auto s = args[1]->eval();
569
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
570
        return prog.add_instruction(op, make_contiguous(args[0]));
571
572
    }

Khalique's avatar
Khalique committed
573
574
575
576
577
578
579
580
581
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
582
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
583
584
585
        }
    }

586
587
588
589
590
591
592
593
594
595
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    }

Khalique's avatar
Khalique committed
596
597
598
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
599
600
    {
        op::squeeze op;
Paul's avatar
Paul committed
601
        auto axes = attributes.at("squeeze_dims").list().i();
602
        copy(axes, std::back_inserter(op.axes));
603
        auto args0_dims = args[0]->get_shape().lens();
604
605
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
606
            for(size_t i = 0; i < args0_dims.size(); i++)
607
            {
608
                if(args0_dims.at(i) == 1)
609
610
611
612
                {
                    op.axes.push_back(i);
                }
            }
613
        }
Paul's avatar
Paul committed
614
        return prog.add_instruction(op, make_contiguous(args[0]));
615
616
    }

Khalique's avatar
Khalique committed
617
618
619
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
620
621
    {
        op::slice op;
Khalique's avatar
Khalique committed
622
623
624
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto ends       = args[2]->eval().get<int32_t>().to_vector();
        size_t num_axes = args[0]->get_shape().lens().size();
625

Khalique's avatar
Khalique committed
626
627
628
629
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
630
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
631
        uint32_t bitwise_compare  = 1;
632
633
634
        std::vector<int64_t> squeeze_axes;

        if(contains(attributes, "shrink_axis_mask"))
635
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
636

Khalique's avatar
Khalique committed
637
        for(size_t i = 0; i < num_axes; i++)
638
        {
639
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
640
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
641
642
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
643

Paul's avatar
Paul committed
644
645
        auto l0 = prog.add_instruction(op, make_contiguous(args[0]));
        return to_nhwc(prog.add_instruction(op::squeeze{squeeze_axes}, l0));
646
647
    }

Khalique's avatar
Khalique committed
648
649
650
651
652
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
653
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
654
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
655
656
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
657
            if(is_nhwc and dims.size() >= 4)
658
            {
659
                reorder_data(dims);
660
            }
Khalique's avatar
Khalique committed
661
            shape s            = shape{shape_type, dims};
Paul's avatar
Paul committed
662
            instructions[name] = to_nhwc(prog.add_parameter(name, s));
Khalique's avatar
Khalique committed
663
664
665
        }
        for(auto&& p : nodes)
        {
666
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
693
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
694
695
696
697
698
699
700
701
702
703
704
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
705
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
706
707
708
709
710
711
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
712
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
713

Khalique's avatar
Khalique committed
714
715
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_INVALID:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
        case tensorflow::DataType::DT_STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case tensorflow::DataType::DT_COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case tensorflow::DataType::DT_QINT8:
            break; // throw std::runtime_error("Unsupported type QINT8");
        case tensorflow::DataType::DT_QUINT8:
            break; // throw std::runtime_error("Unsupported type QUINT8");
        case tensorflow::DataType::DT_QINT32:
            break; // throw std::runtime_error("Unsupported type QINT32");
        case tensorflow::DataType::DT_BFLOAT16:
            break; // throw std::runtime_error("Unsupported type BFLOAT16");
        case tensorflow::DataType::DT_QINT16:
            break; // throw std::runtime_error("Unsupported type QINT16");
        case tensorflow::DataType::DT_QUINT16:
            break; // throw std::runtime_error("Unsupported type QUINT16");
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_RESOURCE:
            break; // throw std::runtime_error("Unsupported type RESOURCE");
        case tensorflow::DataType::DT_VARIANT:
            break; // throw std::runtime_error("Unsupported type VARIANT");
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Khalique's avatar
Khalique committed
775
776
777
        case tensorflow::DataType::DT_UINT64:
            shape_type = shape::uint64_type;
            break;
Khalique's avatar
Khalique committed
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804

        // tf pb should not use these types
        case tensorflow::DataType::DT_FLOAT_REF: break;
        case tensorflow::DataType::DT_DOUBLE_REF: break;
        case tensorflow::DataType::DT_INT32_REF: break;
        case tensorflow::DataType::DT_UINT8_REF: break;
        case tensorflow::DataType::DT_INT16_REF: break;
        case tensorflow::DataType::DT_INT8_REF: break;
        case tensorflow::DataType::DT_STRING_REF: break;
        case tensorflow::DataType::DT_COMPLEX64_REF: break;
        case tensorflow::DataType::DT_INT64_REF: break;
        case tensorflow::DataType::DT_BOOL_REF: break;
        case tensorflow::DataType::DT_QINT8_REF: break;
        case tensorflow::DataType::DT_QUINT8_REF: break;
        case tensorflow::DataType::DT_QINT32_REF: break;
        case tensorflow::DataType::DT_BFLOAT16_REF: break;
        case tensorflow::DataType::DT_QINT16_REF: break;
        case tensorflow::DataType::DT_QUINT16_REF: break;
        case tensorflow::DataType::DT_UINT16_REF: break;
        case tensorflow::DataType::DT_COMPLEX128_REF: break;
        case tensorflow::DataType::DT_HALF_REF: break;
        case tensorflow::DataType::DT_RESOURCE_REF: break;
        case tensorflow::DataType::DT_VARIANT_REF: break;
        case tensorflow::DataType::DT_UINT32_REF: break;
        case tensorflow::DataType::DT_UINT64_REF: break;
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_: break;
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
805
806
807
808
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
809
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
810
811
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
812
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
813
814
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
815
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
816
817
818
            switch(t.dtype())
            {
            case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
Khalique's avatar
Khalique committed
819
820
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Khalique's avatar
Khalique committed
821
            case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
822
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
823
            case tensorflow::DataType::DT_UINT16:
824
                return literal{{shape::uint16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
825
            case tensorflow::DataType::DT_INT16:
826
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
827
828
829
830
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
831
            case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
832
            case tensorflow::DataType::DT_BOOL: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
833
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
834
835
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Khalique's avatar
Khalique committed
836
837
838
839
            case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
            case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
            case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
871
872
873
874
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
875
876
877
878
879
880
881
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
882
883
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
884
885
        case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8:
886
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
887
        case tensorflow::DataType::DT_UINT16:
888
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
889
        case tensorflow::DataType::DT_INT16:
890
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
891
        case tensorflow::DataType::DT_INT32:
892
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
893
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
894
895
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
896
897
        case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL:
898
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
899
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
900
        {
901
902
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
903
904
905
906
907
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
908
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
909
        }
Khalique's avatar
Khalique committed
910
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
911
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Khalique's avatar
Khalique committed
912
913
914
915
        case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
        case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
947
948
949
950
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
951
952
953
954
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

955
    template <class T>
Khalique's avatar
Khalique committed
956
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
957
                                        const size_t& shape_size)
958
959
960
961
962
963
964
965
966
967
968
969
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
970
971
972
973
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
974
975
976
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
977
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
978
979
        return dims;
    }
980
981

    template <class T>
Khalique's avatar
Khalique committed
982
    static literal
983
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
984
    {
Khalique's avatar
Khalique committed
985
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
986
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
987
            return literal{{shape_type}, data};
988
989
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
Paul's avatar
Paul committed
1012
    parser.to_nchw(std::prev(parser.prog.end()));
Khalique's avatar
Khalique committed
1013
1014
1015
1016
1017
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx