tf.cpp 47.9 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
Khalique's avatar
Khalique committed
20
#include <migraphx/pad_calc.hpp>
Khalique's avatar
Khalique committed
21
22
23
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Paul's avatar
Paul committed
28
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
29
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
30

Khalique's avatar
Khalique committed
31
32
33
34
35
36
37
38
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Paul's avatar
Paul committed
39
    bool should_transpose(instruction_ref ins) const
Paul's avatar
Paul committed
40
41
42
43
44
45
    {
        return is_nhwc and ins->get_shape().lens().size() == 4;
    }

    instruction_ref to_nhwc(instruction_ref ins)
    {
Paul's avatar
Paul committed
46
        if(should_transpose(ins))
Paul's avatar
Paul committed
47
48
49
50
51
52
            return prog.add_instruction(op::transpose{{0, 2, 3, 1}}, ins);
        return ins;
    }

    instruction_ref to_nchw(instruction_ref ins)
    {
Paul's avatar
Paul committed
53
        if(should_transpose(ins))
Paul's avatar
Paul committed
54
55
56
57
58
59
            return prog.add_instruction(op::transpose{{0, 3, 1, 2}}, ins);
        return ins;
    }

    instruction_ref to_kcxy(instruction_ref ins)
    {
Paul's avatar
Paul committed
60
        if(should_transpose(ins))
Paul's avatar
Paul committed
61
62
63
64
65
66
            return prog.add_instruction(op::transpose{{3, 2, 0, 1}}, ins);
        return ins;
    }

    instruction_ref make_contiguous(instruction_ref ins)
    {
Paul's avatar
Paul committed
67
        if(ins->get_shape().standard())
Paul's avatar
Paul committed
68
69
70
71
72
73
74
75
            return ins;
        else
            return prog.add_instruction(op::contiguous{}, ins);
    }

    std::vector<instruction_ref> to_nchw(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
Paul's avatar
Paul committed
76
        std::transform(
Paul's avatar
Paul committed
77
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nchw(ins); });
Paul's avatar
Paul committed
78
79
80
        return result;
    }

Khalique's avatar
Khalique committed
81
    std::vector<size_t>
82
    parse_axes(const attribute_map& attributes, const std::string& s, const size_t num_dims) const
83
    {
84
85
86
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
87
        if(is_nhwc)
88
        {
Khalique's avatar
Khalique committed
89
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
Khalique's avatar
Khalique committed
90
                return parse_axis(axis, num_dims);
Khalique's avatar
Khalique committed
91
            });
92
93
94
95
        }
        return axes;
    }

Khalique's avatar
Khalique committed
96
    template <class T>
97
    std::vector<T> parse_axes(std::vector<T> axes, const size_t num_dims) const
Khalique's avatar
Khalique committed
98
99
100
    {
        if(is_nhwc)
        {
101
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
102
103
104
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
Khalique's avatar
Khalique committed
105
                           [&](size_t axis) { return parse_axis(axis, num_dims); });
106
            return new_axes;
Khalique's avatar
Khalique committed
107
        }
108
        return axes;
Khalique's avatar
Khalique committed
109
110
    }

Khalique's avatar
Khalique committed
111
112
113
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
114
    template <class T>
115
    void reorder_data(std::vector<T>& prev_data) const
116
117
    {
        std::vector<T> new_data(prev_data.size());
118
        for(size_t i = 0; i < new_data.size(); i++)
119
        {
Khalique's avatar
Khalique committed
120
            auto new_idx         = parse_axis(i, new_data.size());
121
            new_data.at(new_idx) = prev_data.at(i);
122
        }
123
124
125
126
        prev_data = new_data;
    }

    template <class T>
127
    T parse_axis(const T& dim, const size_t num_dims) const
128
    {
Khalique's avatar
Khalique committed
129
        T new_dim = dim;
Khalique's avatar
Khalique committed
130
        if(is_nhwc and num_dims >= 4)
131
132
133
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
134
135
136
137
138
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
139
140
            }
        }
Khalique's avatar
Khalique committed
141
        return new_dim;
142
143
    }

144
145
146
147
148
149
150
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
151
152
    tf_parser()
    {
Khalique's avatar
Khalique committed
153
        add_generic_op("All", op::identity{});
Khalique's avatar
Khalique committed
154
        add_generic_op("Identity", op::identity{});
Khalique's avatar
Khalique committed
155
        add_generic_op("LessEqual", op::identity{});
Khalique's avatar
Khalique committed
156
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
157
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
158
        add_generic_op("Rsqrt", op::rsqrt{});
Khalique's avatar
Khalique committed
159
        add_generic_op("Tanh", op::tanh{});
Khalique's avatar
Khalique committed
160
        add_generic_op("StopGradient", op::identity{});
Khalique's avatar
Khalique committed
161

162
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
163
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
164
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
165
        add_binary_op("SquaredDifference", op::sqdiff{});
Khalique's avatar
Khalique committed
166
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
167

168
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
169
        add_mem_op("BatchMatMul", &tf_parser::parse_matmul, false);
170
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
Khalique's avatar
Khalique committed
171
        add_mem_op("Cast", &tf_parser::parse_cast, false);
Paul's avatar
Paul committed
172
        add_mem_op("ConcatV2", &tf_parser::parse_concat, false);
Khalique's avatar
Khalique committed
173
        add_mem_op("Const", &tf_parser::parse_constant);
Paul's avatar
Paul committed
174
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Paul's avatar
Paul committed
175
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
176
        add_mem_op("ExpandDims", &tf_parser::parse_expanddims, false);
Khalique's avatar
Khalique committed
177
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
Khalique's avatar
Khalique committed
178
        add_mem_op("GatherV2", &tf_parser::parse_gather, false);
Paul's avatar
Paul committed
179
        add_mem_op("MatMul", &tf_parser::parse_matmul, false);
180
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
181
        add_mem_op("Mean", &tf_parser::parse_mean, false);
Khalique's avatar
Khalique committed
182
        add_mem_op("OneHot", &tf_parser::parse_onehot, false);
Paul's avatar
Paul committed
183
        add_mem_op("Pack", &tf_parser::parse_pack, false);
Paul's avatar
Paul committed
184
        add_mem_op("Pad", &tf_parser::parse_pad);
Paul's avatar
Paul committed
185
        add_mem_op("Reshape", &tf_parser::parse_reshape, false);
Khalique's avatar
Khalique committed
186
        add_mem_op("Slice", &tf_parser::parse_slice, false);
187
        add_mem_op("Softmax", &tf_parser::parse_softmax<op::softmax>);
Paul's avatar
Paul committed
188
        add_mem_op("Squeeze", &tf_parser::parse_squeeze, false);
189
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice, false);
Khalique's avatar
Khalique committed
190
        add_mem_op("Transpose", &tf_parser::parse_transpose, false);
Khalique's avatar
Khalique committed
191
192
    }

193
    template <class F>
Paul's avatar
Paul committed
194
    void add_op(std::string name, F f, bool transpose = true)
195
    {
Paul's avatar
Paul committed
196
        if(transpose)
Paul's avatar
Paul committed
197
        {
Paul's avatar
Paul committed
198
199
            ops.emplace(name,
                        op_func{[=](const attribute_map& attributes,
Paul's avatar
Paul committed
200
                                    const std::vector<instruction_ref>& args) -> instruction_ref {
Paul's avatar
Paul committed
201
202
                            return to_nhwc(f(attributes, to_nchw(args)));
                        }});
Paul's avatar
Paul committed
203
204
205
206
207
        }
        else
        {
            ops.emplace(name, f);
        }
208
209
    }

Khalique's avatar
Khalique committed
210
    template <class F>
Paul's avatar
Paul committed
211
    void add_mem_op(std::string name, F f, bool transpose = true)
Khalique's avatar
Khalique committed
212
    {
Paul's avatar
Paul committed
213
214
215
216
217
        add_op(name,
               [=](auto&&... xs) {
                   return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
               },
               transpose);
Khalique's avatar
Khalique committed
218
219
220
221
222
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   if(args.size() != 2)
                       MIGRAPHX_THROW("binary operators should have 2 operands");
                   // TODO
                   // if(contains(attributes, "data_format"))
                   // {
                   //     if(is_nhwc)
                   //     {
                   //         l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
                   //     }
                   // }
                   return add_broadcastable_binary_op(args[0], args[1], x);
               },
               false);
Khalique's avatar
Khalique committed
238
239
240
241
242
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
243
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
259
260
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
261
262
263
264
265

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

266
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
267
268
269
270
271
272
273
274
275
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
Paul's avatar
Paul committed
276
            return to_nhwc(prog.add_instruction(x, to_nchw(l0), to_nchw(l1)));
Khalique's avatar
Khalique committed
277
278
279
        }
        else
        {
Paul's avatar
Paul committed
280
            return to_nhwc(prog.add_instruction(x, {to_nchw(arg0), to_nchw(arg1)}));
Khalique's avatar
Khalique committed
281
282
283
284
        }
    }

    template <class T>
Paul's avatar
Paul committed
285
    void add_generic_op(std::string name, T x, bool transpose = true)
Khalique's avatar
Khalique committed
286
    {
Paul's avatar
Paul committed
287
288
289
290
291
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   return prog.add_instruction(x, args);
               },
               transpose);
Khalique's avatar
Khalique committed
292
293
294
295
296
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
297
298
299
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
300
301
302
303
304
305
306
307
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

308
    instruction_ref
Khalique's avatar
Khalique committed
309
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
310
    {
311
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
312
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
313
        return prog.add_instruction(op::add{}, args[0], l0);
314
315
    }

Khalique's avatar
Khalique committed
316
317
318
319
320
321
322
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        shape::type_t type = parse_type(attributes.at("DstT").type());
        return prog.add_instruction(op::convert{type}, std::move(args));
    }

Khalique's avatar
Khalique committed
323
324
325
326
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
327
        size_t axis_idx = attributes.at("N").i();
Paul's avatar
Paul committed
328
        size_t axis     = args[axis_idx]->eval().at<int64_t>();
Khalique's avatar
Khalique committed
329
        op::concat op{axis};
330
        // return only first N arguments (assuming last index is the axis value)
Paul's avatar
Paul committed
331
332
        return prog.add_instruction(
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
333
334
335
336
337
338
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Paul's avatar
Paul committed
339
        literal v = parse_tensor(attributes.at("value").tensor());
Paul's avatar
Paul committed
340
        return prog.add_literal(v);
Khalique's avatar
Khalique committed
341
342
343
344
345
346
347
348
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "strides"))
        {
349
            std::vector<size_t> stride;
350
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
351
            reorder_data(stride);
352
353
            if(stride.size() != 4)
            {
354
                MIGRAPHX_THROW("strides should have 4 values");
355
            }
356
357
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
358
359
360
        }
        if(contains(attributes, "dilations"))
        {
361
            std::vector<size_t> dilation;
362
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
363
            reorder_data(dilation);
364
365
366
367
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
368
369
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
370
        }
Khalique's avatar
Khalique committed
371

Paul's avatar
Paul committed
372
        auto weights = to_kcxy(args[1]);
Paul's avatar
Paul committed
373
        auto l0      = args[0];
Khalique's avatar
Khalique committed
374
375
376
377
378
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
379
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
380
381
382
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];
Khalique's avatar
Khalique committed
383
384

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
385
386
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
387
388
389
390
391
392
393
394
395
396
397
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
398
399
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
400
                }
401
402
403
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
404
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
405
            }
Khalique's avatar
Khalique committed
406
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
407
            {
408
                std::vector<size_t> padding;
409
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
410
411
412
413
414
415
416
417
418
419
420
421
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
Paul's avatar
Paul committed
422
        return prog.add_instruction(op, {l0, to_kcxy(args[1])});
Khalique's avatar
Khalique committed
423
424
    }

Khalique's avatar
Khalique committed
425
426
427
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
428
429
430
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
431
        op.group            = num_channels;
Khalique's avatar
Khalique committed
432

Khalique's avatar
Khalique committed
433
434
        if(contains(attributes, "strides"))
        {
435
            std::vector<size_t> stride;
436
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
437
            reorder_data(stride);
438
439
            if(stride.size() != 4)
            {
440
                MIGRAPHX_THROW("strides should have 4 values");
441
            }
442
443
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
444
        }
Paul's avatar
Paul committed
445
446

        auto weights = to_kcxy(args[1]);
Khalique's avatar
Khalique committed
447
448
        if(contains(attributes, "dilations"))
        {
449
            std::vector<size_t> dilation;
450
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
451
            reorder_data(dilation);
452
453
454
455
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
456
457
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
458
459
        }

Khalique's avatar
Khalique committed
460
        auto l0 = args[0];
Khalique's avatar
Khalique committed
461
462
463
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
Khalique's avatar
Khalique committed
464

Khalique's avatar
Khalique committed
465
466
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
467
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
468
469
470
471
472
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
473
474
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
475
476
477
478
479
480
481
482
483
484
485
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
486
487
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
488
                }
Khalique's avatar
Khalique committed
489
            }
Khalique's avatar
Khalique committed
490
            else if(pad_mode.find("VALID") != std::string::npos)
Khalique's avatar
Khalique committed
491
            {
Khalique's avatar
Khalique committed
492
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
493
494
            }
        }
Khalique's avatar
Khalique committed
495

Khalique's avatar
Khalique committed
496
497
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
498
499
500
501

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
502
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
503
504
505
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
506
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
507
508
        auto new_weights =
            prog.add_instruction(op::reshape{new_weights_shape}, make_contiguous(weights));
Khalique's avatar
Khalique committed
509

Khalique's avatar
Khalique committed
510
        return prog.add_instruction(op, {l0, new_weights});
Khalique's avatar
Khalique committed
511
512
    }

Khalique's avatar
Khalique committed
513
514
    instruction_ref
    parse_expanddims(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
515
516
    {
        std::vector<size_t> input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
517
        std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
Khalique's avatar
Khalique committed
518
        size_t num_dims = input_dims.size();
519
        int32_t dim     = args[1]->eval().at<int32_t>();
Khalique's avatar
Khalique committed
520
521

        if(dim < 0)
Khalique's avatar
Khalique committed
522
523
524
525
526
527
528
529
530
531
        {
            new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
        }
        else
        {
            new_dims.insert(new_dims.begin() + dim, 1);
        }
        return prog.add_instruction(op::reshape{new_dims}, args[0]);
    }

Khalique's avatar
Khalique committed
532
533
534
535
536
537
538
539
    instruction_ref
    parse_gather(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        int axis = args[2]->eval().at<int32_t>();
        op::gather op{axis};
        return prog.add_instruction(op, {args[0], args[1]});
    }

Khalique's avatar
Khalique committed
540
541
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
542
543
544
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
545

546
547
548
549
550
551
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
Khalique's avatar
Khalique committed
552
            transb = attributes.at("transpose_b").b();
553
554
        }

Khalique's avatar
Khalique committed
555
556
557
558
559
560
561
562
563
        if(contains(attributes, "adj_x"))
        {
            transa = attributes.at("adj_x").b();
        }
        if(contains(attributes, "adj_y"))
        {
            transb = attributes.at("adj_y").b();
        }

564
565
566
        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
567
        std::iter_swap(perm.end() - 1, perm.end() - 2);
568
569
570
571
572
573
574

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
575
576
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
577
    {
Khalique's avatar
Khalique committed
578
        bool keep_dims                  = attributes.at("keep_dims").b();
Khalique's avatar
Khalique committed
579
580
        auto lens                       = args[0]->get_shape().lens();
        auto axes                       = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
581
582
        std::vector<int64_t> axes_int64 = std::vector<int64_t>(axes.begin(), axes.end());

Khalique's avatar
Khalique committed
583
        auto l0 = prog.add_instruction(op::reduce_mean{axes_int64}, args.front());
Khalique's avatar
Khalique committed
584
585
        if(keep_dims)
            return l0;
Khalique's avatar
Khalique committed
586
        return prog.add_instruction(op::squeeze{axes_int64}, l0);
Khalique's avatar
Khalique committed
587
588
    }

Khalique's avatar
Khalique committed
589
590
591
    instruction_ref
    parse_onehot(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
592
593
        size_t depth = static_cast<size_t>(args[1]->eval().at<int32_t>());

Khalique's avatar
Khalique committed
594
        int64_t axis    = -1;
Khalique's avatar
Khalique committed
595
596
        float on_value  = args[2]->eval().at<float>();
        float off_value = args[3]->eval().at<float>();
Khalique's avatar
Khalique committed
597

Khalique's avatar
Khalique committed
598
        std::vector<float> depth_input(depth * depth, off_value);
Khalique's avatar
Khalique committed
599
600
        for(int i = 0; i < depth; i++)
        {
Khalique's avatar
Khalique committed
601
            depth_input[depth * i + i] = on_value;
Khalique's avatar
Khalique committed
602
        }
Khalique's avatar
Khalique committed
603

Khalique's avatar
Khalique committed
604
        if(contains(attributes, "axis"))
Khalique's avatar
Khalique committed
605
606
607
            axis = attributes.at("axis").i();
        if(axis == -1)
        {
Khalique's avatar
Khalique committed
608
609
610
            shape s{shape::float_type, {depth, depth}};
            auto l0 = prog.add_literal({s, depth_input});
            return prog.add_instruction(op::gather{0}, {l0, args[0]});
Khalique's avatar
Khalique committed
611
612
613
614
        }
        MIGRAPHX_THROW("MIGraphX does not support axis != -1");
    }

Khalique's avatar
Khalique committed
615
616
617
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
618
619
620
621
622
623
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
624
625
626
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
627
628
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
629
630
        }

Khalique's avatar
Khalique committed
631
632
633
634
635
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Paul's avatar
Paul committed
636
637
        return to_nhwc(
            prog.add_instruction(op::concat{static_cast<size_t>(axis)}, unsqueezed_args));
Khalique's avatar
Khalique committed
638
639
    }

Khalique's avatar
Khalique committed
640
641
642
643
644
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
645
646
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
647
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
Paul's avatar
Paul committed
648
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
649
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
650
        {
Khalique's avatar
Khalique committed
651
652
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
653
654
655
656
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
657
658
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
659
        {
Khalique's avatar
Khalique committed
660
661
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
662
663
        }
        op.pads = pads;
Paul's avatar
Paul committed
664
        return prog.add_instruction(op, args.front());
Khalique's avatar
Khalique committed
665
666
    }

667
668
669
670
671
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
672

673
674
        if(contains(attributes, "strides"))
        {
675
            std::vector<size_t> stride;
676
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
677
            reorder_data(stride);
678
679
680
681
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
682
683
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
684
685
686
        }
        if(contains(attributes, "ksize"))
        {
687
            std::vector<size_t> ksize;
688
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
689
            reorder_data(ksize);
690
691
692
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
693
            }
694
695
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
696
        }
Khalique's avatar
Khalique committed
697
698

        auto l0 = args[0];
Khalique's avatar
Khalique committed
699
700
701
702
703
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
704
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
705
                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
706
707
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
708
709
710
711
712
713
714
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], 1, op.lengths[0]);
                calculate_padding(1, pads, input_w, op.stride[1], 1, op.lengths[1]);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
Khalique's avatar
Khalique committed
715
716
                    l0                           = prog.add_instruction(
                        migraphx::op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
Khalique's avatar
Khalique committed
717
718
719
                }
                else
                {
Khalique's avatar
Khalique committed
720
721
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
722
                }
Khalique's avatar
Khalique committed
723
724
725
726
727
728
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
Khalique's avatar
Khalique committed
729
        return prog.add_instruction(op, l0);
730
    }
Khalique's avatar
Khalique committed
731

732
    instruction_ref
Khalique's avatar
Khalique committed
733
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
734
735
736
737
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
738
        auto s = args[1]->eval();
739
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
740
        return prog.add_instruction(op, make_contiguous(args[0]));
741
742
    }

Khalique's avatar
Khalique committed
743
744
745
746
747
748
749
750
751
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
752
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
753
754
755
        }
    }

756
    instruction_ref
Khalique's avatar
Khalique committed
757
    parse_slice(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
758
    {
Khalique's avatar
Khalique committed
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
        op::slice op;
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto size       = args[2]->eval().get<int32_t>().to_vector();
        auto axes       = args[0]->get_shape().lens();
        size_t num_axes = axes.size();

        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(num_axes);
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
        for(size_t i = 0; i < num_axes; i++)
        {
            if(size[i] == -1)
                op.ends[i] = axes[i];
            else
                op.ends[i] = starts[i] + size[i];
        }
        return prog.add_instruction(op, make_contiguous(args[0]));
    }

Khalique's avatar
Khalique committed
779
780
781
782
783
    // template to facilitate the logsoftmax later
    template <class Op>
    instruction_ref parse_softmax(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
784
    {
Khalique's avatar
Khalique committed
785
        int axis      = -1;
Khalique's avatar
Khalique committed
786
787
788
789
790
791
792
793
794
795
796
        auto num_dims = args[0]->get_shape().lens().size();
        if(contains(attributes, "axis"))
        {
            axis = static_cast<int>(attributes.at("axis").i());
        }
        if(axis < 0)
        {
            axis += num_dims;
        }

        return prog.add_instruction(Op{axis}, make_contiguous(args[0]));
797
798
    }

Khalique's avatar
Khalique committed
799
800
801
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
802
803
    {
        op::squeeze op;
Khalique's avatar
Khalique committed
804
        auto input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
805
        auto axes       = attributes.at("squeeze_dims").list().i();
806
        copy(axes, std::back_inserter(op.axes));
Khalique's avatar
Khalique committed
807

808
809
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
Khalique's avatar
Khalique committed
810
            for(size_t i = 0; i < input_dims.size(); i++)
811
            {
Khalique's avatar
Khalique committed
812
                if(input_dims.at(i) == 1)
813
814
815
816
                {
                    op.axes.push_back(i);
                }
            }
817
        }
Paul's avatar
Paul committed
818
        return prog.add_instruction(op, make_contiguous(args[0]));
819
820
    }

Khalique's avatar
Khalique committed
821
822
823
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
824
825
    {
        op::slice op;
Khalique's avatar
Khalique committed
826
827
828
829
        auto starts              = args[1]->eval().get<int32_t>().to_vector();
        auto ends                = args[2]->eval().get<int32_t>().to_vector();
        auto l0                  = args[0];
        size_t num_axes          = l0->get_shape().lens().size();
830
        std::vector<size_t> axes = l0->get_shape().lens();
831

Khalique's avatar
Khalique committed
832
833
834
835
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
Khalique's avatar
Khalique committed
836
837
        uint32_t begin_mask       = 0;
        uint32_t end_mask         = 0;
838
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
839
        uint32_t bitwise_compare  = 1;
Khalique's avatar
Khalique committed
840
841
        std::vector<int64_t> begin_axes;
        std::vector<int64_t> end_axes;
842
843
        std::vector<int64_t> squeeze_axes;

Khalique's avatar
Khalique committed
844
845
846
847
848
849
        if(contains(attributes, "begin_mask"))
            begin_mask = static_cast<uint32_t>(attributes.at("begin_mask").i());

        if(contains(attributes, "end_mask"))
            end_mask = static_cast<uint32_t>(attributes.at("end_mask").i());

850
        if(contains(attributes, "shrink_axis_mask"))
851
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
852

Khalique's avatar
Khalique committed
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
        for(size_t i = 0; i < num_axes; i++)
        {
            // the LSB corresponds to axis 0 when determining which axes to begin
            if(((begin_mask >> i) & bitwise_compare) == 1)
                begin_axes.push_back(1);
            else
                begin_axes.push_back(0);
        }

        for(size_t i = 0; i < num_axes; i++)
        {
            // the LSB corresponds to axis 0 when determining which axes to end
            if(((end_mask >> i) & bitwise_compare) == 1)
                end_axes.push_back(1);
            else
                end_axes.push_back(0);
        }

        for(size_t i = 0; i < num_axes; i++)
        {
            if(begin_axes.at(i) == 1)
            {
                op.starts.at(i) = 0;
            }
            if(end_axes.at(i) == 1)
            {
                op.ends.at(i) = axes.at(i);
            }
        }

883
        auto l1 = prog.add_instruction(op, l0);
Khalique's avatar
Khalique committed
884
        if(shrink_axis_mask == 0)
885
            return l1;
Khalique's avatar
Khalique committed
886

Khalique's avatar
Khalique committed
887
        for(size_t i = 0; i < num_axes; i++)
888
        {
889
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
890
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
891
892
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
893

894
        return prog.add_instruction(op::squeeze{squeeze_axes}, l1);
895
896
    }

Khalique's avatar
Khalique committed
897
898
    instruction_ref
    parse_transpose(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
899
900
901
902
903
904
905
906
    {
        auto perm = args[1]->eval().get<int32_t>().to_vector();
        op::transpose op;
        op.dims = std::vector<int64_t>(perm.begin(), perm.end());

        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
907
908
909
910
911
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
912
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
913
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
914
915
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
916
            if(is_nhwc and dims.size() >= 4)
917
            {
918
                reorder_data(dims);
919
            }
Khalique's avatar
Khalique committed
920
            shape s            = shape{shape_type, dims};
Paul's avatar
Paul committed
921
            instructions[name] = to_nhwc(prog.add_parameter(name, s));
Khalique's avatar
Khalique committed
922
923
924
        }
        for(auto&& p : nodes)
        {
925
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
926
927
928
929
930
931
932
933
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
Khalique's avatar
Khalique committed
934
935
936
            // assert ops ignored
            if(node.op() == "Assert" or contains(name, "Assert"))
                return;
Khalique's avatar
Khalique committed
937
938
939
940
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
Khalique's avatar
Khalique committed
941
942
943
                // control dependencies (signified by ^ before the name) are ignored
                if(contains(input, "^"))
                    continue;
Khalique's avatar
Khalique committed
944
945
946
947
948
949
950
951
952
953
954
955
956
957
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
958
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
959
960
961
962
963
964
965
966
967
968
969
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
970
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
971
972
973
974
975
976
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
977
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
978

Khalique's avatar
Khalique committed
979
980
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
Paul's avatar
Paul committed
1008
1009
1010
1011
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Paul's avatar
Paul committed
1012
        case tensorflow::DataType::DT_UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
1013
1014
1015

        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
Khalique's avatar
Khalique committed
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_BOOL:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
Khalique's avatar
Khalique committed
1028
        // tf pb should not use these types
Paul's avatar
Paul committed
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Paul's avatar
Paul committed
1052
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
Khalique's avatar
Khalique committed
1053
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
1054
1055
1056
1057
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
1058
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
1059
1060
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
1061
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
1062
1063
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
1064
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
1065
1066
            switch(t.dtype())
            {
Khalique's avatar
Khalique committed
1067
1068
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Paul's avatar
Paul committed
1069
            case tensorflow::DataType::DT_BOOL:
1070
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1071
1072
            case tensorflow::DataType::DT_UINT16:
            case tensorflow::DataType::DT_INT16:
1073
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1074
1075
1076
1077
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1078
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1079
1080
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Paul's avatar
Paul committed
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
            case tensorflow::DataType::DT_INVALID:
            case tensorflow::DataType::DT_UINT8:
            case tensorflow::DataType::DT_STRING:
            case tensorflow::DataType::DT_UINT32:
            case tensorflow::DataType::DT_UINT64:
            case tensorflow::DataType::DT_COMPLEX64:
            case tensorflow::DataType::DT_COMPLEX128:
            case tensorflow::DataType::DT_QINT8:
            case tensorflow::DataType::DT_QUINT8:
            case tensorflow::DataType::DT_QINT32:
            case tensorflow::DataType::DT_BFLOAT16:
            case tensorflow::DataType::DT_QINT16:
            case tensorflow::DataType::DT_QUINT16:
            case tensorflow::DataType::DT_RESOURCE:
            case tensorflow::DataType::DT_VARIANT:
            case tensorflow::DataType::DT_FLOAT_REF:
            case tensorflow::DataType::DT_DOUBLE_REF:
            case tensorflow::DataType::DT_INT32_REF:
            case tensorflow::DataType::DT_UINT8_REF:
            case tensorflow::DataType::DT_INT16_REF:
            case tensorflow::DataType::DT_INT8_REF:
            case tensorflow::DataType::DT_STRING_REF:
            case tensorflow::DataType::DT_COMPLEX64_REF:
            case tensorflow::DataType::DT_INT64_REF:
            case tensorflow::DataType::DT_BOOL_REF:
            case tensorflow::DataType::DT_QINT8_REF:
            case tensorflow::DataType::DT_QUINT8_REF:
            case tensorflow::DataType::DT_QINT32_REF:
            case tensorflow::DataType::DT_BFLOAT16_REF:
            case tensorflow::DataType::DT_QINT16_REF:
            case tensorflow::DataType::DT_QUINT16_REF:
            case tensorflow::DataType::DT_UINT16_REF:
            case tensorflow::DataType::DT_COMPLEX128_REF:
            case tensorflow::DataType::DT_HALF_REF:
            case tensorflow::DataType::DT_RESOURCE_REF:
            case tensorflow::DataType::DT_VARIANT_REF:
            case tensorflow::DataType::DT_UINT32_REF:
            case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1119
1120
1121
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
1122
1123
1124
1125
1126
1127
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
1128
1129
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
1130
        case tensorflow::DataType::DT_INT8:
1131
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1132
        case tensorflow::DataType::DT_UINT16:
1133
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1134
        case tensorflow::DataType::DT_INT16:
1135
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1136
        case tensorflow::DataType::DT_INT32:
1137
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1138
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
1139
1140
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
1141
        case tensorflow::DataType::DT_BOOL:
1142
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
1143
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
1144
        {
1145
1146
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
1147
1148
1149
1150
1151
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1152
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1153
        }
Khalique's avatar
Khalique committed
1154
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
1155
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Paul's avatar
Paul committed
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_UINT32:
        case tensorflow::DataType::DT_UINT64:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1194
1195
1196
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
1197
1198
1199
1200
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

1201
    template <class T>
Khalique's avatar
Khalique committed
1202
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
1203
                                        const size_t& shape_size)
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
1216
1217
1218
1219
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
1220
1221
1222
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
1223
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
1224
1225
        return dims;
    }
1226
1227

    template <class T>
Khalique's avatar
Khalique committed
1228
    static literal
1229
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
1230
    {
Khalique's avatar
Khalique committed
1231
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
1232
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1233
            return literal{{shape_type}, data};
1234
1235
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
Paul's avatar
Paul committed
1258
    parser.to_nchw(std::prev(parser.prog.end()));
Khalique's avatar
Khalique committed
1259
1260
1261
1262
1263
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx