tf.cpp 48.2 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
Khalique's avatar
Khalique committed
20
#include <migraphx/pad_calc.hpp>
Khalique's avatar
Khalique committed
21
22
23
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Paul's avatar
Paul committed
28
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
29
30
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
31

Khalique's avatar
Khalique committed
32
33
34
35
36
37
38
39
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Paul's avatar
Paul committed
40
    bool should_transpose(instruction_ref ins) const
Paul's avatar
Paul committed
41
42
43
44
45
46
    {
        return is_nhwc and ins->get_shape().lens().size() == 4;
    }

    instruction_ref to_nhwc(instruction_ref ins)
    {
Paul's avatar
Paul committed
47
        if(should_transpose(ins))
Paul's avatar
Paul committed
48
49
50
51
52
53
            return prog.add_instruction(op::transpose{{0, 2, 3, 1}}, ins);
        return ins;
    }

    instruction_ref to_nchw(instruction_ref ins)
    {
Paul's avatar
Paul committed
54
        if(should_transpose(ins))
Paul's avatar
Paul committed
55
56
57
58
59
60
            return prog.add_instruction(op::transpose{{0, 3, 1, 2}}, ins);
        return ins;
    }

    instruction_ref to_kcxy(instruction_ref ins)
    {
Paul's avatar
Paul committed
61
        if(should_transpose(ins))
Paul's avatar
Paul committed
62
63
64
65
66
67
            return prog.add_instruction(op::transpose{{3, 2, 0, 1}}, ins);
        return ins;
    }

    instruction_ref make_contiguous(instruction_ref ins)
    {
Paul's avatar
Paul committed
68
        if(ins->get_shape().standard())
Paul's avatar
Paul committed
69
70
71
72
73
74
75
76
            return ins;
        else
            return prog.add_instruction(op::contiguous{}, ins);
    }

    std::vector<instruction_ref> to_nchw(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
Paul's avatar
Paul committed
77
        std::transform(
Paul's avatar
Paul committed
78
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nchw(ins); });
Paul's avatar
Paul committed
79
80
81
        return result;
    }

Khalique's avatar
Khalique committed
82
    std::vector<size_t>
83
    parse_axes(const attribute_map& attributes, const std::string& s, const size_t num_dims) const
84
    {
85
86
87
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
88
        if(is_nhwc)
89
        {
Khalique's avatar
Khalique committed
90
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
Khalique's avatar
Khalique committed
91
                return parse_axis(axis, num_dims);
Khalique's avatar
Khalique committed
92
            });
93
94
95
96
        }
        return axes;
    }

Khalique's avatar
Khalique committed
97
    template <class T>
98
    std::vector<T> parse_axes(std::vector<T> axes, const size_t num_dims) const
Khalique's avatar
Khalique committed
99
100
101
    {
        if(is_nhwc)
        {
102
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
103
104
105
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
Khalique's avatar
Khalique committed
106
                           [&](size_t axis) { return parse_axis(axis, num_dims); });
107
            return new_axes;
Khalique's avatar
Khalique committed
108
        }
109
        return axes;
Khalique's avatar
Khalique committed
110
111
    }

Khalique's avatar
Khalique committed
112
113
114
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
115
    template <class T>
116
    void reorder_data(std::vector<T>& prev_data) const
117
118
    {
        std::vector<T> new_data(prev_data.size());
119
        for(size_t i = 0; i < new_data.size(); i++)
120
        {
Khalique's avatar
Khalique committed
121
            auto new_idx         = parse_axis(i, new_data.size());
122
            new_data.at(new_idx) = prev_data.at(i);
123
        }
124
125
126
127
        prev_data = new_data;
    }

    template <class T>
128
    T parse_axis(const T& dim, const size_t num_dims) const
129
    {
Khalique's avatar
Khalique committed
130
        T new_dim = dim;
Khalique's avatar
Khalique committed
131
        if(is_nhwc and num_dims >= 4)
132
133
134
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
135
136
137
138
139
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
140
141
            }
        }
Khalique's avatar
Khalique committed
142
        return new_dim;
143
144
    }

145
146
147
148
149
150
151
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
152
153
154
155
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
156
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
157
        add_generic_op("Tanh", op::tanh{});
Khalique's avatar
Khalique committed
158
        add_generic_op("StopGradient", op::identity{});
Khalique's avatar
Khalique committed
159

160
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
161
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
162
        add_binary_op("SquaredDifference", op::sqdiff{});
Khalique's avatar
Khalique committed
163
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
164

165
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
166
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
Paul's avatar
Paul committed
167
        add_mem_op("ConcatV2", &tf_parser::parse_concat, false);
Khalique's avatar
Khalique committed
168
        add_mem_op("Const", &tf_parser::parse_constant);
Paul's avatar
Paul committed
169
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Paul's avatar
Paul committed
170
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
171
        add_mem_op("ExpandDims", &tf_parser::parse_expanddims, false);
Khalique's avatar
Khalique committed
172
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
Paul's avatar
Paul committed
173
        add_mem_op("MatMul", &tf_parser::parse_matmul, false);
174
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
175
        add_mem_op("Mean", &tf_parser::parse_mean);
Khalique's avatar
Khalique committed
176
        add_mem_op("OneHot", &tf_parser::parse_onehot, false);
Paul's avatar
Paul committed
177
        add_mem_op("Pack", &tf_parser::parse_pack, false);
Paul's avatar
Paul committed
178
        add_mem_op("Pad", &tf_parser::parse_pad);
Paul's avatar
Paul committed
179
        add_mem_op("Reshape", &tf_parser::parse_reshape, false);
180
        add_mem_op("Softmax", &tf_parser::parse_softmax);
Paul's avatar
Paul committed
181
        add_mem_op("Squeeze", &tf_parser::parse_squeeze, false);
182
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice);
Khalique's avatar
Khalique committed
183
        add_mem_op("Transpose", &tf_parser::parse_transpose, false);
Khalique's avatar
Khalique committed
184
185
    }

186
    template <class F>
Paul's avatar
Paul committed
187
    void add_op(std::string name, F f, bool transpose = true)
188
    {
Paul's avatar
Paul committed
189
        if(transpose)
Paul's avatar
Paul committed
190
        {
Paul's avatar
Paul committed
191
192
            ops.emplace(name,
                        op_func{[=](const attribute_map& attributes,
Paul's avatar
Paul committed
193
                                    const std::vector<instruction_ref>& args) -> instruction_ref {
Paul's avatar
Paul committed
194
195
                            return to_nhwc(f(attributes, to_nchw(args)));
                        }});
Paul's avatar
Paul committed
196
197
198
199
200
        }
        else
        {
            ops.emplace(name, f);
        }
201
202
    }

Khalique's avatar
Khalique committed
203
    template <class F>
Paul's avatar
Paul committed
204
    void add_mem_op(std::string name, F f, bool transpose = true)
Khalique's avatar
Khalique committed
205
    {
Paul's avatar
Paul committed
206
207
208
209
210
        add_op(name,
               [=](auto&&... xs) {
                   return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
               },
               transpose);
Khalique's avatar
Khalique committed
211
212
213
214
215
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   if(args.size() != 2)
                       MIGRAPHX_THROW("binary operators should have 2 operands");
                   // TODO
                   // if(contains(attributes, "data_format"))
                   // {
                   //     if(is_nhwc)
                   //     {
                   //         l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
                   //     }
                   // }
                   return add_broadcastable_binary_op(args[0], args[1], x);
               },
               false);
Khalique's avatar
Khalique committed
231
232
233
234
235
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
236
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
252
253
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
254
255
256
257
258

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

259
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
260
261
262
263
264
265
266
267
268
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
Paul's avatar
Paul committed
269
            return to_nhwc(prog.add_instruction(x, to_nchw(l0), to_nchw(l1)));
Khalique's avatar
Khalique committed
270
271
272
        }
        else
        {
Paul's avatar
Paul committed
273
            return to_nhwc(prog.add_instruction(x, {to_nchw(arg0), to_nchw(arg1)}));
Khalique's avatar
Khalique committed
274
275
276
277
        }
    }

    template <class T>
Paul's avatar
Paul committed
278
    void add_generic_op(std::string name, T x, bool transpose = true)
Khalique's avatar
Khalique committed
279
    {
Paul's avatar
Paul committed
280
281
282
283
284
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   return prog.add_instruction(x, args);
               },
               transpose);
Khalique's avatar
Khalique committed
285
286
287
288
289
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
290
291
292
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
293
294
295
296
297
298
299
300
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

301
    instruction_ref
Khalique's avatar
Khalique committed
302
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
303
    {
304
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
305
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
306
        return prog.add_instruction(op::add{}, args[0], l0);
307
308
    }

Khalique's avatar
Khalique committed
309
310
311
312
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
313
        size_t axis_idx = attributes.at("N").i();
Paul's avatar
Paul committed
314
        size_t axis     = args[axis_idx]->eval().at<int64_t>();
Khalique's avatar
Khalique committed
315
        op::concat op{axis};
316
        // return only first N arguments (assuming last index is the axis value)
Paul's avatar
Paul committed
317
318
        return prog.add_instruction(
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
319
320
321
322
323
324
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Paul's avatar
Paul committed
325
        literal v = parse_tensor(attributes.at("value").tensor());
Paul's avatar
Paul committed
326
        return prog.add_literal(v);
Khalique's avatar
Khalique committed
327
328
329
330
331
332
333
334
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "strides"))
        {
335
            std::vector<size_t> stride;
336
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
337
            reorder_data(stride);
338
339
            if(stride.size() != 4)
            {
340
                MIGRAPHX_THROW("strides should have 4 values");
341
            }
342
343
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
344
345
346
        }
        if(contains(attributes, "dilations"))
        {
347
            std::vector<size_t> dilation;
348
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
349
            reorder_data(dilation);
350
351
352
353
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
354
355
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
356
        }
Khalique's avatar
Khalique committed
357

Paul's avatar
Paul committed
358
        auto weights = to_kcxy(args[1]);
Paul's avatar
Paul committed
359
        auto l0      = args[0];
Khalique's avatar
Khalique committed
360
361
362
363
364
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
365
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
366
367
368
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];
Khalique's avatar
Khalique committed
369
370

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
371
372
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
373
374
375
376
377
378
379
380
381
382
383
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
384
385
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
386
                }
387
388
389
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
390
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
391
            }
Khalique's avatar
Khalique committed
392
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
393
            {
394
                std::vector<size_t> padding;
395
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
396
397
398
399
400
401
402
403
404
405
406
407
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
Paul's avatar
Paul committed
408
        return prog.add_instruction(op, {l0, to_kcxy(args[1])});
Khalique's avatar
Khalique committed
409
410
    }

Khalique's avatar
Khalique committed
411
412
413
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
414
415
416
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
417
        op.group            = num_channels;
Khalique's avatar
Khalique committed
418

Khalique's avatar
Khalique committed
419
420
        if(contains(attributes, "strides"))
        {
421
            std::vector<size_t> stride;
422
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
423
            reorder_data(stride);
424
425
            if(stride.size() != 4)
            {
426
                MIGRAPHX_THROW("strides should have 4 values");
427
            }
428
429
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
430
        }
Paul's avatar
Paul committed
431
432

        auto weights = to_kcxy(args[1]);
Khalique's avatar
Khalique committed
433
434
        if(contains(attributes, "dilations"))
        {
435
            std::vector<size_t> dilation;
436
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
437
            reorder_data(dilation);
438
439
440
441
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
442
443
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
444
445
        }

Khalique's avatar
Khalique committed
446
        auto l0 = args[0];
Khalique's avatar
Khalique committed
447
448
449
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
Khalique's avatar
Khalique committed
450

Khalique's avatar
Khalique committed
451
452
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
453
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
454
455
456
457
458
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
459
460
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
461
462
463
464
465
466
467
468
469
470
471
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
472
473
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
474
                }
Khalique's avatar
Khalique committed
475
            }
Khalique's avatar
Khalique committed
476
            else if(pad_mode.find("VALID") != std::string::npos)
Khalique's avatar
Khalique committed
477
            {
Khalique's avatar
Khalique committed
478
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
479
480
            }
        }
Khalique's avatar
Khalique committed
481

Khalique's avatar
Khalique committed
482
483
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
484
485
486
487

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
488
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
489
490
491
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
492
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
493
494
        auto new_weights =
            prog.add_instruction(op::reshape{new_weights_shape}, make_contiguous(weights));
Khalique's avatar
Khalique committed
495

Khalique's avatar
Khalique committed
496
        return prog.add_instruction(op, {l0, new_weights});
Khalique's avatar
Khalique committed
497
498
    }

Khalique's avatar
Khalique committed
499
500
    instruction_ref
    parse_expanddims(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
501
502
    {
        std::vector<size_t> input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
503
        std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
Khalique's avatar
Khalique committed
504
        size_t num_dims = input_dims.size();
505
        int32_t dim     = args[1]->eval().at<int32_t>();
Khalique's avatar
Khalique committed
506
507

        if(dim < 0)
Khalique's avatar
Khalique committed
508
509
510
511
512
513
514
515
516
517
        {
            new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
        }
        else
        {
            new_dims.insert(new_dims.begin() + dim, 1);
        }
        return prog.add_instruction(op::reshape{new_dims}, args[0]);
    }

Khalique's avatar
Khalique committed
518
519
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
520
521
522
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
523

524
525
526
527
528
529
530
531
532
533
534
535
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
            transb = attributes.at("transpose_a").b();
        }

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
536
        std::iter_swap(perm.end() - 1, perm.end() - 2);
537
538
539
540
541
542
543

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
544
545
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
546
547
    {
        bool keep_dims = attributes.at("keep_dims").b();
Paul's avatar
Paul committed
548
        std::vector<int32_t> hw_axes{2, 3};
Khalique's avatar
Khalique committed
549
        // check if conditions for GlobalAvgPool are met
Khalique's avatar
Khalique committed
550
        auto lens = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
551
552
        auto axes = parse_axes(args[1]->eval().get<int32_t>().to_vector(), lens.size());

Khalique's avatar
Khalique committed
553
        if(axes == hw_axes and lens.size() == 4)
Khalique's avatar
Khalique committed
554
555
        {
            op::pooling op{"average"};
Khalique's avatar
Khalique committed
556
557
            op.lengths[0] = lens[2];
            op.lengths[1] = lens[3];
Khalique's avatar
Khalique committed
558
559
560
561
562
            auto l0       = prog.add_instruction(op, args.front());
            if(keep_dims)
                return l0;
            return prog.add_instruction(
                op::squeeze{std::vector<int64_t>(hw_axes.begin(), hw_axes.end())}, l0);
Khalique's avatar
Khalique committed
563
564
565
566
        }
        MIGRAPHX_THROW("MIGraphX does not support mean outside of GlobalAvgPool transformation");
    }

Khalique's avatar
Khalique committed
567
568
569
    instruction_ref
    parse_onehot(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
570
571
572
        // auto indices       = args[0]->eval().get<int32_t>().to_vector();
        size_t depth          = static_cast<size_t>(args[1]->eval().at<int32_t>());
        
Khalique's avatar
Khalique committed
573
        int64_t axis       = -1;
Khalique's avatar
Khalique committed
574
        // size_t num_indices = indices.size();
Khalique's avatar
Khalique committed
575
576
        float on_value     = args[2]->eval().at<float>();
        float off_value    = args[3]->eval().at<float>();
Khalique's avatar
Khalique committed
577
578
579
580
581
582
583

        std::vector<float> depth_input(depth*depth, off_value);
        for(int i = 0; i < depth; i++)
        {
            depth_input[depth*i + i] = on_value;
        }
        
Khalique's avatar
Khalique committed
584
        if(contains(attributes, "axis"))
Khalique's avatar
Khalique committed
585
586
587
            axis = attributes.at("axis").i();
        if(axis == -1)
        {
Khalique's avatar
Khalique committed
588
589
590
            shape s{shape::float_type, {depth, depth}};
            auto l0 = prog.add_literal({s, depth_input});
            return prog.add_instruction(op::gather{0}, {l0, args[0]});
Khalique's avatar
Khalique committed
591
592
593
594
        }
        MIGRAPHX_THROW("MIGraphX does not support axis != -1");
    }

Khalique's avatar
Khalique committed
595
596
597
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
598
599
600
601
602
603
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
604
605
606
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
607
608
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
609
610
        }

Khalique's avatar
Khalique committed
611
612
613
614
615
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Paul's avatar
Paul committed
616
617
        return to_nhwc(
            prog.add_instruction(op::concat{static_cast<size_t>(axis)}, unsqueezed_args));
Khalique's avatar
Khalique committed
618
619
    }

Khalique's avatar
Khalique committed
620
621
622
623
624
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
625
626
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
627
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
Paul's avatar
Paul committed
628
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
629
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
630
        {
Khalique's avatar
Khalique committed
631
632
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
633
634
635
636
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
637
638
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
639
        {
Khalique's avatar
Khalique committed
640
641
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
642
643
        }
        op.pads = pads;
Paul's avatar
Paul committed
644
        return prog.add_instruction(op, args.front());
Khalique's avatar
Khalique committed
645
646
    }

647
648
649
650
651
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
652

653
654
        if(contains(attributes, "strides"))
        {
655
            std::vector<size_t> stride;
656
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
657
            reorder_data(stride);
658
659
660
661
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
662
663
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
664
665
666
        }
        if(contains(attributes, "ksize"))
        {
667
            std::vector<size_t> ksize;
668
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
669
            reorder_data(ksize);
670
671
672
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
673
            }
674
675
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
676
        }
Khalique's avatar
Khalique committed
677
678

        auto l0 = args[0];
Khalique's avatar
Khalique committed
679
680
681
682
683
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
684
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
685
                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
686
687
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
688
689
690
691
692
693
694
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], 1, op.lengths[0]);
                calculate_padding(1, pads, input_w, op.stride[1], 1, op.lengths[1]);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
Khalique's avatar
Khalique committed
695
696
                    l0                           = prog.add_instruction(
                        migraphx::op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
Khalique's avatar
Khalique committed
697
698
699
                }
                else
                {
Khalique's avatar
Khalique committed
700
701
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
702
                }
Khalique's avatar
Khalique committed
703
704
705
706
707
708
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
Khalique's avatar
Khalique committed
709
        return prog.add_instruction(op, l0);
710
    }
Khalique's avatar
Khalique committed
711

712
    instruction_ref
Khalique's avatar
Khalique committed
713
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
714
715
716
717
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
718
        auto s = args[1]->eval();
719
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
720
        return prog.add_instruction(op, make_contiguous(args[0]));
721
722
    }

Khalique's avatar
Khalique committed
723
724
725
726
727
728
729
730
731
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
732
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
733
734
735
        }
    }

736
737
738
739
740
741
742
743
744
745
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    }

Khalique's avatar
Khalique committed
746
747
748
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
749
750
    {
        op::squeeze op;
Khalique's avatar
Khalique committed
751
        auto input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
752
        auto axes       = attributes.at("squeeze_dims").list().i();
753
        copy(axes, std::back_inserter(op.axes));
Khalique's avatar
Khalique committed
754

755
756
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
Khalique's avatar
Khalique committed
757
            for(size_t i = 0; i < input_dims.size(); i++)
758
            {
Khalique's avatar
Khalique committed
759
                if(input_dims.at(i) == 1)
760
761
762
763
                {
                    op.axes.push_back(i);
                }
            }
764
        }
Paul's avatar
Paul committed
765
        return prog.add_instruction(op, make_contiguous(args[0]));
766
767
    }

Khalique's avatar
Khalique committed
768
769
770
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
771
772
    {
        op::slice op;
Khalique's avatar
Khalique committed
773
774
775
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto ends       = args[2]->eval().get<int32_t>().to_vector();
        size_t num_axes = args[0]->get_shape().lens().size();
776

Khalique's avatar
Khalique committed
777
778
779
780
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
781
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
782
        uint32_t bitwise_compare  = 1;
783
784
785
        std::vector<int64_t> squeeze_axes;

        if(contains(attributes, "shrink_axis_mask"))
786
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
787

Khalique's avatar
Khalique committed
788
        for(size_t i = 0; i < num_axes; i++)
789
        {
790
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
791
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
792
793
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
794

Paul's avatar
Paul committed
795
796
        auto l0 = prog.add_instruction(op, make_contiguous(args[0]));
        return to_nhwc(prog.add_instruction(op::squeeze{squeeze_axes}, l0));
797
798
    }

Khalique's avatar
Khalique committed
799
800
    instruction_ref
    parse_transpose(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
801
802
803
804
805
806
807
808
    {
        auto perm = args[1]->eval().get<int32_t>().to_vector();
        op::transpose op;
        op.dims = std::vector<int64_t>(perm.begin(), perm.end());

        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
809
810
811
812
813
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
814
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
815
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
816
817
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
818
            if(is_nhwc and dims.size() >= 4)
819
            {
820
                reorder_data(dims);
821
            }
Khalique's avatar
Khalique committed
822
            shape s            = shape{shape_type, dims};
Paul's avatar
Paul committed
823
            instructions[name] = to_nhwc(prog.add_parameter(name, s));
Khalique's avatar
Khalique committed
824
825
826
        }
        for(auto&& p : nodes)
        {
827
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
854
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
855
856
857
858
859
860
861
862
863
864
865
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
866
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
867
868
869
870
871
872
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
873
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
874

Khalique's avatar
Khalique committed
875
876
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_INVALID:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
        case tensorflow::DataType::DT_STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case tensorflow::DataType::DT_COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case tensorflow::DataType::DT_QINT8:
            break; // throw std::runtime_error("Unsupported type QINT8");
        case tensorflow::DataType::DT_QUINT8:
            break; // throw std::runtime_error("Unsupported type QUINT8");
        case tensorflow::DataType::DT_QINT32:
            break; // throw std::runtime_error("Unsupported type QINT32");
        case tensorflow::DataType::DT_BFLOAT16:
            break; // throw std::runtime_error("Unsupported type BFLOAT16");
        case tensorflow::DataType::DT_QINT16:
            break; // throw std::runtime_error("Unsupported type QINT16");
        case tensorflow::DataType::DT_QUINT16:
            break; // throw std::runtime_error("Unsupported type QUINT16");
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_RESOURCE:
            break; // throw std::runtime_error("Unsupported type RESOURCE");
        case tensorflow::DataType::DT_VARIANT:
            break; // throw std::runtime_error("Unsupported type VARIANT");
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Khalique's avatar
Khalique committed
936
937
938
        case tensorflow::DataType::DT_UINT64:
            shape_type = shape::uint64_type;
            break;
Khalique's avatar
Khalique committed
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965

        // tf pb should not use these types
        case tensorflow::DataType::DT_FLOAT_REF: break;
        case tensorflow::DataType::DT_DOUBLE_REF: break;
        case tensorflow::DataType::DT_INT32_REF: break;
        case tensorflow::DataType::DT_UINT8_REF: break;
        case tensorflow::DataType::DT_INT16_REF: break;
        case tensorflow::DataType::DT_INT8_REF: break;
        case tensorflow::DataType::DT_STRING_REF: break;
        case tensorflow::DataType::DT_COMPLEX64_REF: break;
        case tensorflow::DataType::DT_INT64_REF: break;
        case tensorflow::DataType::DT_BOOL_REF: break;
        case tensorflow::DataType::DT_QINT8_REF: break;
        case tensorflow::DataType::DT_QUINT8_REF: break;
        case tensorflow::DataType::DT_QINT32_REF: break;
        case tensorflow::DataType::DT_BFLOAT16_REF: break;
        case tensorflow::DataType::DT_QINT16_REF: break;
        case tensorflow::DataType::DT_QUINT16_REF: break;
        case tensorflow::DataType::DT_UINT16_REF: break;
        case tensorflow::DataType::DT_COMPLEX128_REF: break;
        case tensorflow::DataType::DT_HALF_REF: break;
        case tensorflow::DataType::DT_RESOURCE_REF: break;
        case tensorflow::DataType::DT_VARIANT_REF: break;
        case tensorflow::DataType::DT_UINT32_REF: break;
        case tensorflow::DataType::DT_UINT64_REF: break;
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_: break;
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
966
967
968
969
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
970
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
971
972
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
973
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
974
975
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
976
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
977
978
979
            switch(t.dtype())
            {
            case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
Khalique's avatar
Khalique committed
980
981
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Khalique's avatar
Khalique committed
982
            case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
983
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
984
            case tensorflow::DataType::DT_UINT16:
985
                return literal{{shape::uint16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
986
            case tensorflow::DataType::DT_INT16:
987
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
988
989
990
991
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
992
            case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
993
            case tensorflow::DataType::DT_BOOL: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
994
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
995
996
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Khalique's avatar
Khalique committed
997
998
999
1000
            case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
            case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
            case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1032
1033
1034
1035
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
1036
1037
1038
1039
1040
1041
1042
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
1043
1044
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
1045
1046
        case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8:
1047
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1048
        case tensorflow::DataType::DT_UINT16:
1049
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1050
        case tensorflow::DataType::DT_INT16:
1051
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1052
        case tensorflow::DataType::DT_INT32:
1053
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1054
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
1055
1056
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
1057
1058
        case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL:
1059
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
1060
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
1061
        {
1062
1063
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
1064
1065
1066
1067
1068
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1069
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1070
        }
Khalique's avatar
Khalique committed
1071
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
1072
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Khalique's avatar
Khalique committed
1073
1074
1075
1076
        case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
        case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1108
1109
1110
1111
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
1112
1113
1114
1115
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

1116
    template <class T>
Khalique's avatar
Khalique committed
1117
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
1118
                                        const size_t& shape_size)
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
1131
1132
1133
1134
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
1135
1136
1137
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
1138
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
1139
1140
        return dims;
    }
1141
1142

    template <class T>
Khalique's avatar
Khalique committed
1143
    static literal
1144
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
1145
    {
Khalique's avatar
Khalique committed
1146
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
1147
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1148
            return literal{{shape_type}, data};
1149
1150
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
Paul's avatar
Paul committed
1173
    parser.to_nchw(std::prev(parser.prog.end()));
Khalique's avatar
Khalique committed
1174
1175
1176
1177
1178
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx