tf.cpp 46.6 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
Khalique's avatar
Khalique committed
20
#include <migraphx/pad_calc.hpp>
Khalique's avatar
Khalique committed
21
22
23
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Khalique's avatar
Khalique committed
28
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
29
30
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
31

Khalique's avatar
Khalique committed
32
33
34
35
36
37
38
39
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Paul's avatar
Paul committed
40
    bool should_transpose(instruction_ref ins) const
Paul's avatar
Paul committed
41
42
43
44
45
46
    {
        return is_nhwc and ins->get_shape().lens().size() == 4;
    }

    instruction_ref to_nhwc(instruction_ref ins)
    {
Paul's avatar
Paul committed
47
        if(should_transpose(ins))
Paul's avatar
Paul committed
48
49
50
51
52
53
            return prog.add_instruction(op::transpose{{0, 2, 3, 1}}, ins);
        return ins;
    }

    instruction_ref to_nchw(instruction_ref ins)
    {
Paul's avatar
Paul committed
54
        if(should_transpose(ins))
Paul's avatar
Paul committed
55
56
57
58
59
60
            return prog.add_instruction(op::transpose{{0, 3, 1, 2}}, ins);
        return ins;
    }

    instruction_ref to_kcxy(instruction_ref ins)
    {
Paul's avatar
Paul committed
61
        if(should_transpose(ins))
Paul's avatar
Paul committed
62
63
64
65
66
67
            return prog.add_instruction(op::transpose{{3, 2, 0, 1}}, ins);
        return ins;
    }

    instruction_ref make_contiguous(instruction_ref ins)
    {
Paul's avatar
Paul committed
68
        if(ins->get_shape().standard())
Paul's avatar
Paul committed
69
70
71
72
73
74
75
76
            return ins;
        else
            return prog.add_instruction(op::contiguous{}, ins);
    }

    std::vector<instruction_ref> to_nchw(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
Paul's avatar
Paul committed
77
        std::transform(
Paul's avatar
Paul committed
78
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nchw(ins); });
Paul's avatar
Paul committed
79
80
81
        return result;
    }

Khalique's avatar
Khalique committed
82
    std::vector<size_t> parse_axes(const attribute_map& attributes, const std::string& s, const size_t& num_dims) const
83
    {
84
85
86
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
87
        if(is_nhwc)
88
        {
Khalique's avatar
Khalique committed
89
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
Khalique's avatar
Khalique committed
90
                return parse_axis(axis, num_dims);
Khalique's avatar
Khalique committed
91
            });
92
93
94
95
        }
        return axes;
    }

Khalique's avatar
Khalique committed
96
    template <class T>
Khalique's avatar
Khalique committed
97
    std::vector<T> parse_axes(std::vector<T> axes, const size_t& num_dims) const
Khalique's avatar
Khalique committed
98
99
100
    {
        if(is_nhwc)
        {
101
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
102
103
104
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
Khalique's avatar
Khalique committed
105
                           [&](size_t axis) { return parse_axis(axis, num_dims); });
106
            return new_axes;
Khalique's avatar
Khalique committed
107
        }
108
        return axes;
Khalique's avatar
Khalique committed
109
110
    }

Khalique's avatar
Khalique committed
111
112
113
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
114
    template <class T>
115
    void reorder_data(std::vector<T>& prev_data) const
116
117
    {
        std::vector<T> new_data(prev_data.size());
118
        for(size_t i = 0; i < new_data.size(); i++)
119
        {
Khalique's avatar
Khalique committed
120
            auto new_idx         = parse_axis(i, new_data.size());
121
            new_data.at(new_idx) = prev_data.at(i);
122
        }
123
124
125
126
        prev_data = new_data;
    }

    template <class T>
Khalique's avatar
Khalique committed
127
    T parse_axis(const T& dim, const size_t& num_dims) const
128
    {
Khalique's avatar
Khalique committed
129
        T new_dim = dim;
Khalique's avatar
Khalique committed
130
        if(is_nhwc and num_dims >= 4)
131
132
133
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
134
135
136
137
138
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
139
140
            }
        }
Khalique's avatar
Khalique committed
141
        return new_dim;
142
143
    }

144
145
146
147
148
149
150
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
151
152
153
154
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
155
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
156
        add_generic_op("Tanh", op::tanh{});
Khalique's avatar
Khalique committed
157

158
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
159
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
160
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
161

162
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
163
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
Paul's avatar
Paul committed
164
        add_mem_op("ConcatV2", &tf_parser::parse_concat, false);
Khalique's avatar
Khalique committed
165
166
        add_mem_op("Const", &tf_parser::parse_constant);
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Khalique's avatar
Khalique committed
167
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
Khalique's avatar
Khalique committed
168
        add_mem_op("ExpandDims", &tf_parser::parse_expanddims);
Khalique's avatar
Khalique committed
169
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
Paul's avatar
Paul committed
170
        add_mem_op("MatMul", &tf_parser::parse_matmul, false);
171
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
172
        add_mem_op("Mean", &tf_parser::parse_mean);
Paul's avatar
Paul committed
173
        add_mem_op("Pack", &tf_parser::parse_pack, false);
Khalique's avatar
Khalique committed
174
        add_mem_op("Pad", &tf_parser::parse_pad);
Paul's avatar
Paul committed
175
        add_mem_op("Reshape", &tf_parser::parse_reshape, false);
176
        add_mem_op("Softmax", &tf_parser::parse_softmax);
Paul's avatar
Paul committed
177
        add_mem_op("Squeeze", &tf_parser::parse_squeeze, false);
178
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice);
Khalique's avatar
Khalique committed
179
180
    }

181
    template <class F>
Paul's avatar
Paul committed
182
    void add_op(std::string name, F f, bool transpose = true)
183
    {
Paul's avatar
Paul committed
184
        if(transpose)
Paul's avatar
Paul committed
185
        {
Paul's avatar
Paul committed
186
187
            ops.emplace(name,
                        op_func{[=](const attribute_map& attributes,
Paul's avatar
Paul committed
188
                                    const std::vector<instruction_ref>& args) -> instruction_ref {
Paul's avatar
Paul committed
189
190
                            return to_nhwc(f(attributes, to_nchw(args)));
                        }});
Paul's avatar
Paul committed
191
192
193
194
195
        }
        else
        {
            ops.emplace(name, f);
        }
196
197
    }

Khalique's avatar
Khalique committed
198
    template <class F>
Paul's avatar
Paul committed
199
    void add_mem_op(std::string name, F f, bool transpose = true)
Khalique's avatar
Khalique committed
200
    {
Paul's avatar
Paul committed
201
202
203
204
205
        add_op(name,
               [=](auto&&... xs) {
                   return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
               },
               transpose);
Khalique's avatar
Khalique committed
206
207
208
209
210
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   if(args.size() != 2)
                       MIGRAPHX_THROW("binary operators should have 2 operands");
                   // TODO
                   // if(contains(attributes, "data_format"))
                   // {
                   //     if(is_nhwc)
                   //     {
                   //         l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
                   //     }
                   // }
                   return add_broadcastable_binary_op(args[0], args[1], x);
               },
               false);
Khalique's avatar
Khalique committed
226
227
228
229
230
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
231
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
247
248
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
249
250
251
252
253

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

254
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
255
256
257
258
259
260
261
262
263
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
Paul's avatar
Paul committed
264
            return to_nhwc(prog.add_instruction(x, to_nchw(l0), to_nchw(l1)));
Khalique's avatar
Khalique committed
265
266
267
        }
        else
        {
Paul's avatar
Paul committed
268
            return to_nhwc(prog.add_instruction(x, {to_nchw(arg0), to_nchw(arg1)}));
Khalique's avatar
Khalique committed
269
270
271
272
        }
    }

    template <class T>
Paul's avatar
Paul committed
273
    void add_generic_op(std::string name, T x, bool transpose = true)
Khalique's avatar
Khalique committed
274
    {
Paul's avatar
Paul committed
275
276
277
278
279
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   return prog.add_instruction(x, args);
               },
               transpose);
Khalique's avatar
Khalique committed
280
281
282
283
284
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
285
286
287
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
288
289
290
291
292
293
294
295
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

296
    instruction_ref
Khalique's avatar
Khalique committed
297
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
298
    {
299
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
300
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
301
        return prog.add_instruction(op::add{}, args[0], l0);
302
303
    }

Khalique's avatar
Khalique committed
304
305
306
307
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
308
        size_t axis_idx = attributes.at("N").i();
Paul's avatar
Paul committed
309
        size_t axis     = args[axis_idx]->eval().at<int64_t>();
Khalique's avatar
Khalique committed
310
        op::concat op{axis};
311
        // return only first N arguments (assuming last index is the axis value)
Khalique's avatar
Khalique committed
312
        return prog.add_instruction(
313
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
314
315
316
317
318
319
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Paul's avatar
Paul committed
320
        literal v = parse_tensor(attributes.at("value").tensor());
Paul's avatar
Paul committed
321
        return prog.add_literal(v);
Khalique's avatar
Khalique committed
322
323
324
325
326
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
327
        op::convolution op;
Khalique's avatar
Khalique committed
328
329
        if(contains(attributes, "strides"))
        {
330
            std::vector<size_t> stride;
331
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
332
            reorder_data(stride);
333
334
            if(stride.size() != 4)
            {
335
                MIGRAPHX_THROW("strides should have 4 values");
336
            }
337
338
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
339
340
341
        }
        if(contains(attributes, "dilations"))
        {
342
            std::vector<size_t> dilation;
343
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
344
            reorder_data(dilation);
345
346
347
348
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
349
350
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
351
        }
Khalique's avatar
Khalique committed
352

Paul's avatar
Paul committed
353
        auto weights = to_kcxy(args[1]);
Paul's avatar
Paul committed
354
        auto l0      = args[0];
355
356
        if(contains(attributes, "padding"))
        {
Khalique's avatar
Khalique committed
357
            const std::string& pad_mode = attributes.at("padding").s();
358
359
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
360
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
361
362
363
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];
Khalique's avatar
Khalique committed
364
365

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
366
367
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
368
369
370
371
372
373
374
375
376
377
378
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
379
380
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
381
                }
382
383
384
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
385
                op.padding_mode = op::padding_mode_t::valid;
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
            }
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
            {
                std::vector<size_t> padding;
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
Paul's avatar
Paul committed
403
        return prog.add_instruction(op, {l0, to_kcxy(args[1])});
Khalique's avatar
Khalique committed
404
405
    }

Khalique's avatar
Khalique committed
406
407
408
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
409
410
411
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
412
        op.group            = num_channels;
Khalique's avatar
Khalique committed
413

Khalique's avatar
Khalique committed
414
415
416
417
418
419
420
421
422
423
424
425
        if(contains(attributes, "strides"))
        {
            std::vector<size_t> stride;
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
            reorder_data(stride);
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
        }
Paul's avatar
Paul committed
426
427

        auto weights = to_kcxy(args[1]);
Khalique's avatar
Khalique committed
428
429
430
431
432
433
434
435
436
437
438
439
440
        if(contains(attributes, "dilations"))
        {
            std::vector<size_t> dilation;
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
            reorder_data(dilation);
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
        }

Khalique's avatar
Khalique committed
441
        auto l0 = args[0];
Khalique's avatar
Khalique committed
442
443
        if(contains(attributes, "padding"))
        {
Khalique's avatar
Khalique committed
444
445
            const std::string& pad_mode = attributes.at("padding").s();

Khalique's avatar
Khalique committed
446
447
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
448
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
449
450
451
452
453
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
454
455
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
456
457
458
459
460
461
462
463
464
465
466
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
467
468
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
469
                }
Khalique's avatar
Khalique committed
470
471
472
473
474
475
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
Khalique's avatar
Khalique committed
476

Khalique's avatar
Khalique committed
477
478
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
479
480
481
482

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
483
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
484
485
486
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
487
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
488
489
        auto new_weights =
            prog.add_instruction(op::reshape{new_weights_shape}, make_contiguous(weights));
Khalique's avatar
Khalique committed
490

Khalique's avatar
Khalique committed
491
        return prog.add_instruction(op, {l0, new_weights});
Khalique's avatar
Khalique committed
492
493
    }

Khalique's avatar
Khalique committed
494
495
    instruction_ref
    parse_expanddims(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
496
497
    {
        std::vector<size_t> input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
498
        std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
Khalique's avatar
Khalique committed
499
        size_t num_dims = input_dims.size();
Khalique's avatar
Khalique committed
500
501
502
        int32_t dim     = parse_axis(args[1]->eval().at<int32_t>(), num_dims);

        if(dim < 0)
Khalique's avatar
Khalique committed
503
504
505
506
507
508
509
510
511
512
        {
            new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
        }
        else
        {
            new_dims.insert(new_dims.begin() + dim, 1);
        }
        return prog.add_instruction(op::reshape{new_dims}, args[0]);
    }

Khalique's avatar
Khalique committed
513
514
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
515
516
517
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
518

519
520
521
522
523
524
525
526
527
528
529
530
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
            transb = attributes.at("transpose_a").b();
        }

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
531
        std::iter_swap(perm.end() - 1, perm.end() - 2);
532
533
534
535
536
537
538

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
539
540
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
541
542
    {
        bool keep_dims = attributes.at("keep_dims").b();
Khalique's avatar
Khalique committed
543
        std::vector<int32_t> hw_axes{2, 3};
Khalique's avatar
Khalique committed
544
        // check if conditions for GlobalAvgPool are met
Khalique's avatar
Khalique committed
545
        auto lens = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
546
547
        auto axes = parse_axes(args[1]->eval().get<int32_t>().to_vector(), lens.size());

Khalique's avatar
Khalique committed
548
        if(axes == hw_axes and lens.size() == 4)
Khalique's avatar
Khalique committed
549
550
        {
            op::pooling op{"average"};
Khalique's avatar
Khalique committed
551
552
            op.lengths[0] = lens[2];
            op.lengths[1] = lens[3];
Khalique's avatar
Khalique committed
553
554
555
556
557
            auto l0       = prog.add_instruction(op, args.front());
            if(keep_dims)
                return l0;
            return prog.add_instruction(
                op::squeeze{std::vector<int64_t>(hw_axes.begin(), hw_axes.end())}, l0);
Khalique's avatar
Khalique committed
558
559
560
561
        }
        MIGRAPHX_THROW("MIGraphX does not support mean outside of GlobalAvgPool transformation");
    }

Khalique's avatar
Khalique committed
562
563
564
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
565
566
567
568
569
570
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
571
572
573
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
574
575
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
576
577
        }

Khalique's avatar
Khalique committed
578
579
580
581
582
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Paul's avatar
Paul committed
583
584
        return to_nhwc(
            prog.add_instruction(op::concat{static_cast<size_t>(axis)}, unsqueezed_args));
Khalique's avatar
Khalique committed
585
586
    }

Khalique's avatar
Khalique committed
587
588
589
590
591
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
592
593
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
594
595
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
596
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
597
        {
Khalique's avatar
Khalique committed
598
599
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
600
601
602
603
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
604
605
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
606
        {
Khalique's avatar
Khalique committed
607
608
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
609
610
611
612
613
        }
        op.pads = pads;
        return prog.add_instruction(op, args.front());
    }

614
615
616
617
618
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
619

620
621
        if(contains(attributes, "strides"))
        {
622
            std::vector<size_t> stride;
623
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
624
            reorder_data(stride);
625
626
627
628
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
629
630
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
631
632
633
        }
        if(contains(attributes, "ksize"))
        {
634
            std::vector<size_t> ksize;
635
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
636
            reorder_data(ksize);
637
638
639
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
640
            }
641
642
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
643
        }
Khalique's avatar
Khalique committed
644
645

        auto l0 = args[0];
Khalique's avatar
Khalique committed
646
647
648
649
650
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
651
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
652
                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
653
654
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
655
656
657
658
659
660
661
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], 1, op.lengths[0]);
                calculate_padding(1, pads, input_w, op.stride[1], 1, op.lengths[1]);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
Khalique's avatar
Khalique committed
662
663
                    l0                           = prog.add_instruction(
                        migraphx::op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
Khalique's avatar
Khalique committed
664
665
666
                }
                else
                {
Khalique's avatar
Khalique committed
667
668
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
669
                }
Khalique's avatar
Khalique committed
670
671
672
673
674
675
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
Khalique's avatar
Khalique committed
676
        return prog.add_instruction(op, l0);
677
    }
Khalique's avatar
Khalique committed
678

679
    instruction_ref
Khalique's avatar
Khalique committed
680
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
681
682
683
684
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
685
        auto s = args[1]->eval();
686
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
687
        return prog.add_instruction(op, make_contiguous(args[0]));
688
689
    }

Khalique's avatar
Khalique committed
690
691
692
693
694
695
696
697
698
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
699
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
700
701
702
        }
    }

703
704
705
706
707
708
709
710
711
712
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    }

Khalique's avatar
Khalique committed
713
714
715
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
716
717
    {
        op::squeeze op;
Khalique's avatar
Khalique committed
718
        auto input_dims = args[0]->get_shape().lens();
Paul's avatar
Paul committed
719
        auto axes = attributes.at("squeeze_dims").list().i();
720
        copy(axes, std::back_inserter(op.axes));
Khalique's avatar
Khalique committed
721

722
723
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
Khalique's avatar
Khalique committed
724
            for(size_t i = 0; i < input_dims.size(); i++)
725
            {
Khalique's avatar
Khalique committed
726
                if(input_dims.at(i) == 1)
727
728
729
730
                {
                    op.axes.push_back(i);
                }
            }
731
        }
Paul's avatar
Paul committed
732
        return prog.add_instruction(op, make_contiguous(args[0]));
733
734
    }

Khalique's avatar
Khalique committed
735
736
737
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
738
739
    {
        op::slice op;
Khalique's avatar
Khalique committed
740
741
742
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto ends       = args[2]->eval().get<int32_t>().to_vector();
        size_t num_axes = args[0]->get_shape().lens().size();
743

Khalique's avatar
Khalique committed
744
745
746
747
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
748
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
749
        uint32_t bitwise_compare  = 1;
750
751
752
        std::vector<int64_t> squeeze_axes;

        if(contains(attributes, "shrink_axis_mask"))
753
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
754

Khalique's avatar
Khalique committed
755
        for(size_t i = 0; i < num_axes; i++)
756
        {
757
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
758
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
759
760
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
761

Paul's avatar
Paul committed
762
763
        auto l0 = prog.add_instruction(op, make_contiguous(args[0]));
        return to_nhwc(prog.add_instruction(op::squeeze{squeeze_axes}, l0));
764
765
    }

Khalique's avatar
Khalique committed
766
767
768
769
770
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
771
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
772
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
773
774
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
775
            if(is_nhwc and dims.size() >= 4)
776
            {
777
                reorder_data(dims);
778
            }
Khalique's avatar
Khalique committed
779
            shape s            = shape{shape_type, dims};
Paul's avatar
Paul committed
780
            instructions[name] = to_nhwc(prog.add_parameter(name, s));
Khalique's avatar
Khalique committed
781
782
783
        }
        for(auto&& p : nodes)
        {
784
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
811
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
812
813
814
815
816
817
818
819
820
821
822
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
823
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
824
825
826
827
828
829
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
830
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
831

Khalique's avatar
Khalique committed
832
833
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_INVALID:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
        case tensorflow::DataType::DT_STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case tensorflow::DataType::DT_COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case tensorflow::DataType::DT_QINT8:
            break; // throw std::runtime_error("Unsupported type QINT8");
        case tensorflow::DataType::DT_QUINT8:
            break; // throw std::runtime_error("Unsupported type QUINT8");
        case tensorflow::DataType::DT_QINT32:
            break; // throw std::runtime_error("Unsupported type QINT32");
        case tensorflow::DataType::DT_BFLOAT16:
            break; // throw std::runtime_error("Unsupported type BFLOAT16");
        case tensorflow::DataType::DT_QINT16:
            break; // throw std::runtime_error("Unsupported type QINT16");
        case tensorflow::DataType::DT_QUINT16:
            break; // throw std::runtime_error("Unsupported type QUINT16");
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_RESOURCE:
            break; // throw std::runtime_error("Unsupported type RESOURCE");
        case tensorflow::DataType::DT_VARIANT:
            break; // throw std::runtime_error("Unsupported type VARIANT");
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Khalique's avatar
Khalique committed
893
894
895
        case tensorflow::DataType::DT_UINT64:
            shape_type = shape::uint64_type;
            break;
Khalique's avatar
Khalique committed
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922

        // tf pb should not use these types
        case tensorflow::DataType::DT_FLOAT_REF: break;
        case tensorflow::DataType::DT_DOUBLE_REF: break;
        case tensorflow::DataType::DT_INT32_REF: break;
        case tensorflow::DataType::DT_UINT8_REF: break;
        case tensorflow::DataType::DT_INT16_REF: break;
        case tensorflow::DataType::DT_INT8_REF: break;
        case tensorflow::DataType::DT_STRING_REF: break;
        case tensorflow::DataType::DT_COMPLEX64_REF: break;
        case tensorflow::DataType::DT_INT64_REF: break;
        case tensorflow::DataType::DT_BOOL_REF: break;
        case tensorflow::DataType::DT_QINT8_REF: break;
        case tensorflow::DataType::DT_QUINT8_REF: break;
        case tensorflow::DataType::DT_QINT32_REF: break;
        case tensorflow::DataType::DT_BFLOAT16_REF: break;
        case tensorflow::DataType::DT_QINT16_REF: break;
        case tensorflow::DataType::DT_QUINT16_REF: break;
        case tensorflow::DataType::DT_UINT16_REF: break;
        case tensorflow::DataType::DT_COMPLEX128_REF: break;
        case tensorflow::DataType::DT_HALF_REF: break;
        case tensorflow::DataType::DT_RESOURCE_REF: break;
        case tensorflow::DataType::DT_VARIANT_REF: break;
        case tensorflow::DataType::DT_UINT32_REF: break;
        case tensorflow::DataType::DT_UINT64_REF: break;
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_: break;
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
923
924
925
926
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
927
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
928
929
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
930
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
931
932
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
933
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
934
935
936
            switch(t.dtype())
            {
            case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
Khalique's avatar
Khalique committed
937
938
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Khalique's avatar
Khalique committed
939
            case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
940
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
941
            case tensorflow::DataType::DT_UINT16:
942
                return literal{{shape::uint16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
943
            case tensorflow::DataType::DT_INT16:
944
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
945
946
947
948
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
949
            case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
950
            case tensorflow::DataType::DT_BOOL: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
951
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
952
953
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Khalique's avatar
Khalique committed
954
955
956
957
            case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
            case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
            case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
989
990
991
992
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
993
994
995
996
997
998
999
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
1000
1001
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
1002
1003
        case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8:
1004
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1005
        case tensorflow::DataType::DT_UINT16:
1006
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1007
        case tensorflow::DataType::DT_INT16:
1008
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1009
        case tensorflow::DataType::DT_INT32:
1010
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1011
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
1012
1013
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
1014
1015
        case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL:
1016
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
1017
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
1018
        {
1019
1020
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
1021
1022
1023
1024
1025
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1026
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1027
        }
Khalique's avatar
Khalique committed
1028
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
1029
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Khalique's avatar
Khalique committed
1030
1031
1032
1033
        case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
        case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1065
1066
1067
1068
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
1069
1070
1071
1072
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

1073
    template <class T>
Khalique's avatar
Khalique committed
1074
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
1075
                                        const size_t& shape_size)
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
1088
1089
1090
1091
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
1092
1093
1094
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
1095
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
1096
1097
        return dims;
    }
1098
1099

    template <class T>
Khalique's avatar
Khalique committed
1100
    static literal
1101
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
1102
    {
Khalique's avatar
Khalique committed
1103
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
1104
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1105
            return literal{{shape_type}, data};
1106
1107
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
Paul's avatar
Paul committed
1130
    parser.to_nchw(std::prev(parser.prog.end()));
Khalique's avatar
Khalique committed
1131
1132
1133
1134
1135
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx