tf.cpp 52.8 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
Khalique's avatar
Khalique committed
20
#include <migraphx/pad_calc.hpp>
Khalique's avatar
Khalique committed
21
22
23
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Paul's avatar
Paul committed
28
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
kahmed10's avatar
kahmed10 committed
29
30
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
31

Khalique's avatar
Khalique committed
32
33
34
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
35
36
37
    program prog            = program();
    bool is_nhwc            = true;
    unsigned int batch_size = 1;
Khalique's avatar
Khalique committed
38
39
40

    std::unordered_map<std::string, op_func> ops;

Paul's avatar
Paul committed
41
    bool should_transpose(instruction_ref ins) const
Paul's avatar
Paul committed
42
43
44
45
46
47
    {
        return is_nhwc and ins->get_shape().lens().size() == 4;
    }

    instruction_ref to_nhwc(instruction_ref ins)
    {
Paul's avatar
Paul committed
48
        if(should_transpose(ins))
Paul's avatar
Paul committed
49
50
51
52
53
54
            return prog.add_instruction(op::transpose{{0, 2, 3, 1}}, ins);
        return ins;
    }

    instruction_ref to_nchw(instruction_ref ins)
    {
Paul's avatar
Paul committed
55
        if(should_transpose(ins))
Paul's avatar
Paul committed
56
57
58
59
60
61
            return prog.add_instruction(op::transpose{{0, 3, 1, 2}}, ins);
        return ins;
    }

    instruction_ref to_kcxy(instruction_ref ins)
    {
Paul's avatar
Paul committed
62
        if(should_transpose(ins))
Paul's avatar
Paul committed
63
64
65
66
67
68
            return prog.add_instruction(op::transpose{{3, 2, 0, 1}}, ins);
        return ins;
    }

    instruction_ref make_contiguous(instruction_ref ins)
    {
Paul's avatar
Paul committed
69
        if(ins->get_shape().standard())
Paul's avatar
Paul committed
70
71
72
73
74
75
76
77
            return ins;
        else
            return prog.add_instruction(op::contiguous{}, ins);
    }

    std::vector<instruction_ref> to_nchw(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
Paul's avatar
Paul committed
78
        std::transform(
Paul's avatar
Paul committed
79
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nchw(ins); });
Paul's avatar
Paul committed
80
81
82
        return result;
    }

kahmed10's avatar
kahmed10 committed
83
84
85
86
87
88
89
90
    std::vector<instruction_ref> to_nhwc(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
        std::transform(
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nhwc(ins); });
        return result;
    }

Khalique's avatar
Khalique committed
91
    std::vector<size_t>
92
    parse_axes(const attribute_map& attributes, const std::string& s, const size_t num_dims) const
93
    {
94
95
96
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
97
        if(is_nhwc)
98
        {
Khalique's avatar
Khalique committed
99
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
Khalique's avatar
Khalique committed
100
                return parse_axis(axis, num_dims);
Khalique's avatar
Khalique committed
101
            });
102
103
104
105
        }
        return axes;
    }

Khalique's avatar
Khalique committed
106
    template <class T>
107
    std::vector<T> parse_axes(std::vector<T> axes, const size_t num_dims) const
Khalique's avatar
Khalique committed
108
109
110
    {
        if(is_nhwc)
        {
111
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
112
113
114
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
Khalique's avatar
Khalique committed
115
                           [&](size_t axis) { return parse_axis(axis, num_dims); });
116
            return new_axes;
Khalique's avatar
Khalique committed
117
        }
118
        return axes;
Khalique's avatar
Khalique committed
119
120
    }

Khalique's avatar
Khalique committed
121
122
123
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
124
    template <class T>
125
    void reorder_data(std::vector<T>& prev_data) const
126
127
    {
        std::vector<T> new_data(prev_data.size());
128
        for(size_t i = 0; i < new_data.size(); i++)
129
        {
Khalique's avatar
Khalique committed
130
            auto new_idx         = parse_axis(i, new_data.size());
131
            new_data.at(new_idx) = prev_data.at(i);
132
        }
133
134
135
136
        prev_data = new_data;
    }

    template <class T>
137
    T parse_axis(const T& dim, const size_t num_dims) const
138
    {
Khalique's avatar
Khalique committed
139
        T new_dim = dim;
Khalique's avatar
Khalique committed
140
        if(is_nhwc and num_dims >= 4)
141
142
143
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
144
145
146
147
148
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
149
150
            }
        }
Khalique's avatar
Khalique committed
151
        return new_dim;
152
153
    }

154
155
156
157
158
159
160
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
161
    std::vector<int64_t> get_axes_from_mask(const size_t num_axes, const uint32_t mask)
Khalique's avatar
Khalique committed
162
    {
Khalique's avatar
Khalique committed
163
        uint32_t bitwise_compare = 1;
Khalique's avatar
Khalique committed
164
165
166
167
168
169
170
171
172
173
174
175
        std::vector<int64_t> axes;
        for(size_t i = 0; i < num_axes; i++)
        {
            // the LSB corresponds to axis 0 when determining which axes to begin
            if(((mask >> i) & bitwise_compare) == 1)
                axes.push_back(1);
            else
                axes.push_back(0);
        }
        return axes;
    }

Khalique's avatar
Khalique committed
176
177
    tf_parser()
    {
Khalique's avatar
Khalique committed
178
        add_generic_op("All", op::identity{});
Khalique's avatar
Khalique committed
179
        add_generic_op("Identity", op::identity{});
Khalique's avatar
Khalique committed
180
        add_generic_op("LessEqual", op::identity{});
Khalique's avatar
Khalique committed
181
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
182
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
183
        add_generic_op("Rsqrt", op::rsqrt{});
Khalique's avatar
Khalique committed
184
        add_generic_op("Tanh", op::tanh{});
Khalique's avatar
Khalique committed
185
        add_generic_op("StopGradient", op::identity{});
Khalique's avatar
Khalique committed
186

187
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
188
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
189
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
190
        add_binary_op("SquaredDifference", op::sqdiff{});
Khalique's avatar
Khalique committed
191
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
192

193
194
        add_mem_op("ArgMax", &tf_parser::parse_arg_op<op::argmax>, false);
        add_mem_op("ArgMin", &tf_parser::parse_arg_op<op::argmin>, false);
195
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
196
        add_mem_op("BatchMatMul", &tf_parser::parse_matmul, false);
Khalique's avatar
Khalique committed
197
        add_mem_op("BatchMatMulV2", &tf_parser::parse_matmul, false);
198
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
Khalique's avatar
Khalique committed
199
        add_mem_op("Cast", &tf_parser::parse_cast, false);
Paul's avatar
Paul committed
200
        add_mem_op("ConcatV2", &tf_parser::parse_concat, false);
Khalique's avatar
Khalique committed
201
        add_mem_op("Const", &tf_parser::parse_constant);
Paul's avatar
Paul committed
202
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Paul's avatar
Paul committed
203
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
204
        add_mem_op("ExpandDims", &tf_parser::parse_expanddims, false);
Khalique's avatar
Khalique committed
205
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
Khalique's avatar
Khalique committed
206
        add_mem_op("GatherV2", &tf_parser::parse_gather, false);
Paul's avatar
Paul committed
207
        add_mem_op("MatMul", &tf_parser::parse_matmul, false);
208
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
209
        add_mem_op("Mean", &tf_parser::parse_mean, false);
Khalique's avatar
Khalique committed
210
        add_mem_op("OneHot", &tf_parser::parse_onehot, false);
Paul's avatar
Paul committed
211
        add_mem_op("Pack", &tf_parser::parse_pack, false);
Paul's avatar
Paul committed
212
        add_mem_op("Pad", &tf_parser::parse_pad);
Paul's avatar
Paul committed
213
        add_mem_op("Reshape", &tf_parser::parse_reshape, false);
214
        add_mem_op("Shape", &tf_parser::parse_shape, false);
Khalique's avatar
Khalique committed
215
        add_mem_op("Slice", &tf_parser::parse_slice, false);
kahmed10's avatar
kahmed10 committed
216
217
        add_mem_op("Split", &tf_parser::parse_split, false);
        add_mem_op("SplitV", &tf_parser::parse_split, false);
Khalique's avatar
Khalique committed
218
        add_mem_op("Softmax", &tf_parser::parse_softmax<op::softmax>, false);
Paul's avatar
Paul committed
219
        add_mem_op("Squeeze", &tf_parser::parse_squeeze, false);
220
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice, false);
Khalique's avatar
Khalique committed
221
        add_mem_op("Transpose", &tf_parser::parse_transpose, false);
Khalique's avatar
Khalique committed
222
223
    }

224
    template <class F>
kahmed10's avatar
kahmed10 committed
225
    void add_op(const std::string& name, F f, bool transpose = true)
226
    {
Paul's avatar
Paul committed
227
        if(transpose)
Paul's avatar
Paul committed
228
        {
kahmed10's avatar
kahmed10 committed
229
230
231
232
233
234
            ops.emplace(
                name,
                op_func{
                    [=](const attribute_map& attributes, const std::vector<instruction_ref>& args) {
                        return std::vector<instruction_ref>{to_nhwc(f(attributes, to_nchw(args)))};
                    }});
Paul's avatar
Paul committed
235
236
237
        }
        else
        {
kahmed10's avatar
kahmed10 committed
238
239
240
241
242
            ops.emplace(name,
                        op_func{[=](const attribute_map& attributes,
                                    const std::vector<instruction_ref>& args) {
                            return std::vector<instruction_ref>{f(attributes, args)};
                        }});
Paul's avatar
Paul committed
243
        }
244
245
    }

Khalique's avatar
Khalique committed
246
    template <class F>
Paul's avatar
Paul committed
247
    void add_mem_op(std::string name, F f, bool transpose = true)
Khalique's avatar
Khalique committed
248
    {
Paul's avatar
Paul committed
249
250
251
252
253
        add_op(name,
               [=](auto&&... xs) {
                   return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
               },
               transpose);
Khalique's avatar
Khalique committed
254
255
256
257
258
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   if(args.size() != 2)
                       MIGRAPHX_THROW("binary operators should have 2 operands");
                   // TODO
                   // if(contains(attributes, "data_format"))
                   // {
                   //     if(is_nhwc)
                   //     {
                   //         l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
                   //     }
                   // }
                   return add_broadcastable_binary_op(args[0], args[1], x);
               },
               false);
Khalique's avatar
Khalique committed
274
275
276
277
278
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
279
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
295
296
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
297
298
299
300
301

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

302
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
303
304
305
306
307
308
309
310
311
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
Paul's avatar
Paul committed
312
            return to_nhwc(prog.add_instruction(x, to_nchw(l0), to_nchw(l1)));
Khalique's avatar
Khalique committed
313
314
315
        }
        else
        {
Paul's avatar
Paul committed
316
            return to_nhwc(prog.add_instruction(x, {to_nchw(arg0), to_nchw(arg1)}));
Khalique's avatar
Khalique committed
317
318
319
320
        }
    }

    template <class T>
Paul's avatar
Paul committed
321
    void add_generic_op(std::string name, T x, bool transpose = true)
Khalique's avatar
Khalique committed
322
    {
Paul's avatar
Paul committed
323
324
325
326
327
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   return prog.add_instruction(x, args);
               },
               transpose);
Khalique's avatar
Khalique committed
328
329
    }

330
331
332
333
334
335
336
337
338
339
    template <class Op>
    instruction_ref
    parse_arg_op(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        axis         = args[1]->eval().at<int64_t>();
        auto ins     = prog.add_instruction(Op{axis}, args.front());
        return prog.add_instruction(op::squeeze{{axis}}, ins);
    }

Khalique's avatar
Khalique committed
340
341
342
    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
343
344
345
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
346
347
348
349
350
351
352
353
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

354
    instruction_ref
Khalique's avatar
Khalique committed
355
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
356
    {
357
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
358
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
359
        return prog.add_instruction(op::add{}, args[0], l0);
360
361
    }

Khalique's avatar
Khalique committed
362
363
364
365
366
367
368
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        shape::type_t type = parse_type(attributes.at("DstT").type());
        return prog.add_instruction(op::convert{type}, std::move(args));
    }

Khalique's avatar
Khalique committed
369
370
371
372
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
373
        size_t axis_idx = attributes.at("N").i();
Shucai Xiao's avatar
Shucai Xiao committed
374
        int64_t axis    = args[axis_idx]->eval().at<int64_t>();
Khalique's avatar
Khalique committed
375
        op::concat op{axis};
376
        // return only first N arguments (assuming last index is the axis value)
Paul's avatar
Paul committed
377
378
        return prog.add_instruction(
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
379
380
381
382
383
384
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Paul's avatar
Paul committed
385
        literal v = parse_tensor(attributes.at("value").tensor());
Paul's avatar
Paul committed
386
        return prog.add_literal(v);
Khalique's avatar
Khalique committed
387
388
389
390
391
392
393
394
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "strides"))
        {
395
            std::vector<size_t> stride;
396
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
397
            reorder_data(stride);
398
399
            if(stride.size() != 4)
            {
400
                MIGRAPHX_THROW("strides should have 4 values");
401
            }
402
403
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
404
405
406
        }
        if(contains(attributes, "dilations"))
        {
407
            std::vector<size_t> dilation;
408
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
409
            reorder_data(dilation);
410
411
412
413
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
414
415
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
416
        }
Khalique's avatar
Khalique committed
417

Paul's avatar
Paul committed
418
        auto weights = to_kcxy(args[1]);
Paul's avatar
Paul committed
419
        auto l0      = args[0];
Khalique's avatar
Khalique committed
420
421
422
423
424
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
425
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
426
427
428
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];
Khalique's avatar
Khalique committed
429
430
431

                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> pads(input_dims.size());
432
433
                calculate_padding(0, pads, input_dims[2], op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_dims[3], op.stride[1], op.dilation[1], weight_w);
Khalique's avatar
Khalique committed
434
435
436
437
438
439
440
441

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
442
443
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
444
                }
445
446
447
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
448
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
449
            }
Khalique's avatar
Khalique committed
450
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
451
            {
452
                std::vector<size_t> padding;
453
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
454
455
456
457
458
459
460
461
462
463
464
465
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
Paul's avatar
Paul committed
466
        return prog.add_instruction(op, {l0, to_kcxy(args[1])});
Khalique's avatar
Khalique committed
467
468
    }

Khalique's avatar
Khalique committed
469
470
471
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
472
473
474
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
475
        op.group            = num_channels;
Khalique's avatar
Khalique committed
476

Khalique's avatar
Khalique committed
477
478
        if(contains(attributes, "strides"))
        {
479
            std::vector<size_t> stride;
480
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
481
            reorder_data(stride);
482
483
            if(stride.size() != 4)
            {
484
                MIGRAPHX_THROW("strides should have 4 values");
485
            }
486
487
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
488
        }
Paul's avatar
Paul committed
489
490

        auto weights = to_kcxy(args[1]);
Khalique's avatar
Khalique committed
491
492
        if(contains(attributes, "dilations"))
        {
493
            std::vector<size_t> dilation;
494
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
495
            reorder_data(dilation);
496
497
498
499
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
500
501
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
502
503
        }

Khalique's avatar
Khalique committed
504
        auto l0 = args[0];
Khalique's avatar
Khalique committed
505
506
507
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
Khalique's avatar
Khalique committed
508

Khalique's avatar
Khalique committed
509
510
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
511
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
512
513
514
515
516
517
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> pads(input_dims.size());
518
519
                calculate_padding(0, pads, input_dims[2], op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_dims[3], op.stride[1], op.dilation[1], weight_w);
Khalique's avatar
Khalique committed
520
521
522
523
524
525
526
527

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
528
529
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
530
                }
Khalique's avatar
Khalique committed
531
            }
Khalique's avatar
Khalique committed
532
            else if(pad_mode.find("VALID") != std::string::npos)
Khalique's avatar
Khalique committed
533
            {
Khalique's avatar
Khalique committed
534
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
535
536
            }
        }
Khalique's avatar
Khalique committed
537

Khalique's avatar
Khalique committed
538
539
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
540
541
542
543

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
544
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
545
546
547
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
548
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
549
550
        auto new_weights =
            prog.add_instruction(op::reshape{new_weights_shape}, make_contiguous(weights));
Khalique's avatar
Khalique committed
551

Khalique's avatar
Khalique committed
552
        return prog.add_instruction(op, {l0, new_weights});
Khalique's avatar
Khalique committed
553
554
    }

Khalique's avatar
Khalique committed
555
556
    instruction_ref
    parse_expanddims(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
557
558
    {
        std::vector<size_t> input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
559
        std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
Khalique's avatar
Khalique committed
560
        size_t num_dims = input_dims.size();
561
        int32_t dim     = args[1]->eval().at<int32_t>();
Khalique's avatar
Khalique committed
562
563

        if(dim < 0)
Khalique's avatar
Khalique committed
564
565
566
567
568
569
570
571
572
573
        {
            new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
        }
        else
        {
            new_dims.insert(new_dims.begin() + dim, 1);
        }
        return prog.add_instruction(op::reshape{new_dims}, args[0]);
    }

Khalique's avatar
Khalique committed
574
575
576
577
578
579
580
581
    instruction_ref
    parse_gather(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        int axis = args[2]->eval().at<int32_t>();
        op::gather op{axis};
        return prog.add_instruction(op, {args[0], args[1]});
    }

Khalique's avatar
Khalique committed
582
583
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
584
585
586
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
587

588
589
590
591
592
593
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
Khalique's avatar
Khalique committed
594
            transb = attributes.at("transpose_b").b();
595
596
        }

Khalique's avatar
Khalique committed
597
598
599
600
601
602
603
604
605
        if(contains(attributes, "adj_x"))
        {
            transa = attributes.at("adj_x").b();
        }
        if(contains(attributes, "adj_y"))
        {
            transb = attributes.at("adj_y").b();
        }

606
607
608
        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
609
        std::iter_swap(perm.end() - 1, perm.end() - 2);
610
611
612
613
614
615
616

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
617
618
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
619
    {
Khalique's avatar
Khalique committed
620
621
        bool keep_dims = attributes.at("keep_dims").b();
        auto axes      = args[1]->eval().get<int32_t>().to_vector<int64_t>();
Khalique's avatar
Khalique committed
622
623

        if(keep_dims)
Khalique's avatar
Khalique committed
624
        {
625
626
627
628
629
630
            return prog.add_instruction(op::reduce_mean{axes}, args[0]);
        }
        else
        {
            auto ins = prog.add_instruction(op::reduce_mean{axes}, args[0]);
            return prog.add_instruction(op::squeeze{axes}, ins);
Khalique's avatar
Khalique committed
631
632
633
        }
    }

Khalique's avatar
Khalique committed
634
635
636
    instruction_ref
    parse_onehot(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
637
638
        size_t depth = static_cast<size_t>(args[1]->eval().at<int32_t>());

Khalique's avatar
Khalique committed
639
        int64_t axis    = -1;
Khalique's avatar
Khalique committed
640
641
        float on_value  = args[2]->eval().at<float>();
        float off_value = args[3]->eval().at<float>();
Khalique's avatar
Khalique committed
642

Khalique's avatar
Khalique committed
643
        std::vector<float> depth_input(depth * depth, off_value);
Khalique's avatar
Khalique committed
644
645
        for(int i = 0; i < depth; i++)
        {
Khalique's avatar
Khalique committed
646
            depth_input[depth * i + i] = on_value;
Khalique's avatar
Khalique committed
647
        }
Khalique's avatar
Khalique committed
648

Khalique's avatar
Khalique committed
649
        if(contains(attributes, "axis"))
Khalique's avatar
Khalique committed
650
651
652
            axis = attributes.at("axis").i();
        if(axis == -1)
        {
Khalique's avatar
Khalique committed
653
654
655
            shape s{shape::float_type, {depth, depth}};
            auto l0 = prog.add_literal({s, depth_input});
            return prog.add_instruction(op::gather{0}, {l0, args[0]});
Khalique's avatar
Khalique committed
656
657
658
659
        }
        MIGRAPHX_THROW("MIGraphX does not support axis != -1");
    }

Khalique's avatar
Khalique committed
660
661
662
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
663
664
665
666
667
668
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
669
670
671
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
672
673
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
674
675
        }

Khalique's avatar
Khalique committed
676
677
678
679
680
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Shucai Xiao's avatar
Shucai Xiao committed
681
        return to_nhwc(prog.add_instruction(op::concat{axis}, unsqueezed_args));
Khalique's avatar
Khalique committed
682
683
    }

Khalique's avatar
Khalique committed
684
685
686
687
688
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
689
690
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
691
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
Paul's avatar
Paul committed
692
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
693
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
694
        {
Khalique's avatar
Khalique committed
695
696
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
697
698
699
700
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
701
702
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
703
        {
Khalique's avatar
Khalique committed
704
705
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
706
707
        }
        op.pads = pads;
Paul's avatar
Paul committed
708
        return prog.add_instruction(op, args.front());
Khalique's avatar
Khalique committed
709
710
    }

711
712
713
714
715
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
716

717
718
        if(contains(attributes, "strides"))
        {
719
            std::vector<size_t> stride;
720
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
721
            reorder_data(stride);
722
723
724
725
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
726
727
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
728
729
730
        }
        if(contains(attributes, "ksize"))
        {
731
            std::vector<size_t> ksize;
732
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
733
            reorder_data(ksize);
734
735
736
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
737
            }
738
739
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
740
        }
Khalique's avatar
Khalique committed
741
742

        auto l0 = args[0];
Khalique's avatar
Khalique committed
743
744
745
746
747
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
748
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
749
750
                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> pads(input_dims.size());
751
752
                calculate_padding(0, pads, input_dims[2], op.stride[0], 1, op.lengths[0]);
                calculate_padding(1, pads, input_dims[3], op.stride[1], 1, op.lengths[1]);
Khalique's avatar
Khalique committed
753
754
755
756

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
Khalique's avatar
Khalique committed
757
758
                    l0                           = prog.add_instruction(
                        migraphx::op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
Khalique's avatar
Khalique committed
759
760
761
                }
                else
                {
Khalique's avatar
Khalique committed
762
763
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
764
                }
Khalique's avatar
Khalique committed
765
766
767
768
769
770
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
Khalique's avatar
Khalique committed
771
        return prog.add_instruction(op, l0);
772
    }
Khalique's avatar
Khalique committed
773

774
    instruction_ref
Khalique's avatar
Khalique committed
775
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
776
777
778
779
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
780
        auto s = args[1]->eval();
781
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
782
        return prog.add_instruction(op, make_contiguous(args[0]));
783
784
    }

785
786
787
788
    // Use a literal instruction to replace the shape since output of
    // shape operator are literals in migraphx
    instruction_ref
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
789
    {
790
791
792
793
794
795
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int32_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int32_type, {arg_shape.size()});
        std::transform(
            arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) { return i; });
        return prog.add_literal(migraphx::literal{s, vec_shape});
Khalique's avatar
Khalique committed
796
797
    }

798
    instruction_ref
Khalique's avatar
Khalique committed
799
    parse_slice(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
800
    {
Khalique's avatar
Khalique committed
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
        op::slice op;
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto size       = args[2]->eval().get<int32_t>().to_vector();
        auto axes       = args[0]->get_shape().lens();
        size_t num_axes = axes.size();

        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(num_axes);
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
        for(size_t i = 0; i < num_axes; i++)
        {
            if(size[i] == -1)
                op.ends[i] = axes[i];
            else
                op.ends[i] = starts[i] + size[i];
        }
        return prog.add_instruction(op, make_contiguous(args[0]));
    }

Khalique's avatar
Khalique committed
821
822
823
824
825
    // template to facilitate the logsoftmax later
    template <class Op>
    instruction_ref parse_softmax(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
826
    {
Khalique's avatar
Khalique committed
827
        int axis      = -1;
Khalique's avatar
Khalique committed
828
829
830
831
832
833
834
835
836
837
838
        auto num_dims = args[0]->get_shape().lens().size();
        if(contains(attributes, "axis"))
        {
            axis = static_cast<int>(attributes.at("axis").i());
        }
        if(axis < 0)
        {
            axis += num_dims;
        }

        return prog.add_instruction(Op{axis}, make_contiguous(args[0]));
839
840
    }

kahmed10's avatar
kahmed10 committed
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
    std::vector<instruction_ref> parse_split(const std::string&,
                                             const attribute_map& attributes,
                                             std::vector<instruction_ref> args)
    {
        bool vector_as_input = args.size() == 3;
        int num_outputs      = 1;
        auto axis_arg        = args[0];
        auto input_arg       = args[1];
        if(vector_as_input)
        {
            input_arg = args[0];
            axis_arg  = args[2];
        }

        if(contains(attributes, "num_split"))
            num_outputs = attributes.at("num_split").i();

        std::vector<int> splits(num_outputs);
        std::vector<int> slice_pos{0};
        if(vector_as_input)
        {
            splits      = args[1]->eval().get<int32_t>().to_vector();
            num_outputs = splits.size();
        }

        assert(num_outputs > 0);

        if(num_outputs == 1)
            return std::vector<instruction_ref>{prog.add_instruction(op::identity{}, input_arg)};

        auto lens     = input_arg->get_shape().lens();
        auto num_dims = lens.size();
        int axis      = axis_arg->eval().at<int32_t>();

        // ensure split is made evenly if "num_split" is used
        assert(vector_as_input or lens[axis] % num_outputs == 0);

        auto split_size = lens[axis] / num_outputs;

        // push back first end point of slice
        if(vector_as_input)
        {
            slice_pos.push_back(splits[0]);
        }
        else
        {
            slice_pos.push_back(split_size);
        }

        // calculate remaining end points for each slice
        for(auto i = 1; i < num_outputs; i++)
        {
            if(vector_as_input)
            {
                splits[i] += splits[i - 1];
                slice_pos.push_back(splits[i]);
            }
            else
            {
                slice_pos.push_back((i + 1) * split_size);
            }
        }
        std::vector<instruction_ref> result;
        for(auto i = 0; i < num_outputs; i++)
        {
            op::slice op;
            op.axes = std::vector<int64_t>(num_dims);
            std::iota(op.axes.begin(), op.axes.end(), 0);
            op.starts = std::vector<int64_t>(num_dims, 0);
            op.ends   = std::vector<int64_t>(lens.begin(), lens.end());

            op.starts[axis] = slice_pos[i];
            op.ends[axis]   = slice_pos[i + 1];
            result.push_back(prog.add_instruction(op, input_arg));
        }
        return result;
    }

Khalique's avatar
Khalique committed
919
920
921
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
922
923
    {
        op::squeeze op;
Khalique's avatar
Khalique committed
924
        auto input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
925
        auto axes       = attributes.at("squeeze_dims").list().i();
926
        copy(axes, std::back_inserter(op.axes));
Khalique's avatar
Khalique committed
927

928
929
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
Khalique's avatar
Khalique committed
930
            for(size_t i = 0; i < input_dims.size(); i++)
931
            {
Khalique's avatar
Khalique committed
932
                if(input_dims.at(i) == 1)
933
934
935
936
                {
                    op.axes.push_back(i);
                }
            }
937
        }
Paul's avatar
Paul committed
938
        return prog.add_instruction(op, make_contiguous(args[0]));
939
940
    }

Khalique's avatar
Khalique committed
941
942
943
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
944
945
    {
        op::slice op;
Khalique's avatar
Khalique committed
946
947
948
949
        auto starts              = args[1]->eval().get<int32_t>().to_vector();
        auto ends                = args[2]->eval().get<int32_t>().to_vector();
        auto l0                  = args[0];
        size_t num_axes          = l0->get_shape().lens().size();
950
        std::vector<size_t> axes = l0->get_shape().lens();
951

Khalique's avatar
Khalique committed
952
953
954
955
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
Khalique's avatar
Khalique committed
956
957
        uint32_t begin_mask       = 0;
        uint32_t end_mask         = 0;
958
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
959
        uint32_t bitwise_compare  = 1;
960
961
        std::vector<int64_t> squeeze_axes;

Khalique's avatar
Khalique committed
962
963
964
965
966
967
        if(contains(attributes, "begin_mask"))
            begin_mask = static_cast<uint32_t>(attributes.at("begin_mask").i());

        if(contains(attributes, "end_mask"))
            end_mask = static_cast<uint32_t>(attributes.at("end_mask").i());

968
        if(contains(attributes, "shrink_axis_mask"))
969
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
970

Khalique's avatar
Khalique committed
971
        std::vector<int64_t> begin_axes = get_axes_from_mask(num_axes, begin_mask);
Khalique's avatar
Khalique committed
972
        std::vector<int64_t> end_axes   = get_axes_from_mask(num_axes, end_mask);
Khalique's avatar
Khalique committed
973
974
975
976
977
978
979
980
981
982
983
984
985

        for(size_t i = 0; i < num_axes; i++)
        {
            if(begin_axes.at(i) == 1)
            {
                op.starts.at(i) = 0;
            }
            if(end_axes.at(i) == 1)
            {
                op.ends.at(i) = axes.at(i);
            }
        }

986
        auto l1 = prog.add_instruction(op, l0);
Khalique's avatar
Khalique committed
987
        if(shrink_axis_mask == 0)
988
            return l1;
Khalique's avatar
Khalique committed
989

Khalique's avatar
Khalique committed
990
        for(size_t i = 0; i < num_axes; i++)
991
        {
992
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
993
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
994
995
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
996

997
        return prog.add_instruction(op::squeeze{squeeze_axes}, l1);
998
999
    }

Khalique's avatar
Khalique committed
1000
1001
    instruction_ref
    parse_transpose(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1002
1003
1004
1005
1006
1007
1008
1009
    {
        auto perm = args[1]->eval().get<int32_t>().to_vector();
        op::transpose op;
        op.dims = std::vector<int64_t>(perm.begin(), perm.end());

        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
1010
1011
1012
1013
1014
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
1015
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
1016
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
1017
1018
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
1019
            if(is_nhwc and dims.size() >= 4)
1020
            {
1021
                reorder_data(dims);
1022
            }
1023
1024
1025
            std::transform(dims.begin(), dims.end(), dims.begin(), [&](auto dim) {
                return static_cast<int>(dim) <= 0 ? batch_size : dim;
            });
Khalique's avatar
Khalique committed
1026
            shape s            = shape{shape_type, dims};
Paul's avatar
Paul committed
1027
            instructions[name] = to_nhwc(prog.add_parameter(name, s));
Khalique's avatar
Khalique committed
1028
1029
1030
        }
        for(auto&& p : nodes)
        {
1031
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
1032
1033
1034
1035
1036
1037
1038
1039
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
Khalique's avatar
Khalique committed
1040
1041
1042
            // assert ops ignored
            if(node.op() == "Assert" or contains(name, "Assert"))
                return;
Khalique's avatar
Khalique committed
1043
1044
1045
1046
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
Khalique's avatar
Khalique committed
1047
1048
1049
                // control dependencies (signified by ^ before the name) are ignored
                if(contains(input, "^"))
                    continue;
Khalique's avatar
Khalique committed
1050
1051
                if(nodes.count(input) > 0)
                {
kahmed10's avatar
kahmed10 committed
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
                    std::string iname;
                    // input was from a node with multiple outputs
                    if(contains(input, ':'))
                    {
                        iname = input.substr(0, input.find(':'));
                    }
                    else
                    {
                        iname = get_name(nodes.at(input));
                    }
Khalique's avatar
Khalique committed
1062
1063
                    assert(name != iname);
                    this->parse_node(iname);
kahmed10's avatar
kahmed10 committed
1064
                    args.push_back(instructions.at(input));
Khalique's avatar
Khalique committed
1065
1066
1067
1068
1069
1070
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
kahmed10's avatar
kahmed10 committed
1071
1072

            std::vector<instruction_ref> result;
Khalique's avatar
Khalique committed
1073
1074
            if(ops.count(node.op()) == 0)
            {
kahmed10's avatar
kahmed10 committed
1075
                result.push_back(prog.add_instruction(op::unknown{node.op()}, args));
Khalique's avatar
Khalique committed
1076
1077
1078
            }
            else
            {
kahmed10's avatar
kahmed10 committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
                result = ops[node.op()](get_attributes(node), args);
            }

            assert(!result.empty());
            // First output has no ":" delimiter
            instructions[name] = result.front();
            for(size_t i = 1; i < result.size(); i++)
            {
                instructions[name + ":" + std::to_string(i)] = result.at(i);
Khalique's avatar
Khalique committed
1088
1089
1090
1091
            }
        }
    }

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
            throw std::runtime_error("Failed reading tf file");
        }
    }

Khalique's avatar
Khalique committed
1105
1106
1107
    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
1108
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
1109
1110
1111
1112
1113
1114
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
1115
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
1116

Khalique's avatar
Khalique committed
1117
1118
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
Paul's avatar
Paul committed
1146
1147
1148
1149
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Paul's avatar
Paul committed
1150
        case tensorflow::DataType::DT_UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
1151
1152
1153

        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
Khalique's avatar
Khalique committed
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_BOOL:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
Khalique's avatar
Khalique committed
1166
        // tf pb should not use these types
Paul's avatar
Paul committed
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Paul's avatar
Paul committed
1190
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
Khalique's avatar
Khalique committed
1191
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
1192
1193
1194
1195
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
1196
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
1197
1198
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
1199
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
1200
1201
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
1202
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
1203
1204
            switch(t.dtype())
            {
Khalique's avatar
Khalique committed
1205
1206
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Paul's avatar
Paul committed
1207
            case tensorflow::DataType::DT_BOOL:
1208
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1209
1210
            case tensorflow::DataType::DT_UINT16:
            case tensorflow::DataType::DT_INT16:
1211
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1212
1213
1214
1215
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1216
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1217
1218
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Paul's avatar
Paul committed
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
            case tensorflow::DataType::DT_INVALID:
            case tensorflow::DataType::DT_UINT8:
            case tensorflow::DataType::DT_STRING:
            case tensorflow::DataType::DT_UINT32:
            case tensorflow::DataType::DT_UINT64:
            case tensorflow::DataType::DT_COMPLEX64:
            case tensorflow::DataType::DT_COMPLEX128:
            case tensorflow::DataType::DT_QINT8:
            case tensorflow::DataType::DT_QUINT8:
            case tensorflow::DataType::DT_QINT32:
            case tensorflow::DataType::DT_BFLOAT16:
            case tensorflow::DataType::DT_QINT16:
            case tensorflow::DataType::DT_QUINT16:
            case tensorflow::DataType::DT_RESOURCE:
            case tensorflow::DataType::DT_VARIANT:
            case tensorflow::DataType::DT_FLOAT_REF:
            case tensorflow::DataType::DT_DOUBLE_REF:
            case tensorflow::DataType::DT_INT32_REF:
            case tensorflow::DataType::DT_UINT8_REF:
            case tensorflow::DataType::DT_INT16_REF:
            case tensorflow::DataType::DT_INT8_REF:
            case tensorflow::DataType::DT_STRING_REF:
            case tensorflow::DataType::DT_COMPLEX64_REF:
            case tensorflow::DataType::DT_INT64_REF:
            case tensorflow::DataType::DT_BOOL_REF:
            case tensorflow::DataType::DT_QINT8_REF:
            case tensorflow::DataType::DT_QUINT8_REF:
            case tensorflow::DataType::DT_QINT32_REF:
            case tensorflow::DataType::DT_BFLOAT16_REF:
            case tensorflow::DataType::DT_QINT16_REF:
            case tensorflow::DataType::DT_QUINT16_REF:
            case tensorflow::DataType::DT_UINT16_REF:
            case tensorflow::DataType::DT_COMPLEX128_REF:
            case tensorflow::DataType::DT_HALF_REF:
            case tensorflow::DataType::DT_RESOURCE_REF:
            case tensorflow::DataType::DT_VARIANT_REF:
            case tensorflow::DataType::DT_UINT32_REF:
            case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1257
1258
1259
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
1260
1261
1262
1263
1264
1265
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
1266
1267
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
1268
        case tensorflow::DataType::DT_INT8:
1269
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1270
        case tensorflow::DataType::DT_UINT16:
1271
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1272
        case tensorflow::DataType::DT_INT16:
1273
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1274
        case tensorflow::DataType::DT_INT32:
1275
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1276
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
1277
1278
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
1279
        case tensorflow::DataType::DT_BOOL:
1280
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
1281
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
1282
        {
1283
1284
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
1285
1286
1287
1288
1289
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1290
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1291
        }
Khalique's avatar
Khalique committed
1292
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
1293
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Paul's avatar
Paul committed
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_UINT32:
        case tensorflow::DataType::DT_UINT64:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1332
1333
1334
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
1335
1336
1337
1338
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

1339
    template <class T>
Khalique's avatar
Khalique committed
1340
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
1341
                                        const size_t& shape_size)
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
1354
1355
1356
1357
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
1358
1359
1360
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
1361
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
1362
1363
        return dims;
    }
1364
1365

    template <class T>
Khalique's avatar
Khalique committed
1366
    static literal
1367
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
1368
    {
Khalique's avatar
Khalique committed
1369
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
1370
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1371
            return literal{{shape_type}, data};
1372
1373
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1374
1375
};

1376
program parse_tf(const std::string& name, tf_options options)
Khalique's avatar
Khalique committed
1377
1378
1379
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
1380
1381
    parser.is_nhwc    = options.is_nhwc;
    parser.batch_size = options.batch_size;
Khalique's avatar
Khalique committed
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
Paul's avatar
Paul committed
1397
    parser.to_nchw(std::prev(parser.prog.end()));
Khalique's avatar
Khalique committed
1398
1399
1400
1401
1402
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx