tf.cpp 47.8 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
Khalique's avatar
Khalique committed
20
#include <migraphx/pad_calc.hpp>
Khalique's avatar
Khalique committed
21
22
23
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Paul's avatar
Paul committed
28
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
29
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
30

Khalique's avatar
Khalique committed
31
32
33
34
35
36
37
38
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Paul's avatar
Paul committed
39
    bool should_transpose(instruction_ref ins) const
Paul's avatar
Paul committed
40
41
42
43
44
45
    {
        return is_nhwc and ins->get_shape().lens().size() == 4;
    }

    instruction_ref to_nhwc(instruction_ref ins)
    {
Paul's avatar
Paul committed
46
        if(should_transpose(ins))
Paul's avatar
Paul committed
47
48
49
50
51
52
            return prog.add_instruction(op::transpose{{0, 2, 3, 1}}, ins);
        return ins;
    }

    instruction_ref to_nchw(instruction_ref ins)
    {
Paul's avatar
Paul committed
53
        if(should_transpose(ins))
Paul's avatar
Paul committed
54
55
56
57
58
59
            return prog.add_instruction(op::transpose{{0, 3, 1, 2}}, ins);
        return ins;
    }

    instruction_ref to_kcxy(instruction_ref ins)
    {
Paul's avatar
Paul committed
60
        if(should_transpose(ins))
Paul's avatar
Paul committed
61
62
63
64
65
66
            return prog.add_instruction(op::transpose{{3, 2, 0, 1}}, ins);
        return ins;
    }

    instruction_ref make_contiguous(instruction_ref ins)
    {
Paul's avatar
Paul committed
67
        if(ins->get_shape().standard())
Paul's avatar
Paul committed
68
69
70
71
72
73
74
75
            return ins;
        else
            return prog.add_instruction(op::contiguous{}, ins);
    }

    std::vector<instruction_ref> to_nchw(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
Paul's avatar
Paul committed
76
        std::transform(
Paul's avatar
Paul committed
77
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nchw(ins); });
Paul's avatar
Paul committed
78
79
80
        return result;
    }

Khalique's avatar
Khalique committed
81
    std::vector<size_t>
82
    parse_axes(const attribute_map& attributes, const std::string& s, const size_t num_dims) const
83
    {
84
85
86
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
87
        if(is_nhwc)
88
        {
Khalique's avatar
Khalique committed
89
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
Khalique's avatar
Khalique committed
90
                return parse_axis(axis, num_dims);
Khalique's avatar
Khalique committed
91
            });
92
93
94
95
        }
        return axes;
    }

Khalique's avatar
Khalique committed
96
    template <class T>
97
    std::vector<T> parse_axes(std::vector<T> axes, const size_t num_dims) const
Khalique's avatar
Khalique committed
98
99
100
    {
        if(is_nhwc)
        {
101
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
102
103
104
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
Khalique's avatar
Khalique committed
105
                           [&](size_t axis) { return parse_axis(axis, num_dims); });
106
            return new_axes;
Khalique's avatar
Khalique committed
107
        }
108
        return axes;
Khalique's avatar
Khalique committed
109
110
    }

Khalique's avatar
Khalique committed
111
112
113
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
114
    template <class T>
115
    void reorder_data(std::vector<T>& prev_data) const
116
117
    {
        std::vector<T> new_data(prev_data.size());
118
        for(size_t i = 0; i < new_data.size(); i++)
119
        {
Khalique's avatar
Khalique committed
120
            auto new_idx         = parse_axis(i, new_data.size());
121
            new_data.at(new_idx) = prev_data.at(i);
122
        }
123
124
125
126
        prev_data = new_data;
    }

    template <class T>
127
    T parse_axis(const T& dim, const size_t num_dims) const
128
    {
Khalique's avatar
Khalique committed
129
        T new_dim = dim;
Khalique's avatar
Khalique committed
130
        if(is_nhwc and num_dims >= 4)
131
132
133
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
134
135
136
137
138
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
139
140
            }
        }
Khalique's avatar
Khalique committed
141
        return new_dim;
142
143
    }

144
145
146
147
148
149
150
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
151
    std::vector<int64_t> get_axes_from_mask(const size_t num_axes, const uint32_t mask)
Khalique's avatar
Khalique committed
152
    {
Khalique's avatar
Khalique committed
153
        uint32_t bitwise_compare = 1;
Khalique's avatar
Khalique committed
154
155
156
157
158
159
160
161
162
163
164
165
        std::vector<int64_t> axes;
        for(size_t i = 0; i < num_axes; i++)
        {
            // the LSB corresponds to axis 0 when determining which axes to begin
            if(((mask >> i) & bitwise_compare) == 1)
                axes.push_back(1);
            else
                axes.push_back(0);
        }
        return axes;
    }

Khalique's avatar
Khalique committed
166
167
    tf_parser()
    {
Khalique's avatar
Khalique committed
168
        add_generic_op("All", op::identity{});
Khalique's avatar
Khalique committed
169
        add_generic_op("Identity", op::identity{});
Khalique's avatar
Khalique committed
170
        add_generic_op("LessEqual", op::identity{});
Khalique's avatar
Khalique committed
171
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
172
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
173
        add_generic_op("Rsqrt", op::rsqrt{});
Khalique's avatar
Khalique committed
174
        add_generic_op("Tanh", op::tanh{});
Khalique's avatar
Khalique committed
175
        add_generic_op("StopGradient", op::identity{});
Khalique's avatar
Khalique committed
176

177
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
178
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
179
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
180
        add_binary_op("SquaredDifference", op::sqdiff{});
Khalique's avatar
Khalique committed
181
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
182

183
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
184
        add_mem_op("BatchMatMul", &tf_parser::parse_matmul, false);
185
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
Khalique's avatar
Khalique committed
186
        add_mem_op("Cast", &tf_parser::parse_cast, false);
Paul's avatar
Paul committed
187
        add_mem_op("ConcatV2", &tf_parser::parse_concat, false);
Khalique's avatar
Khalique committed
188
        add_mem_op("Const", &tf_parser::parse_constant);
Paul's avatar
Paul committed
189
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Paul's avatar
Paul committed
190
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
191
        add_mem_op("ExpandDims", &tf_parser::parse_expanddims, false);
Khalique's avatar
Khalique committed
192
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
Khalique's avatar
Khalique committed
193
        add_mem_op("GatherV2", &tf_parser::parse_gather, false);
Paul's avatar
Paul committed
194
        add_mem_op("MatMul", &tf_parser::parse_matmul, false);
195
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
196
        add_mem_op("Mean", &tf_parser::parse_mean, false);
Khalique's avatar
Khalique committed
197
        add_mem_op("OneHot", &tf_parser::parse_onehot, false);
Paul's avatar
Paul committed
198
        add_mem_op("Pack", &tf_parser::parse_pack, false);
Paul's avatar
Paul committed
199
        add_mem_op("Pad", &tf_parser::parse_pad);
Paul's avatar
Paul committed
200
        add_mem_op("Reshape", &tf_parser::parse_reshape, false);
Khalique's avatar
Khalique committed
201
        add_mem_op("Slice", &tf_parser::parse_slice, false);
Khalique's avatar
Khalique committed
202
        add_mem_op("Softmax", &tf_parser::parse_softmax<op::softmax>, false);
Paul's avatar
Paul committed
203
        add_mem_op("Squeeze", &tf_parser::parse_squeeze, false);
204
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice, false);
Khalique's avatar
Khalique committed
205
        add_mem_op("Transpose", &tf_parser::parse_transpose, false);
Khalique's avatar
Khalique committed
206
207
    }

208
    template <class F>
Paul's avatar
Paul committed
209
    void add_op(std::string name, F f, bool transpose = true)
210
    {
Paul's avatar
Paul committed
211
        if(transpose)
Paul's avatar
Paul committed
212
        {
Paul's avatar
Paul committed
213
214
            ops.emplace(name,
                        op_func{[=](const attribute_map& attributes,
Paul's avatar
Paul committed
215
                                    const std::vector<instruction_ref>& args) -> instruction_ref {
Paul's avatar
Paul committed
216
217
                            return to_nhwc(f(attributes, to_nchw(args)));
                        }});
Paul's avatar
Paul committed
218
219
220
221
222
        }
        else
        {
            ops.emplace(name, f);
        }
223
224
    }

Khalique's avatar
Khalique committed
225
    template <class F>
Paul's avatar
Paul committed
226
    void add_mem_op(std::string name, F f, bool transpose = true)
Khalique's avatar
Khalique committed
227
    {
Paul's avatar
Paul committed
228
229
230
231
232
        add_op(name,
               [=](auto&&... xs) {
                   return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
               },
               transpose);
Khalique's avatar
Khalique committed
233
234
235
236
237
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   if(args.size() != 2)
                       MIGRAPHX_THROW("binary operators should have 2 operands");
                   // TODO
                   // if(contains(attributes, "data_format"))
                   // {
                   //     if(is_nhwc)
                   //     {
                   //         l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
                   //     }
                   // }
                   return add_broadcastable_binary_op(args[0], args[1], x);
               },
               false);
Khalique's avatar
Khalique committed
253
254
255
256
257
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
258
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
274
275
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
276
277
278
279
280

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

281
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
282
283
284
285
286
287
288
289
290
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
Paul's avatar
Paul committed
291
            return to_nhwc(prog.add_instruction(x, to_nchw(l0), to_nchw(l1)));
Khalique's avatar
Khalique committed
292
293
294
        }
        else
        {
Paul's avatar
Paul committed
295
            return to_nhwc(prog.add_instruction(x, {to_nchw(arg0), to_nchw(arg1)}));
Khalique's avatar
Khalique committed
296
297
298
299
        }
    }

    template <class T>
Paul's avatar
Paul committed
300
    void add_generic_op(std::string name, T x, bool transpose = true)
Khalique's avatar
Khalique committed
301
    {
Paul's avatar
Paul committed
302
303
304
305
306
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   return prog.add_instruction(x, args);
               },
               transpose);
Khalique's avatar
Khalique committed
307
308
309
310
311
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
312
313
314
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
315
316
317
318
319
320
321
322
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

323
    instruction_ref
Khalique's avatar
Khalique committed
324
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
325
    {
326
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
327
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
328
        return prog.add_instruction(op::add{}, args[0], l0);
329
330
    }

Khalique's avatar
Khalique committed
331
332
333
334
335
336
337
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        shape::type_t type = parse_type(attributes.at("DstT").type());
        return prog.add_instruction(op::convert{type}, std::move(args));
    }

Khalique's avatar
Khalique committed
338
339
340
341
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
342
        size_t axis_idx = attributes.at("N").i();
Paul's avatar
Paul committed
343
        size_t axis     = args[axis_idx]->eval().at<int64_t>();
Khalique's avatar
Khalique committed
344
        op::concat op{axis};
345
        // return only first N arguments (assuming last index is the axis value)
Paul's avatar
Paul committed
346
347
        return prog.add_instruction(
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
348
349
350
351
352
353
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Paul's avatar
Paul committed
354
        literal v = parse_tensor(attributes.at("value").tensor());
Paul's avatar
Paul committed
355
        return prog.add_literal(v);
Khalique's avatar
Khalique committed
356
357
358
359
360
361
362
363
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "strides"))
        {
364
            std::vector<size_t> stride;
365
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
366
            reorder_data(stride);
367
368
            if(stride.size() != 4)
            {
369
                MIGRAPHX_THROW("strides should have 4 values");
370
            }
371
372
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
373
374
375
        }
        if(contains(attributes, "dilations"))
        {
376
            std::vector<size_t> dilation;
377
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
378
            reorder_data(dilation);
379
380
381
382
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
383
384
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
385
        }
Khalique's avatar
Khalique committed
386

Paul's avatar
Paul committed
387
        auto weights = to_kcxy(args[1]);
Paul's avatar
Paul committed
388
        auto l0      = args[0];
Khalique's avatar
Khalique committed
389
390
391
392
393
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
394
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
395
396
397
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];
Khalique's avatar
Khalique committed
398
399

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
400
401
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
402
403
404
405
406
407
408
409
410
411
412
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
413
414
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
415
                }
416
417
418
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
419
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
420
            }
Khalique's avatar
Khalique committed
421
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
422
            {
423
                std::vector<size_t> padding;
424
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
425
426
427
428
429
430
431
432
433
434
435
436
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
Paul's avatar
Paul committed
437
        return prog.add_instruction(op, {l0, to_kcxy(args[1])});
Khalique's avatar
Khalique committed
438
439
    }

Khalique's avatar
Khalique committed
440
441
442
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
443
444
445
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
446
        op.group            = num_channels;
Khalique's avatar
Khalique committed
447

Khalique's avatar
Khalique committed
448
449
        if(contains(attributes, "strides"))
        {
450
            std::vector<size_t> stride;
451
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
452
            reorder_data(stride);
453
454
            if(stride.size() != 4)
            {
455
                MIGRAPHX_THROW("strides should have 4 values");
456
            }
457
458
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
459
        }
Paul's avatar
Paul committed
460
461

        auto weights = to_kcxy(args[1]);
Khalique's avatar
Khalique committed
462
463
        if(contains(attributes, "dilations"))
        {
464
            std::vector<size_t> dilation;
465
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
466
            reorder_data(dilation);
467
468
469
470
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
471
472
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
473
474
        }

Khalique's avatar
Khalique committed
475
        auto l0 = args[0];
Khalique's avatar
Khalique committed
476
477
478
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
Khalique's avatar
Khalique committed
479

Khalique's avatar
Khalique committed
480
481
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
482
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
483
484
485
486
487
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
488
489
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
490
491
492
493
494
495
496
497
498
499
500
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
501
502
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
503
                }
Khalique's avatar
Khalique committed
504
            }
Khalique's avatar
Khalique committed
505
            else if(pad_mode.find("VALID") != std::string::npos)
Khalique's avatar
Khalique committed
506
            {
Khalique's avatar
Khalique committed
507
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
508
509
            }
        }
Khalique's avatar
Khalique committed
510

Khalique's avatar
Khalique committed
511
512
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
513
514
515
516

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
517
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
518
519
520
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
521
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
522
523
        auto new_weights =
            prog.add_instruction(op::reshape{new_weights_shape}, make_contiguous(weights));
Khalique's avatar
Khalique committed
524

Khalique's avatar
Khalique committed
525
        return prog.add_instruction(op, {l0, new_weights});
Khalique's avatar
Khalique committed
526
527
    }

Khalique's avatar
Khalique committed
528
529
    instruction_ref
    parse_expanddims(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
530
531
    {
        std::vector<size_t> input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
532
        std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
Khalique's avatar
Khalique committed
533
        size_t num_dims = input_dims.size();
534
        int32_t dim     = args[1]->eval().at<int32_t>();
Khalique's avatar
Khalique committed
535
536

        if(dim < 0)
Khalique's avatar
Khalique committed
537
538
539
540
541
542
543
544
545
546
        {
            new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
        }
        else
        {
            new_dims.insert(new_dims.begin() + dim, 1);
        }
        return prog.add_instruction(op::reshape{new_dims}, args[0]);
    }

Khalique's avatar
Khalique committed
547
548
549
550
551
552
553
554
    instruction_ref
    parse_gather(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        int axis = args[2]->eval().at<int32_t>();
        op::gather op{axis};
        return prog.add_instruction(op, {args[0], args[1]});
    }

Khalique's avatar
Khalique committed
555
556
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
557
558
559
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
560

561
562
563
564
565
566
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
Khalique's avatar
Khalique committed
567
            transb = attributes.at("transpose_b").b();
568
569
        }

Khalique's avatar
Khalique committed
570
571
572
573
574
575
576
577
578
        if(contains(attributes, "adj_x"))
        {
            transa = attributes.at("adj_x").b();
        }
        if(contains(attributes, "adj_y"))
        {
            transb = attributes.at("adj_y").b();
        }

579
580
581
        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
582
        std::iter_swap(perm.end() - 1, perm.end() - 2);
583
584
585
586
587
588
589

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
590
591
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
592
    {
Khalique's avatar
Khalique committed
593
594
        bool keep_dims = attributes.at("keep_dims").b();
        auto axes      = args[1]->eval().get<int32_t>().to_vector<int64_t>();
Khalique's avatar
Khalique committed
595
596

        if(keep_dims)
Khalique's avatar
Khalique committed
597
        {
598
599
600
601
602
603
            return prog.add_instruction(op::reduce_mean{axes}, args[0]);
        }
        else
        {
            auto ins = prog.add_instruction(op::reduce_mean{axes}, args[0]);
            return prog.add_instruction(op::squeeze{axes}, ins);
Khalique's avatar
Khalique committed
604
605
606
        }
    }

Khalique's avatar
Khalique committed
607
608
609
    instruction_ref
    parse_onehot(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
610
611
        size_t depth = static_cast<size_t>(args[1]->eval().at<int32_t>());

Khalique's avatar
Khalique committed
612
        int64_t axis    = -1;
Khalique's avatar
Khalique committed
613
614
        float on_value  = args[2]->eval().at<float>();
        float off_value = args[3]->eval().at<float>();
Khalique's avatar
Khalique committed
615

Khalique's avatar
Khalique committed
616
        std::vector<float> depth_input(depth * depth, off_value);
Khalique's avatar
Khalique committed
617
618
        for(int i = 0; i < depth; i++)
        {
Khalique's avatar
Khalique committed
619
            depth_input[depth * i + i] = on_value;
Khalique's avatar
Khalique committed
620
        }
Khalique's avatar
Khalique committed
621

Khalique's avatar
Khalique committed
622
        if(contains(attributes, "axis"))
Khalique's avatar
Khalique committed
623
624
625
            axis = attributes.at("axis").i();
        if(axis == -1)
        {
Khalique's avatar
Khalique committed
626
627
628
            shape s{shape::float_type, {depth, depth}};
            auto l0 = prog.add_literal({s, depth_input});
            return prog.add_instruction(op::gather{0}, {l0, args[0]});
Khalique's avatar
Khalique committed
629
630
631
632
        }
        MIGRAPHX_THROW("MIGraphX does not support axis != -1");
    }

Khalique's avatar
Khalique committed
633
634
635
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
636
637
638
639
640
641
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
642
643
644
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
645
646
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
647
648
        }

Khalique's avatar
Khalique committed
649
650
651
652
653
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Paul's avatar
Paul committed
654
655
        return to_nhwc(
            prog.add_instruction(op::concat{static_cast<size_t>(axis)}, unsqueezed_args));
Khalique's avatar
Khalique committed
656
657
    }

Khalique's avatar
Khalique committed
658
659
660
661
662
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
663
664
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
665
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
Paul's avatar
Paul committed
666
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
667
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
668
        {
Khalique's avatar
Khalique committed
669
670
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
671
672
673
674
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
675
676
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
677
        {
Khalique's avatar
Khalique committed
678
679
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
680
681
        }
        op.pads = pads;
Paul's avatar
Paul committed
682
        return prog.add_instruction(op, args.front());
Khalique's avatar
Khalique committed
683
684
    }

685
686
687
688
689
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
690

691
692
        if(contains(attributes, "strides"))
        {
693
            std::vector<size_t> stride;
694
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
695
            reorder_data(stride);
696
697
698
699
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
700
701
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
702
703
704
        }
        if(contains(attributes, "ksize"))
        {
705
            std::vector<size_t> ksize;
706
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
707
            reorder_data(ksize);
708
709
710
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
711
            }
712
713
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
714
        }
Khalique's avatar
Khalique committed
715
716

        auto l0 = args[0];
Khalique's avatar
Khalique committed
717
718
719
720
721
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
722
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
723
                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
724
725
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
726
727
728
729
730
731
732
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], 1, op.lengths[0]);
                calculate_padding(1, pads, input_w, op.stride[1], 1, op.lengths[1]);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
Khalique's avatar
Khalique committed
733
734
                    l0                           = prog.add_instruction(
                        migraphx::op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
Khalique's avatar
Khalique committed
735
736
737
                }
                else
                {
Khalique's avatar
Khalique committed
738
739
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
740
                }
Khalique's avatar
Khalique committed
741
742
743
744
745
746
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
Khalique's avatar
Khalique committed
747
        return prog.add_instruction(op, l0);
748
    }
Khalique's avatar
Khalique committed
749

750
    instruction_ref
Khalique's avatar
Khalique committed
751
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
752
753
754
755
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
756
        auto s = args[1]->eval();
757
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
758
        return prog.add_instruction(op, make_contiguous(args[0]));
759
760
    }

Khalique's avatar
Khalique committed
761
762
763
764
765
766
767
768
769
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
770
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
771
772
773
        }
    }

774
    instruction_ref
Khalique's avatar
Khalique committed
775
    parse_slice(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
776
    {
Khalique's avatar
Khalique committed
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
        op::slice op;
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto size       = args[2]->eval().get<int32_t>().to_vector();
        auto axes       = args[0]->get_shape().lens();
        size_t num_axes = axes.size();

        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(num_axes);
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
        for(size_t i = 0; i < num_axes; i++)
        {
            if(size[i] == -1)
                op.ends[i] = axes[i];
            else
                op.ends[i] = starts[i] + size[i];
        }
        return prog.add_instruction(op, make_contiguous(args[0]));
    }

Khalique's avatar
Khalique committed
797
798
799
800
801
    // template to facilitate the logsoftmax later
    template <class Op>
    instruction_ref parse_softmax(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
802
    {
Khalique's avatar
Khalique committed
803
        int axis      = -1;
Khalique's avatar
Khalique committed
804
805
806
807
808
809
810
811
812
813
814
        auto num_dims = args[0]->get_shape().lens().size();
        if(contains(attributes, "axis"))
        {
            axis = static_cast<int>(attributes.at("axis").i());
        }
        if(axis < 0)
        {
            axis += num_dims;
        }

        return prog.add_instruction(Op{axis}, make_contiguous(args[0]));
815
816
    }

Khalique's avatar
Khalique committed
817
818
819
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
820
821
    {
        op::squeeze op;
Khalique's avatar
Khalique committed
822
        auto input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
823
        auto axes       = attributes.at("squeeze_dims").list().i();
824
        copy(axes, std::back_inserter(op.axes));
Khalique's avatar
Khalique committed
825

826
827
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
Khalique's avatar
Khalique committed
828
            for(size_t i = 0; i < input_dims.size(); i++)
829
            {
Khalique's avatar
Khalique committed
830
                if(input_dims.at(i) == 1)
831
832
833
834
                {
                    op.axes.push_back(i);
                }
            }
835
        }
Paul's avatar
Paul committed
836
        return prog.add_instruction(op, make_contiguous(args[0]));
837
838
    }

Khalique's avatar
Khalique committed
839
840
841
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
842
843
    {
        op::slice op;
Khalique's avatar
Khalique committed
844
845
846
847
        auto starts              = args[1]->eval().get<int32_t>().to_vector();
        auto ends                = args[2]->eval().get<int32_t>().to_vector();
        auto l0                  = args[0];
        size_t num_axes          = l0->get_shape().lens().size();
848
        std::vector<size_t> axes = l0->get_shape().lens();
849

Khalique's avatar
Khalique committed
850
851
852
853
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
Khalique's avatar
Khalique committed
854
855
        uint32_t begin_mask       = 0;
        uint32_t end_mask         = 0;
856
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
857
        uint32_t bitwise_compare  = 1;
858
859
        std::vector<int64_t> squeeze_axes;

Khalique's avatar
Khalique committed
860
861
862
863
864
865
        if(contains(attributes, "begin_mask"))
            begin_mask = static_cast<uint32_t>(attributes.at("begin_mask").i());

        if(contains(attributes, "end_mask"))
            end_mask = static_cast<uint32_t>(attributes.at("end_mask").i());

866
        if(contains(attributes, "shrink_axis_mask"))
867
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
868

Khalique's avatar
Khalique committed
869
        std::vector<int64_t> begin_axes = get_axes_from_mask(num_axes, begin_mask);
Khalique's avatar
Khalique committed
870
        std::vector<int64_t> end_axes   = get_axes_from_mask(num_axes, end_mask);
Khalique's avatar
Khalique committed
871
872
873
874
875
876
877
878
879
880
881
882
883

        for(size_t i = 0; i < num_axes; i++)
        {
            if(begin_axes.at(i) == 1)
            {
                op.starts.at(i) = 0;
            }
            if(end_axes.at(i) == 1)
            {
                op.ends.at(i) = axes.at(i);
            }
        }

884
        auto l1 = prog.add_instruction(op, l0);
Khalique's avatar
Khalique committed
885
        if(shrink_axis_mask == 0)
886
            return l1;
Khalique's avatar
Khalique committed
887

Khalique's avatar
Khalique committed
888
        for(size_t i = 0; i < num_axes; i++)
889
        {
890
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
891
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
892
893
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
894

895
        return prog.add_instruction(op::squeeze{squeeze_axes}, l1);
896
897
    }

Khalique's avatar
Khalique committed
898
899
    instruction_ref
    parse_transpose(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
900
901
902
903
904
905
906
907
    {
        auto perm = args[1]->eval().get<int32_t>().to_vector();
        op::transpose op;
        op.dims = std::vector<int64_t>(perm.begin(), perm.end());

        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
908
909
910
911
912
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
913
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
914
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
915
916
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
917
            if(is_nhwc and dims.size() >= 4)
918
            {
919
                reorder_data(dims);
920
            }
Khalique's avatar
Khalique committed
921
            shape s            = shape{shape_type, dims};
Paul's avatar
Paul committed
922
            instructions[name] = to_nhwc(prog.add_parameter(name, s));
Khalique's avatar
Khalique committed
923
924
925
        }
        for(auto&& p : nodes)
        {
926
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
927
928
929
930
931
932
933
934
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
Khalique's avatar
Khalique committed
935
936
937
            // assert ops ignored
            if(node.op() == "Assert" or contains(name, "Assert"))
                return;
Khalique's avatar
Khalique committed
938
939
940
941
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
Khalique's avatar
Khalique committed
942
943
944
                // control dependencies (signified by ^ before the name) are ignored
                if(contains(input, "^"))
                    continue;
Khalique's avatar
Khalique committed
945
946
947
948
949
950
951
952
953
954
955
956
957
958
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
959
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
960
961
962
963
964
965
966
967
968
969
970
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
971
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
972
973
974
975
976
977
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
978
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
979

Khalique's avatar
Khalique committed
980
981
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
Paul's avatar
Paul committed
1009
1010
1011
1012
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Paul's avatar
Paul committed
1013
        case tensorflow::DataType::DT_UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
1014
1015
1016

        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
Khalique's avatar
Khalique committed
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_BOOL:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
Khalique's avatar
Khalique committed
1029
        // tf pb should not use these types
Paul's avatar
Paul committed
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Paul's avatar
Paul committed
1053
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
Khalique's avatar
Khalique committed
1054
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
1055
1056
1057
1058
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
1059
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
1060
1061
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
1062
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
1063
1064
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
1065
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
1066
1067
            switch(t.dtype())
            {
Khalique's avatar
Khalique committed
1068
1069
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Paul's avatar
Paul committed
1070
            case tensorflow::DataType::DT_BOOL:
1071
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1072
1073
            case tensorflow::DataType::DT_UINT16:
            case tensorflow::DataType::DT_INT16:
1074
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1075
1076
1077
1078
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1079
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1080
1081
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Paul's avatar
Paul committed
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
            case tensorflow::DataType::DT_INVALID:
            case tensorflow::DataType::DT_UINT8:
            case tensorflow::DataType::DT_STRING:
            case tensorflow::DataType::DT_UINT32:
            case tensorflow::DataType::DT_UINT64:
            case tensorflow::DataType::DT_COMPLEX64:
            case tensorflow::DataType::DT_COMPLEX128:
            case tensorflow::DataType::DT_QINT8:
            case tensorflow::DataType::DT_QUINT8:
            case tensorflow::DataType::DT_QINT32:
            case tensorflow::DataType::DT_BFLOAT16:
            case tensorflow::DataType::DT_QINT16:
            case tensorflow::DataType::DT_QUINT16:
            case tensorflow::DataType::DT_RESOURCE:
            case tensorflow::DataType::DT_VARIANT:
            case tensorflow::DataType::DT_FLOAT_REF:
            case tensorflow::DataType::DT_DOUBLE_REF:
            case tensorflow::DataType::DT_INT32_REF:
            case tensorflow::DataType::DT_UINT8_REF:
            case tensorflow::DataType::DT_INT16_REF:
            case tensorflow::DataType::DT_INT8_REF:
            case tensorflow::DataType::DT_STRING_REF:
            case tensorflow::DataType::DT_COMPLEX64_REF:
            case tensorflow::DataType::DT_INT64_REF:
            case tensorflow::DataType::DT_BOOL_REF:
            case tensorflow::DataType::DT_QINT8_REF:
            case tensorflow::DataType::DT_QUINT8_REF:
            case tensorflow::DataType::DT_QINT32_REF:
            case tensorflow::DataType::DT_BFLOAT16_REF:
            case tensorflow::DataType::DT_QINT16_REF:
            case tensorflow::DataType::DT_QUINT16_REF:
            case tensorflow::DataType::DT_UINT16_REF:
            case tensorflow::DataType::DT_COMPLEX128_REF:
            case tensorflow::DataType::DT_HALF_REF:
            case tensorflow::DataType::DT_RESOURCE_REF:
            case tensorflow::DataType::DT_VARIANT_REF:
            case tensorflow::DataType::DT_UINT32_REF:
            case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1120
1121
1122
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
1123
1124
1125
1126
1127
1128
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
1129
1130
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
1131
        case tensorflow::DataType::DT_INT8:
1132
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1133
        case tensorflow::DataType::DT_UINT16:
1134
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1135
        case tensorflow::DataType::DT_INT16:
1136
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1137
        case tensorflow::DataType::DT_INT32:
1138
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1139
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
1140
1141
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
1142
        case tensorflow::DataType::DT_BOOL:
1143
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
1144
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
1145
        {
1146
1147
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
1148
1149
1150
1151
1152
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1153
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1154
        }
Khalique's avatar
Khalique committed
1155
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
1156
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Paul's avatar
Paul committed
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_UINT32:
        case tensorflow::DataType::DT_UINT64:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1195
1196
1197
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
1198
1199
1200
1201
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

1202
    template <class T>
Khalique's avatar
Khalique committed
1203
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
1204
                                        const size_t& shape_size)
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
1217
1218
1219
1220
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
1221
1222
1223
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
1224
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
1225
1226
        return dims;
    }
1227
1228

    template <class T>
Khalique's avatar
Khalique committed
1229
    static literal
1230
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
1231
    {
Khalique's avatar
Khalique committed
1232
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
1233
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1234
            return literal{{shape_type}, data};
1235
1236
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
Paul's avatar
Paul committed
1259
    parser.to_nchw(std::prev(parser.prog.end()));
Khalique's avatar
Khalique committed
1260
1261
1262
1263
1264
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx