"src/targets/gpu/device/round.cpp" did not exist on "644e42a87b82aee90174233fd7389ac8e9b9da20"
tf.cpp 35.8 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Khalique's avatar
Khalique committed
27
    using node_map      = std::unordered_map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
28
29
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
30

Khalique's avatar
Khalique committed
31
32
33
34
35
36
37
38
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Khalique's avatar
Khalique committed
39
    std::vector<size_t> parse_axes(const attribute_map& attributes, const std::string& s) const
40
    {
41
42
43
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
44
        if(is_nhwc)
45
        {
Khalique's avatar
Khalique committed
46
47
48
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
                return parse_axis(axis);
            });
49
50
51
52
        }
        return axes;
    }

Khalique's avatar
Khalique committed
53
54
55
56
57
58
    template <class T>
    std::vector<T> parse_axes(std::vector<T> axes) const
    {
        std::vector<T> new_axes;
        if(is_nhwc)
        {
Khalique's avatar
Khalique committed
59
60
61
62
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
                           [&](size_t axis) { return parse_axis(axis); });
Khalique's avatar
Khalique committed
63
64
65
66
        }
        return new_axes;
    }

Khalique's avatar
Khalique committed
67
68
69
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
70
    template <class T>
71
    void reorder_data(std::vector<T>& prev_data) const
72
73
    {
        std::vector<T> new_data(prev_data.size());
74
        for(size_t i = 0; i < new_data.size(); i++)
75
        {
Khalique's avatar
Khalique committed
76
            auto new_idx         = parse_axis(i);
77
            new_data.at(new_idx) = prev_data.at(i);
78
        }
79
80
81
82
        prev_data = new_data;
    }

    template <class T>
Khalique's avatar
Khalique committed
83
    T parse_axis(const T& dim) const
84
    {
Khalique's avatar
Khalique committed
85
        T new_dim = dim;
86
87
88
89
        if(is_nhwc)
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
90
91
92
93
94
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
95
96
            }
        }
Khalique's avatar
Khalique committed
97
        return new_dim;
98
99
    }

100
101
102
103
104
105
106
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
107
108
109
110
111
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});

112
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
113

114
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
115
116
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
        add_mem_op("ConcatV2", &tf_parser::parse_concat);
Khalique's avatar
Khalique committed
117
118
119
        add_mem_op("Const", &tf_parser::parse_constant);
        add_mem_op("Conv2D", &tf_parser::parse_conv);
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
120
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
121
122
        add_mem_op("Mean", &tf_parser::parse_mean);
        add_mem_op("Pad", &tf_parser::parse_pad);
123
124
125
        add_mem_op("Reshape", &tf_parser::parse_reshape);
        add_mem_op("Softmax", &tf_parser::parse_softmax);
        add_mem_op("Squeeze", &tf_parser::parse_squeeze);
Khalique's avatar
Khalique committed
126
127
    }

128
129
130
131
132
133
134
135
136
137
138
139
140
    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

Khalique's avatar
Khalique committed
141
142
143
    template <class F>
    void add_mem_op(std::string name, F f)
    {
144
        add_op(name, [=](auto&&... xs) {
Khalique's avatar
Khalique committed
145
146
147
148
149
150
151
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Khalique's avatar
Khalique committed
152
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
153
154
            if(args.size() != 2)
                MIGRAPHX_THROW("binary operators should have 2 operands");
155
156
157
158
159
            auto l0 = args[1];
            if(contains(attributes, "data_format"))
            {
                if(is_nhwc)
                {
Khalique's avatar
Khalique committed
160
                    l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
161
162
163
                }
            }
            return add_broadcastable_binary_op(args[0], l0, x);
Khalique's avatar
Khalique committed
164
165
166
167
168
169
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
170
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
186
187
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
188
189
190
191
192

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

193
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
    }

    template <class T>
    void add_generic_op(std::string name, T x)
    {
214
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
215
216
217
218
219
220
221
            return prog.add_instruction(x, args);
        });
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
222
223
224
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
225
226
227
228
229
230
231
232
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

233
    instruction_ref
Khalique's avatar
Khalique committed
234
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
235
    {
236
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Khalique's avatar
Khalique committed
237
        auto l0       = prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
238
        return prog.add_instruction(op::add{}, args[0], l0);
239
240
    }

Khalique's avatar
Khalique committed
241
242
243
244
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
245
        size_t axis_idx = attributes.at("N").i();
Khalique's avatar
Khalique committed
246
        size_t axis     = parse_axis(args[axis_idx]->eval().at<int64_t>());
Khalique's avatar
Khalique committed
247
        op::concat op{axis};
248
        // return only first N arguments (assuming last index is the axis value)
Khalique's avatar
Khalique committed
249
        return prog.add_instruction(
250
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
251
252
253
254
255
256
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Khalique's avatar
Khalique committed
257
258
        literal v       = parse_tensor(attributes.at("value").tensor());
        auto l0         = prog.add_literal(v);
259
260
261
262
263
264
        size_t num_axes = l0->get_shape().lens().size();
        if(num_axes >= 4)
        {
            std::vector<int64_t> transpose_axes = get_axes(num_axes);
            reorder_data(transpose_axes);
            l0 = prog.add_instruction(op::transpose{transpose_axes}, l0);
Khalique's avatar
Khalique committed
265
        }
266
        return l0;
Khalique's avatar
Khalique committed
267
268
269
270
271
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
272
        op::convolution op;
Khalique's avatar
Khalique committed
273
274
        if(contains(attributes, "strides"))
        {
275
            std::vector<size_t> stride;
276
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
277
            reorder_data(stride);
278
279
            if(stride.size() != 4)
            {
280
                MIGRAPHX_THROW("strides should have 4 values");
281
            }
282
283
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
284
285
286
        }
        if(contains(attributes, "dilations"))
        {
287
            std::vector<size_t> dilation;
288
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
289
            reorder_data(dilation);
290
291
292
293
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
294
295
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
296
        }
Khalique's avatar
Khalique committed
297
        auto weights = args[1];
298
        // check if weights are from a constant
Khalique's avatar
Khalique committed
299
300

        if(weights->name() != "@param")
301
        {
Khalique's avatar
Khalique committed
302
303
304
305
306
307
308
309
            if(is_nhwc)
            {
                weights = prog.add_instruction(op::transpose{{1, 3, 0, 2}}, args[1]);
            }
            else
            {
                weights = prog.add_instruction(op::transpose{{3, 2, 0, 1}}, args[1]);
            }
310
        }
Khalique's avatar
Khalique committed
311

312
313
        if(contains(attributes, "padding"))
        {
Khalique's avatar
Khalique committed
314
            const std::string& pad_mode     = attributes.at("padding").s();
315
            std::vector<size_t> weight_dims = weights->get_shape().lens();
Khalique's avatar
Khalique committed
316
317
            size_t weight_h                 = weight_dims[2];
            size_t weight_w                 = weight_dims[3];
318
319
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
320
321
322
323
324
325
326
327
                op.padding[0] =
                    static_cast<size_t>(std::ceil(static_cast<double>(
                                            -op.stride[0] + op.dilation[0] * (weight_h - 1) + 1)) /
                                        2);
                op.padding[1] =
                    static_cast<size_t>(std::ceil(static_cast<double>(
                                            -op.stride[1] + op.dilation[1] * (weight_w - 1) + 1)) /
                                        2);
328
329
330
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
Khalique's avatar
Khalique committed
331
332
333
334
335
336
337
338
                op.padding[0] = static_cast<size_t>(
                    std::ceil(static_cast<double>(-weight_h - op.stride[0] +
                                                  op.dilation[0] * (weight_h - 1) + 1)) /
                    2);
                op.padding[1] = static_cast<size_t>(
                    std::ceil(static_cast<double>(-weight_w - op.stride[1] +
                                                  op.dilation[1] * (weight_w - 1) + 1)) /
                    2);
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
            }
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
            {
                std::vector<size_t> padding;
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }

Khalique's avatar
Khalique committed
357
        return prog.add_instruction(op, {args[0], weights});
Khalique's avatar
Khalique committed
358
359
    }

Khalique's avatar
Khalique committed
360
361
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
362
    {
Khalique's avatar
Khalique committed
363
364

        auto axes      = parse_axes(args[1]->eval().get<int32_t>().to_vector());
Khalique's avatar
Khalique committed
365
        bool keep_dims = attributes.at("keep_dims").b();
Khalique's avatar
Khalique committed
366
        std::vector<int32_t> hw_axes{2, 3};
Khalique's avatar
Khalique committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        if(axes == hw_axes and keep_dims)
        {
            op::pooling op{"average"};
            std::vector<size_t> input_dims{args[0]->get_shape().lens()};
            op.lengths[0] = input_dims[2];
            op.lengths[1] = input_dims[3];
            return prog.add_instruction(op, args.front());
        }
        MIGRAPHX_THROW("MIGraphX does not support mean outside of GlobalAvgPool transformation");
    }

    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
383
384
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
385
386
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
387
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
388
        {
Khalique's avatar
Khalique committed
389
390
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
391
392
393
394
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
395
396
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
397
        {
Khalique's avatar
Khalique committed
398
399
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
400
401
402
403
404
        }
        op.pads = pads;
        return prog.add_instruction(op, args.front());
    }

405
406
407
408
409
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
410

411
412
413
414
415
416
417
418
419
420
421
422
423
424
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
        if(contains(attributes, "strides"))
        {
425
            std::vector<size_t> stride;
426
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
427
            reorder_data(stride);
428
429
430
431
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
432
433
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
434
435
436
        }
        if(contains(attributes, "ksize"))
        {
437
            std::vector<size_t> ksize;
438
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
439
            reorder_data(ksize);
440
441
442
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
443
            }
444
445
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
446
        }
447
        return prog.add_instruction(op, args[0]);
448
    }
Khalique's avatar
Khalique committed
449

450
    instruction_ref
Khalique's avatar
Khalique committed
451
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
452
453
454
455
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
456
        auto s = args[1]->eval();
457
458
459
460
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        return prog.add_instruction(op, args[0]);
    }

Khalique's avatar
Khalique committed
461
462
463
464
465
466
467
468
469
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
470
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
471
472
473
        }
    }

474
475
476
477
478
479
480
481
482
483
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    }

Khalique's avatar
Khalique committed
484
485
486
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
487
488
    {
        op::squeeze op;
489
        auto axes = parse_axes(attributes, "squeeze_dims");
490
        copy(axes, std::back_inserter(op.axes));
491
        auto args0_dims = args[0]->get_shape().lens();
492
493
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
494
            for(size_t i = 0; i < args0_dims.size(); i++)
495
            {
496
                if(args0_dims.at(i) == 1)
497
498
499
500
                {
                    op.axes.push_back(i);
                }
            }
501
        }
502
        return prog.add_instruction(op, args[0]);
503
504
    }

Khalique's avatar
Khalique committed
505
506
507
508
509
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
510
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
511
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
512
513
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
514
            if(is_nhwc and dims.size() >= 4)
515
            {
516
                reorder_data(dims);
517
            }
Khalique's avatar
Khalique committed
518
519
            shape s            = shape{shape_type, dims};
            instructions[name] = prog.add_parameter(name, s);
Khalique's avatar
Khalique committed
520
521
522
        }
        for(auto&& p : nodes)
        {
523
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
550
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
551
552
553
554
555
556
557
558
559
560
561
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
562
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
563
564
565
566
567
568
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
569
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
570

Khalique's avatar
Khalique committed
571
572
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_INVALID:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
        case tensorflow::DataType::DT_STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case tensorflow::DataType::DT_COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case tensorflow::DataType::DT_QINT8:
            break; // throw std::runtime_error("Unsupported type QINT8");
        case tensorflow::DataType::DT_QUINT8:
            break; // throw std::runtime_error("Unsupported type QUINT8");
        case tensorflow::DataType::DT_QINT32:
            break; // throw std::runtime_error("Unsupported type QINT32");
        case tensorflow::DataType::DT_BFLOAT16:
            break; // throw std::runtime_error("Unsupported type BFLOAT16");
        case tensorflow::DataType::DT_QINT16:
            break; // throw std::runtime_error("Unsupported type QINT16");
        case tensorflow::DataType::DT_QUINT16:
            break; // throw std::runtime_error("Unsupported type QUINT16");
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_RESOURCE:
            break; // throw std::runtime_error("Unsupported type RESOURCE");
        case tensorflow::DataType::DT_VARIANT:
            break; // throw std::runtime_error("Unsupported type VARIANT");
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Khalique's avatar
Khalique committed
632
633
634
        case tensorflow::DataType::DT_UINT64:
            shape_type = shape::uint64_type;
            break;
Khalique's avatar
Khalique committed
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

        // tf pb should not use these types
        case tensorflow::DataType::DT_FLOAT_REF: break;
        case tensorflow::DataType::DT_DOUBLE_REF: break;
        case tensorflow::DataType::DT_INT32_REF: break;
        case tensorflow::DataType::DT_UINT8_REF: break;
        case tensorflow::DataType::DT_INT16_REF: break;
        case tensorflow::DataType::DT_INT8_REF: break;
        case tensorflow::DataType::DT_STRING_REF: break;
        case tensorflow::DataType::DT_COMPLEX64_REF: break;
        case tensorflow::DataType::DT_INT64_REF: break;
        case tensorflow::DataType::DT_BOOL_REF: break;
        case tensorflow::DataType::DT_QINT8_REF: break;
        case tensorflow::DataType::DT_QUINT8_REF: break;
        case tensorflow::DataType::DT_QINT32_REF: break;
        case tensorflow::DataType::DT_BFLOAT16_REF: break;
        case tensorflow::DataType::DT_QINT16_REF: break;
        case tensorflow::DataType::DT_QUINT16_REF: break;
        case tensorflow::DataType::DT_UINT16_REF: break;
        case tensorflow::DataType::DT_COMPLEX128_REF: break;
        case tensorflow::DataType::DT_HALF_REF: break;
        case tensorflow::DataType::DT_RESOURCE_REF: break;
        case tensorflow::DataType::DT_VARIANT_REF: break;
        case tensorflow::DataType::DT_UINT32_REF: break;
        case tensorflow::DataType::DT_UINT64_REF: break;
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_: break;
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
662
663
664
665
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
666
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
667
668
669
670
671
672
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
        if(dims.empty())
        {
            dims = {1};
        }
673
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
674
675
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
676
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
677
678
679
            switch(t.dtype())
            {
            case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
Khalique's avatar
Khalique committed
680
681
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Khalique's avatar
Khalique committed
682
683
            case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8: return literal{{shape::int32_type, dims}, s.data()};
Khalique's avatar
Khalique committed
684
685
686
687
688
689
690
691
            case tensorflow::DataType::DT_UINT16:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT16:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
692
693
694
            case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL: return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
695
696
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Khalique's avatar
Khalique committed
697
698
699
700
            case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
            case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
            case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
732
733
734
735
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
736
737
738
739
740
741
742
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT:
743
            return literal{{shape::float_type, dims}, get_data_vals(t.float_val(), shape_size)};
Khalique's avatar
Khalique committed
744
745
        case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8:
746
            return literal{{shape::int32_type, dims}, get_data_vals(t.int_val(), shape_size)};
Khalique's avatar
Khalique committed
747
        case tensorflow::DataType::DT_UINT16:
748
            return literal{{shape::int32_type, dims}, get_data_vals(t.int_val(), shape_size)};
Khalique's avatar
Khalique committed
749
        case tensorflow::DataType::DT_INT16:
750
            return literal{{shape::int32_type, dims}, get_data_vals(t.int_val(), shape_size)};
Khalique's avatar
Khalique committed
751
        case tensorflow::DataType::DT_INT32:
752
            return literal{{shape::int32_type, dims}, get_data_vals(t.int_val(), shape_size)};
Khalique's avatar
Khalique committed
753
        case tensorflow::DataType::DT_INT64:
754
            return literal{{shape::int64_type, dims}, get_data_vals(t.int64_val(), shape_size)};
Khalique's avatar
Khalique committed
755
756
        case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL:
757
            return literal{{shape::int32_type, dims}, get_data_vals(t.bool_val(), shape_size)};
Khalique's avatar
Khalique committed
758
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
759
        {
760
761
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
762
763
764
765
766
767
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
            return literal{{shape::half_type, dims}, data_half};
Khalique's avatar
Khalique committed
768
        }
Khalique's avatar
Khalique committed
769
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
770
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Khalique's avatar
Khalique committed
771
772
773
774
        case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
        case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
806
807
808
809
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
810
811
812
813
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

814
    template <class T>
Khalique's avatar
Khalique committed
815
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
816
                                        const size_t& shape_size)
817
818
819
820
821
822
823
824
825
826
827
828
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
829
830
831
832
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
833
834
835
836
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
                       [](tensorflow::TensorShapeProto_Dim dim) { return dim.size(); });
Khalique's avatar
Khalique committed
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
        return dims;
    }
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx