tf.cpp 22.9 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Khalique's avatar
Khalique committed
27
    using node_map      = std::unordered_map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
28
29
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
30

Khalique's avatar
Khalique committed
31
32
33
34
35
36
37
38
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

39
40
41
42
43
44
45
46
47
48
49
    void nhwc_to_nchw(std::size_t& dim)
    {
        switch(dim)
        {
        case 0: dim = 0; break;
        case 1: dim = 2; break;
        case 2: dim = 3; break;
        case 3: dim = 1; break;
        }
    }

Khalique's avatar
Khalique committed
50
51
52
53
54
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});

55
        // add_binary_op("BiasAdd", op::add{});
Khalique's avatar
Khalique committed
56

57
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
58
59
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
        add_mem_op("ConcatV2", &tf_parser::parse_concat);
Khalique's avatar
Khalique committed
60
61
62
        add_mem_op("Const", &tf_parser::parse_constant);
        add_mem_op("Conv2D", &tf_parser::parse_conv);
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
63
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
64
65
66
        add_mem_op("Reshape", &tf_parser::parse_reshape);
        add_mem_op("Softmax", &tf_parser::parse_softmax);
        add_mem_op("Squeeze", &tf_parser::parse_squeeze);
Khalique's avatar
Khalique committed
67
68
    }

69
70
71
72
73
74
75
76
77
78
79
80
81
    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

Khalique's avatar
Khalique committed
82
83
84
    template <class F>
    void add_mem_op(std::string name, F f)
    {
85
        add_op(name, [=](auto&&... xs) {
Khalique's avatar
Khalique committed
86
87
88
89
90
91
92
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
93
            add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
94
95
            if(args.size() != 2)
                MIGRAPHX_THROW("binary operators should have 2 operands");
96
97
98
99
100
101
102
103
104
            auto l0 = args[1];
            if(contains(attributes, "data_format"))
            {
                if(is_nhwc)
                {
                    l0 = prog.add_instruction(op::transpose{{0,3,1,2}}, args[1]);
                }
            }
            return add_broadcastable_binary_op(args[0], l0, x);
Khalique's avatar
Khalique committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

            std::vector<std::size_t> output_lens(*s1);
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
    }

    template <class T>
    void add_generic_op(std::string name, T x)
    {
155
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
156
157
158
159
160
161
162
            return prog.add_instruction(x, args);
        });
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
163
164
        float epsilon  = 1e-5f;
        float momentum = 0.9f;
Khalique's avatar
Khalique committed
165
        op::batch_norm_inference::bn_infer_mode_t bn_mode =
166
            op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
167
168
169
170
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
Khalique's avatar
Khalique committed
171

Khalique's avatar
Khalique committed
172
173
174
175
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

176
177
178
179
180
181
182
183
184
185
    instruction_ref
    parse_biasadd(const std::string&, attribute_map, std::vector<instruction_ref> args)
    {
        // assume second arg is bias
        std::vector<int64_t> dims;
        copy(args[0]->get_shape().lens(), std::back_inserter(dims));
        auto l0 = prog.add_instruction(op::reshape{dims}, args[1]);
        return prog.add_instruction(op::add{}, args[0], l0);
    }

Khalique's avatar
Khalique committed
186
187
188
189
190
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
        std::size_t axis_idx = attributes.at("N").i();
Khalique's avatar
Khalique committed
191
        std::size_t axis     = args[axis_idx]->eval().at<int64_t>();
192
193
194
195
        if(is_nhwc and axis < 4)
        {
            nhwc_to_nchw(axis);
        }
Khalique's avatar
Khalique committed
196
        op::concat op{axis};
197
        // return only first N arguments (assuming last index is the axis value)
Khalique's avatar
Khalique committed
198
        return prog.add_instruction(
199
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
        literal v = parse_tensor(attributes.at("value").tensor());
        return prog.add_literal(v);
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
219
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
220
            }
Khalique's avatar
Khalique committed
221
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
222
            {
223
224
                std::vector<std::size_t> padding;
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
        if(contains(attributes, "strides"))
        {
239
240
            std::vector<std::size_t> stride;
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
241
242
            if(stride.size() != 4)
            {
243
                MIGRAPHX_THROW("strides should have 4 values");
244
            }
245
246
247
248
249
250
251
252
            if(is_nhwc)
            {
                op.stride[0] = stride[1];
                op.stride[1] = stride[2];
            }
            else
            {
                op.stride[0] = stride[2];
Khalique's avatar
Khalique committed
253
                op.stride[1] = stride[3];
254
            }
Khalique's avatar
Khalique committed
255
256
257
        }
        if(contains(attributes, "dilations"))
        {
258
259
            std::vector<std::size_t> dilation;
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
260
261
262
263
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
264
265
266
267
268
269
270
271
272
273
            if(is_nhwc)
            {
                op.dilation[0] = dilation[1];
                op.dilation[1] = dilation[2];
            }
            else
            {
                op.dilation[0] = dilation[2];
                op.dilation[1] = dilation[3];
            }
Khalique's avatar
Khalique committed
274
        }
275
        auto l0 = args[0];
Khalique's avatar
Khalique committed
276
        if(l0->name() == "@param")
277
278
279
280
281
282
        {
            if(is_nhwc)
                l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, l0);
        }
        auto l1 = prog.add_instruction(op::transpose{{3, 2, 0, 1}}, args[1]);
        return prog.add_instruction(op, {l0, l1});
Khalique's avatar
Khalique committed
283
284
    }

285
286
287
288
289
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
290

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
        if(contains(attributes, "strides"))
        {
            std::vector<std::size_t> stride;
306
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
            if(is_nhwc)
            {
                op.stride[0] = stride[1];
                op.stride[1] = stride[2];
            }
            else
            {
                op.stride[0] = stride[2];
                op.stride[1] = stride[3];
            }
        }
        if(contains(attributes, "ksize"))
        {
            std::vector<std::size_t> ksize;
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
            }
            if(is_nhwc)
            {
                op.lengths[0] = ksize[1];
                op.lengths[1] = ksize[2];
            }
            else
            {
                op.lengths[0] = ksize[2];
                op.lengths[1] = ksize[3];
            }
        }
Khalique's avatar
Khalique committed
341

342
343
        return prog.add_instruction(op, std::move(args));
    }
Khalique's avatar
Khalique committed
344

345
346
347
348
349
350
351
352
353
354
355
    instruction_ref
    parse_reshape(const std::string&, attribute_map, std::vector<instruction_ref> args)
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
        literal s = args[1]->get_literal();
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        return prog.add_instruction(op, args[0]);
    }

Khalique's avatar
Khalique committed
356
357
358
359
360
361
362
363
364
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
365
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
366
367
368
        }
    }

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    }

    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        auto axes = attributes.at("squeeze_dims").list().i();
        copy(axes, std::back_inserter(op.axes));
        auto l0 = args[0];
        if(is_nhwc)
        {
            l0 = prog.add_instruction(op::transpose{{0,2,3,1}}, args[0]);
        }
        return prog.add_instruction(op, l0);
    }

Khalique's avatar
Khalique committed
393
394
395
396
397
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
398
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
399
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
400
401
402
403
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
            shape s                   = shape{shape_type, dims};
            instructions[name]        = prog.add_parameter(name, s);
Khalique's avatar
Khalique committed
404
405
406
        }
        for(auto&& p : nodes)
        {
407
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
408
409
410
411
412
413
414
415
416
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
417
            // std::cout << name << std::endl;
Khalique's avatar
Khalique committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op()}, args);
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
447
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
448
449
450
451
452
453
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
454
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
455

Khalique's avatar
Khalique committed
456
457
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_INVALID:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
        case tensorflow::DataType::DT_STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case tensorflow::DataType::DT_COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case tensorflow::DataType::DT_QINT8:
            break; // throw std::runtime_error("Unsupported type QINT8");
        case tensorflow::DataType::DT_QUINT8:
            break; // throw std::runtime_error("Unsupported type QUINT8");
        case tensorflow::DataType::DT_QINT32:
            break; // throw std::runtime_error("Unsupported type QINT32");
        case tensorflow::DataType::DT_BFLOAT16:
            break; // throw std::runtime_error("Unsupported type BFLOAT16");
        case tensorflow::DataType::DT_QINT16:
            break; // throw std::runtime_error("Unsupported type QINT16");
        case tensorflow::DataType::DT_QUINT16:
            break; // throw std::runtime_error("Unsupported type QUINT16");
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_RESOURCE:
            break; // throw std::runtime_error("Unsupported type RESOURCE");
        case tensorflow::DataType::DT_VARIANT:
            break; // throw std::runtime_error("Unsupported type VARIANT");
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
        case tensorflow::DataType::DT_UINT64: shape_type = shape::uint64_type; break;
Khalique's avatar
Khalique committed
518
        default: break;
Khalique's avatar
Khalique committed
519
520
521
522
523
524
525
526
527
528
529
530
531
532
        }
        return shape_type;
    }

    static literal parse_tensor(const tensorflow::TensorProto t)
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
        if(dims.empty())
        {
            dims = {1};
        }

        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
533
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
534
535
536
            switch(t.dtype())
            {
            case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
Khalique's avatar
Khalique committed
537
538
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Khalique's avatar
Khalique committed
539
540
            case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8: return literal{{shape::int32_type, dims}, s.data()};
Khalique's avatar
Khalique committed
541
542
543
544
545
546
547
548
            case tensorflow::DataType::DT_UINT16:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT16:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
549
550
551
            case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL: return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
552
553
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Khalique's avatar
Khalique committed
554
555
556
557
            case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
558
            default: break;
Khalique's avatar
Khalique committed
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT:
            return literal{{shape::float_type, dims}, t.float_val().begin(), t.float_val().end()};
        case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8:
            return literal{{shape::int32_type, dims}, t.int_val().begin(), t.int_val().end()};
        case tensorflow::DataType::DT_UINT16:
            return literal{{shape::int32_type, dims}, t.int_val().begin(), t.int_val().end()};
        case tensorflow::DataType::DT_INT16:
            return literal{{shape::int32_type, dims}, t.int_val().begin(), t.int_val().end()};
        case tensorflow::DataType::DT_INT32:
            return literal{{shape::int32_type, dims}, t.int_val().begin(), t.int_val().end()};
        case tensorflow::DataType::DT_INT64:
            return literal{{shape::int64_type, dims}, t.int64_val().begin(), t.int64_val().end()};
        case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL:
            return literal{{shape::int32_type, dims}, t.bool_val().begin(), t.bool_val().end()};
        case tensorflow::DataType::DT_HALF:
            return literal{{shape::half_type, dims}, t.half_val().begin(), t.half_val().end()};
        case tensorflow::DataType::DT_DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_val().begin(), t.double_val().end()};
        case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
590
        default: break;
Khalique's avatar
Khalique committed
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
        for(auto dim : input_dims)
        {
            dims.push_back(dim.size());
        }
        return dims;
    }
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx