"src/targets/gpu/jit/gather.cpp" did not exist on "e44cecbc67d53dd62ef575eebd81d61dc866b8b3"
tf.cpp 18.8 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
    using node_map = std::unordered_map<std::string, tensorflow::NodeDef>;
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
    
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});

        add_binary_op("BiasAdd", op::add{});

        // add_mem_op("AvgPool", &tf_parser::parse_pooling);
        // add_mem_op("ConcatV2", &tf_parser::parse_concat);
        add_mem_op("Const", &tf_parser::parse_constant);
        add_mem_op("Conv2D", &tf_parser::parse_conv);
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
            if(args.size() != 2)
                MIGRAPHX_THROW("binary operators should have 2 operands");
            return add_broadcastable_binary_op(args[0], args[1], x);
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

            std::vector<std::size_t> output_lens(*s1);
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
    }

    template <class T>
    void add_generic_op(std::string name, T x)
    {
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
            return prog.add_instruction(x, args);
        });
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        float epsilon                                     = 1e-4f;
        float momentum                                    = 1.f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
        std::size_t axis_idx = attributes.at("N").i();
        std::size_t axis = args[axis_idx]->eval().at<int64_t>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
        literal v = parse_tensor(attributes.at("value").tensor());
        return prog.add_literal(v);
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::convolution::same;
            }
            else if (pad_mode.find("EXPLICIT") != std::string::npos)
            {
                std::vector<std::size_t> padding(4);
                copy(attributes.at("explicit_paddings").list().i(), padding.begin());
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes.at("strides").list().i(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes.at("dilations").list().i(), op.dilation.begin());
        }

        auto l0 = args[1];
        if(is_nhwc)
            l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, l0);
        return prog.add_instruction(op, {args[0], l0});
    }

    // instruction_ref parse_pooling(const std::string& name,
    //                               attribute_map attributes,
    //                               std::vector<instruction_ref> args)
    // {
    //     op::pooling op{starts_with(name, "Max") ? "max" : "average"};
        
    //     if(contains(attributes, "pads"))
    //     {
    //         std::vector<std::size_t> padding(4);
    //         copy(attributes["pads"].ints(), padding.begin());
    //         if(padding.size() != 4)
    //         {
    //             MIGRAPHX_THROW("padding should have 4 values");
    //         }
    //         if(padding[0] != padding[2] || padding[1] != padding[3])
    //         {
    //             MIGRAPHX_THROW("migraphx does not support asymetric padding");
    //         }
    //         op.padding[0] = padding[0];
    //         op.padding[1] = padding[1];
    //     }
    //     if(contains(attributes, "strides"))
    //     {
    //         copy(attributes["strides"].ints(), op.stride.begin());
    //     }
    //     if(contains(attributes, "kernel_shape"))
    //     {
    //         copy(attributes["kernel_shape"].ints(), op.lengths.begin());
    //     }
    //     if(contains(attributes, "auto_pad"))
    //     {
    //         auto s = attributes["auto_pad"].s();
    //         if(to_upper(s) != "NOTSET")
    //         {
    //             MIGRAPHX_THROW("auto_pad is not supported for pooling");
    //         }
    //     }

    //     return prog.add_instruction(op, std::move(args));
    // }

    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
            const std::string& name = input.name();
            attribute_map input_attrs = get_attributes(input);
            shape::type_t shape_type = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims = parse_dims(input_attrs.at("shape").shape());
            shape s = shape{shape_type, dims};
            instructions[name] = prog.add_parameter(name, s);
            if(is_nhwc)
            {
                // nhwc to nchw
                prog.add_instruction(migraphx::op::transpose{{0, 3, 1, 2}}, instructions[name]);
            }
        }
        for(auto&& p : nodes)
        {
            this->parse_node(get_name(p.second));
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            std::cout << name << std::endl;

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op()}, args);
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
        for (auto&& attr : node.attr())
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

    static std::string get_name(const tensorflow::NodeDef& node)
    {
        return node.name();
    }

    static node_map get_nodes(const tensorflow::GraphDef& graph, std::vector<tensorflow::NodeDef>& input_nodes)
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_INVALID:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
        case tensorflow::DataType::DT_STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case tensorflow::DataType::DT_COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case tensorflow::DataType::DT_QINT8:
            break; // throw std::runtime_error("Unsupported type QINT8");
        case tensorflow::DataType::DT_QUINT8:
            break; // throw std::runtime_error("Unsupported type QUINT8");
        case tensorflow::DataType::DT_QINT32:
            break; // throw std::runtime_error("Unsupported type QINT32");
        case tensorflow::DataType::DT_BFLOAT16:
            break; // throw std::runtime_error("Unsupported type BFLOAT16");
        case tensorflow::DataType::DT_QINT16:
            break; // throw std::runtime_error("Unsupported type QINT16");
        case tensorflow::DataType::DT_QUINT16:
            break; // throw std::runtime_error("Unsupported type QUINT16");
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_RESOURCE:
            break; // throw std::runtime_error("Unsupported type RESOURCE");
        case tensorflow::DataType::DT_VARIANT:
            break; // throw std::runtime_error("Unsupported type VARIANT");
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
        case tensorflow::DataType::DT_UINT64: shape_type = shape::uint64_type; break;
        default:
            break;
        }
        return shape_type;
    }

    static literal parse_tensor(const tensorflow::TensorProto t)
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
        if(dims.empty())
        {
            dims = {1};
        }

        if(!t.tensor_content().empty()) // has raw data
        {
            const std::string&s = t.tensor_content();
            switch(t.dtype())
            {
            case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
            case tensorflow::DataType::DT_FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8: return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT16: return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT32: return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64: return literal{{shape::int64_type, dims}, s.data()};
            case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL: return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
            case tensorflow::DataType::DT_DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
            default:
                break;
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT:
            return literal{{shape::float_type, dims}, t.float_val().begin(), t.float_val().end()};
        case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8:
            return literal{{shape::int32_type, dims}, t.int_val().begin(), t.int_val().end()};
        case tensorflow::DataType::DT_UINT16:
            return literal{{shape::int32_type, dims}, t.int_val().begin(), t.int_val().end()};
        case tensorflow::DataType::DT_INT16:
            return literal{{shape::int32_type, dims}, t.int_val().begin(), t.int_val().end()};
        case tensorflow::DataType::DT_INT32:
            return literal{{shape::int32_type, dims}, t.int_val().begin(), t.int_val().end()};
        case tensorflow::DataType::DT_INT64:
            return literal{{shape::int64_type, dims}, t.int64_val().begin(), t.int64_val().end()};
        case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL:
            return literal{{shape::int32_type, dims}, t.bool_val().begin(), t.bool_val().end()};
        case tensorflow::DataType::DT_HALF:
            return literal{{shape::half_type, dims}, t.half_val().begin(), t.half_val().end()};
        case tensorflow::DataType::DT_DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_val().begin(), t.double_val().end()};
        case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
        default:
            break;
        }
        MIGRAPHX_THROW("Invalid tensor type");

    }

    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
        for(auto dim : input_dims)
        {
            dims.push_back(dim.size());
        }
        return dims;
    }



};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx