"fmoe/megatron/checkpoint.py" did not exist on "66f7166ddae3f4cfcc7cc1898fa6f9f229cbd543"
tf.cpp 20.9 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Khalique's avatar
Khalique committed
27
    using node_map      = std::unordered_map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
28
29
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
30

Khalique's avatar
Khalique committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});

        add_binary_op("BiasAdd", op::add{});

46
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
47
48
49
50
        // add_mem_op("ConcatV2", &tf_parser::parse_concat);
        add_mem_op("Const", &tf_parser::parse_constant);
        add_mem_op("Conv2D", &tf_parser::parse_conv);
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
51
52
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
        // add_mem_op("Reshape", &tf_parser::parse_reshape);
Khalique's avatar
Khalique committed
53
54
    }

55
56
57
58
59
60
61
62
63
64
65
66
67
    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

Khalique's avatar
Khalique committed
68
69
70
    template <class F>
    void add_mem_op(std::string name, F f)
    {
71
        add_op(name, [=](auto&&... xs) {
Khalique's avatar
Khalique committed
72
73
74
75
76
77
78
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
79
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
            if(args.size() != 2)
                MIGRAPHX_THROW("binary operators should have 2 operands");
            return add_broadcastable_binary_op(args[0], args[1], x);
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

            std::vector<std::size_t> output_lens(*s1);
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
    }

    template <class T>
    void add_generic_op(std::string name, T x)
    {
133
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
134
135
136
137
138
139
140
            return prog.add_instruction(x, args);
        });
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
141
142
143
144
        float epsilon  = 1e-4f;
        float momentum = 1.f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode =
            op::batch_norm_inference::per_activation;
Khalique's avatar
Khalique committed
145
146
147
148
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
Khalique's avatar
Khalique committed
149

Khalique's avatar
Khalique committed
150
151
152
153
154
155
156
157
158
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
        std::size_t axis_idx = attributes.at("N").i();
Khalique's avatar
Khalique committed
159
        std::size_t axis     = args[axis_idx]->eval().at<int64_t>();
Khalique's avatar
Khalique committed
160
        op::concat op{axis};
161
        // return only first N arguments (assuming last index is the axis value)
Khalique's avatar
Khalique committed
162
163
        return prog.add_instruction(
            op, std::vector<instruction_ref>(args.begin(), args.begin() + axis));
Khalique's avatar
Khalique committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
        literal v = parse_tensor(attributes.at("value").tensor());
        return prog.add_literal(v);
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
183
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
184
            }
Khalique's avatar
Khalique committed
185
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
186
            {
187
188
                std::vector<std::size_t> padding;
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
        if(contains(attributes, "strides"))
        {
203
204
            std::vector<std::size_t> stride;
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
205
206
            if(stride.size() != 4)
            {
207
                MIGRAPHX_THROW("strides should have 4 values");
208
            }
209
210
211
212
213
214
215
216
            if(is_nhwc)
            {
                op.stride[0] = stride[1];
                op.stride[1] = stride[2];
            }
            else
            {
                op.stride[0] = stride[2];
Khalique's avatar
Khalique committed
217
                op.stride[1] = stride[3];
218
            }
Khalique's avatar
Khalique committed
219
220
221
        }
        if(contains(attributes, "dilations"))
        {
222
223
            std::vector<std::size_t> dilation;
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
224
225
226
227
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
228
229
230
231
232
233
234
235
236
237
            if(is_nhwc)
            {
                op.dilation[0] = dilation[1];
                op.dilation[1] = dilation[2];
            }
            else
            {
                op.dilation[0] = dilation[2];
                op.dilation[1] = dilation[3];
            }
Khalique's avatar
Khalique committed
238
        }
239
        auto l0 = args[0];
Khalique's avatar
Khalique committed
240
        if(l0->name() == "@param")
241
242
243
244
245
246
        {
            if(is_nhwc)
                l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, l0);
        }
        auto l1 = prog.add_instruction(op::transpose{{3, 2, 0, 1}}, args[1]);
        return prog.add_instruction(op, {l0, l1});
Khalique's avatar
Khalique committed
247
248
    }

249
250
251
252
253
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
254

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
        if(contains(attributes, "strides"))
        {
            std::vector<std::size_t> stride;
270
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
            if(is_nhwc)
            {
                op.stride[0] = stride[1];
                op.stride[1] = stride[2];
            }
            else
            {
                op.stride[0] = stride[2];
                op.stride[1] = stride[3];
            }
        }
        if(contains(attributes, "ksize"))
        {
            std::vector<std::size_t> ksize;
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
            }
            if(is_nhwc)
            {
                op.lengths[0] = ksize[1];
                op.lengths[1] = ksize[2];
            }
            else
            {
                op.lengths[0] = ksize[2];
                op.lengths[1] = ksize[3];
            }
        }
Khalique's avatar
Khalique committed
305

306
307
        return prog.add_instruction(op, std::move(args));
    }
Khalique's avatar
Khalique committed
308

309
310
311
312
313
314
315
316
317
318
319
    instruction_ref
    parse_reshape(const std::string&, attribute_map, std::vector<instruction_ref> args)
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
        literal s = args[1]->get_literal();
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        return prog.add_instruction(op, args[0]);
    }

Khalique's avatar
Khalique committed
320
321
322
323
324
325
326
327
328
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
329
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
330
331
332
333
334
335
336
337
        }
    }

    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
338
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
339
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
340
341
342
343
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
            shape s                   = shape{shape_type, dims};
            instructions[name]        = prog.add_parameter(name, s);
Khalique's avatar
Khalique committed
344
345
346
        }
        for(auto&& p : nodes)
        {
347
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
348
349
350
351
352
353
354
355
356
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
357
            // std::cout << name << std::endl;
Khalique's avatar
Khalique committed
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op()}, args);
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
387
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
388
389
390
391
392
393
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
394
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
395

Khalique's avatar
Khalique committed
396
397
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_INVALID:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
        case tensorflow::DataType::DT_STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case tensorflow::DataType::DT_COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case tensorflow::DataType::DT_QINT8:
            break; // throw std::runtime_error("Unsupported type QINT8");
        case tensorflow::DataType::DT_QUINT8:
            break; // throw std::runtime_error("Unsupported type QUINT8");
        case tensorflow::DataType::DT_QINT32:
            break; // throw std::runtime_error("Unsupported type QINT32");
        case tensorflow::DataType::DT_BFLOAT16:
            break; // throw std::runtime_error("Unsupported type BFLOAT16");
        case tensorflow::DataType::DT_QINT16:
            break; // throw std::runtime_error("Unsupported type QINT16");
        case tensorflow::DataType::DT_QUINT16:
            break; // throw std::runtime_error("Unsupported type QUINT16");
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_RESOURCE:
            break; // throw std::runtime_error("Unsupported type RESOURCE");
        case tensorflow::DataType::DT_VARIANT:
            break; // throw std::runtime_error("Unsupported type VARIANT");
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
        case tensorflow::DataType::DT_UINT64: shape_type = shape::uint64_type; break;
Khalique's avatar
Khalique committed
458
        default: break;
Khalique's avatar
Khalique committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
        }
        return shape_type;
    }

    static literal parse_tensor(const tensorflow::TensorProto t)
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
        if(dims.empty())
        {
            dims = {1};
        }

        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
473
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
474
475
476
            switch(t.dtype())
            {
            case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
Khalique's avatar
Khalique committed
477
478
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Khalique's avatar
Khalique committed
479
480
            case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8: return literal{{shape::int32_type, dims}, s.data()};
Khalique's avatar
Khalique committed
481
482
483
484
485
486
487
488
            case tensorflow::DataType::DT_UINT16:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT16:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
489
490
491
            case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL: return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
492
493
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Khalique's avatar
Khalique committed
494
495
496
497
            case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
498
            default: break;
Khalique's avatar
Khalique committed
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT:
            return literal{{shape::float_type, dims}, t.float_val().begin(), t.float_val().end()};
        case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8:
            return literal{{shape::int32_type, dims}, t.int_val().begin(), t.int_val().end()};
        case tensorflow::DataType::DT_UINT16:
            return literal{{shape::int32_type, dims}, t.int_val().begin(), t.int_val().end()};
        case tensorflow::DataType::DT_INT16:
            return literal{{shape::int32_type, dims}, t.int_val().begin(), t.int_val().end()};
        case tensorflow::DataType::DT_INT32:
            return literal{{shape::int32_type, dims}, t.int_val().begin(), t.int_val().end()};
        case tensorflow::DataType::DT_INT64:
            return literal{{shape::int64_type, dims}, t.int64_val().begin(), t.int64_val().end()};
        case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL:
            return literal{{shape::int32_type, dims}, t.bool_val().begin(), t.bool_val().end()};
        case tensorflow::DataType::DT_HALF:
            return literal{{shape::half_type, dims}, t.half_val().begin(), t.half_val().end()};
        case tensorflow::DataType::DT_DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_val().begin(), t.double_val().end()};
        case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
530
        default: break;
Khalique's avatar
Khalique committed
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
        for(auto dim : input_dims)
        {
            dims.push_back(dim.size());
        }
        return dims;
    }
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx