tf.cpp 53.3 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
Khalique's avatar
Khalique committed
20
#include <migraphx/pad_calc.hpp>
Khalique's avatar
Khalique committed
21
22
23
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Paul's avatar
Paul committed
28
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
kahmed10's avatar
kahmed10 committed
29
30
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
31

Khalique's avatar
Khalique committed
32
33
34
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
35
36
37
    program prog            = program();
    bool is_nhwc            = true;
    unsigned int batch_size = 1;
Khalique's avatar
Khalique committed
38
39
40

    std::unordered_map<std::string, op_func> ops;

Paul's avatar
Paul committed
41
    bool should_transpose(instruction_ref ins) const
Paul's avatar
Paul committed
42
43
44
45
46
47
    {
        return is_nhwc and ins->get_shape().lens().size() == 4;
    }

    instruction_ref to_nhwc(instruction_ref ins)
    {
Paul's avatar
Paul committed
48
        if(should_transpose(ins))
Paul's avatar
Paul committed
49
50
51
52
53
54
            return prog.add_instruction(op::transpose{{0, 2, 3, 1}}, ins);
        return ins;
    }

    instruction_ref to_nchw(instruction_ref ins)
    {
Paul's avatar
Paul committed
55
        if(should_transpose(ins))
Paul's avatar
Paul committed
56
57
58
59
60
61
            return prog.add_instruction(op::transpose{{0, 3, 1, 2}}, ins);
        return ins;
    }

    instruction_ref to_kcxy(instruction_ref ins)
    {
Paul's avatar
Paul committed
62
        if(should_transpose(ins))
Paul's avatar
Paul committed
63
64
65
66
67
68
            return prog.add_instruction(op::transpose{{3, 2, 0, 1}}, ins);
        return ins;
    }

    instruction_ref make_contiguous(instruction_ref ins)
    {
Paul's avatar
Paul committed
69
        if(ins->get_shape().standard())
Paul's avatar
Paul committed
70
71
72
73
74
75
76
77
            return ins;
        else
            return prog.add_instruction(op::contiguous{}, ins);
    }

    std::vector<instruction_ref> to_nchw(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
Paul's avatar
Paul committed
78
        std::transform(
Paul's avatar
Paul committed
79
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nchw(ins); });
Paul's avatar
Paul committed
80
81
82
        return result;
    }

kahmed10's avatar
kahmed10 committed
83
84
85
86
87
88
89
90
    std::vector<instruction_ref> to_nhwc(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
        std::transform(
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nhwc(ins); });
        return result;
    }

Khalique's avatar
Khalique committed
91
    std::vector<size_t>
92
    parse_axes(const attribute_map& attributes, const std::string& s, const size_t num_dims) const
93
    {
94
95
96
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
97
        if(is_nhwc)
98
        {
Khalique's avatar
Khalique committed
99
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
Khalique's avatar
Khalique committed
100
                return parse_axis(axis, num_dims);
Khalique's avatar
Khalique committed
101
            });
102
103
104
105
        }
        return axes;
    }

Khalique's avatar
Khalique committed
106
    template <class T>
107
    std::vector<T> parse_axes(std::vector<T> axes, const size_t num_dims) const
Khalique's avatar
Khalique committed
108
109
110
    {
        if(is_nhwc)
        {
111
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
112
113
114
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
Khalique's avatar
Khalique committed
115
                           [&](size_t axis) { return parse_axis(axis, num_dims); });
116
            return new_axes;
Khalique's avatar
Khalique committed
117
        }
118
        return axes;
Khalique's avatar
Khalique committed
119
120
    }

Khalique's avatar
Khalique committed
121
122
123
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
124
    template <class T>
125
    void reorder_data(std::vector<T>& prev_data) const
126
127
    {
        std::vector<T> new_data(prev_data.size());
128
        for(size_t i = 0; i < new_data.size(); i++)
129
        {
Khalique's avatar
Khalique committed
130
            auto new_idx         = parse_axis(i, new_data.size());
131
            new_data.at(new_idx) = prev_data.at(i);
132
        }
133
134
135
136
        prev_data = new_data;
    }

    template <class T>
137
    T parse_axis(const T& dim, const size_t num_dims) const
138
    {
Khalique's avatar
Khalique committed
139
        T new_dim = dim;
Khalique's avatar
Khalique committed
140
        if(is_nhwc and num_dims >= 4)
141
142
143
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
144
145
146
147
148
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
149
150
            }
        }
Khalique's avatar
Khalique committed
151
        return new_dim;
152
153
    }

154
155
156
157
158
159
160
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
161
    std::vector<int64_t> get_axes_from_mask(const size_t num_axes, const uint32_t mask)
Khalique's avatar
Khalique committed
162
    {
Khalique's avatar
Khalique committed
163
        uint32_t bitwise_compare = 1;
Khalique's avatar
Khalique committed
164
165
166
167
168
169
170
171
172
173
174
175
        std::vector<int64_t> axes;
        for(size_t i = 0; i < num_axes; i++)
        {
            // the LSB corresponds to axis 0 when determining which axes to begin
            if(((mask >> i) & bitwise_compare) == 1)
                axes.push_back(1);
            else
                axes.push_back(0);
        }
        return axes;
    }

Khalique's avatar
Khalique committed
176
177
    tf_parser()
    {
Khalique's avatar
Khalique committed
178
        add_generic_op("All", op::identity{});
Khalique's avatar
Khalique committed
179
        add_generic_op("Identity", op::identity{});
Khalique's avatar
Khalique committed
180
        add_generic_op("LessEqual", op::identity{});
Khalique's avatar
Khalique committed
181
        add_generic_op("Relu", op::relu{});
kahmed10's avatar
kahmed10 committed
182
        // add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
183
        add_generic_op("Rsqrt", op::rsqrt{});
Khalique's avatar
Khalique committed
184
        add_generic_op("Tanh", op::tanh{});
Khalique's avatar
Khalique committed
185
        add_generic_op("StopGradient", op::identity{});
Khalique's avatar
Khalique committed
186

187
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
188
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
189
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
190
        add_binary_op("SquaredDifference", op::sqdiff{});
Khalique's avatar
Khalique committed
191
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
192

193
194
        add_mem_op("ArgMax", &tf_parser::parse_arg_op<op::argmax>, false);
        add_mem_op("ArgMin", &tf_parser::parse_arg_op<op::argmin>, false);
195
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
196
        add_mem_op("BatchMatMul", &tf_parser::parse_matmul, false);
Khalique's avatar
Khalique committed
197
        add_mem_op("BatchMatMulV2", &tf_parser::parse_matmul, false);
198
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
Khalique's avatar
Khalique committed
199
        add_mem_op("Cast", &tf_parser::parse_cast, false);
Paul's avatar
Paul committed
200
        add_mem_op("ConcatV2", &tf_parser::parse_concat, false);
Khalique's avatar
Khalique committed
201
        add_mem_op("Const", &tf_parser::parse_constant);
Paul's avatar
Paul committed
202
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Paul's avatar
Paul committed
203
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
204
        add_mem_op("ExpandDims", &tf_parser::parse_expanddims, false);
Khalique's avatar
Khalique committed
205
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
Khalique's avatar
Khalique committed
206
        add_mem_op("GatherV2", &tf_parser::parse_gather, false);
Paul's avatar
Paul committed
207
        add_mem_op("MatMul", &tf_parser::parse_matmul, false);
208
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
209
        add_mem_op("Mean", &tf_parser::parse_mean, false);
Khalique's avatar
Khalique committed
210
        add_mem_op("OneHot", &tf_parser::parse_onehot, false);
Paul's avatar
Paul committed
211
        add_mem_op("Pack", &tf_parser::parse_pack, false);
Paul's avatar
Paul committed
212
        add_mem_op("Pad", &tf_parser::parse_pad);
kahmed10's avatar
kahmed10 committed
213
        add_mem_op("Relu6", &tf_parser::parse_relu6);
Paul's avatar
Paul committed
214
        add_mem_op("Reshape", &tf_parser::parse_reshape, false);
215
        add_mem_op("Shape", &tf_parser::parse_shape, false);
Khalique's avatar
Khalique committed
216
        add_mem_op("Slice", &tf_parser::parse_slice, false);
kahmed10's avatar
kahmed10 committed
217
218
        add_mem_op("Split", &tf_parser::parse_split, false);
        add_mem_op("SplitV", &tf_parser::parse_split, false);
Khalique's avatar
Khalique committed
219
        add_mem_op("Softmax", &tf_parser::parse_softmax<op::softmax>, false);
Paul's avatar
Paul committed
220
        add_mem_op("Squeeze", &tf_parser::parse_squeeze, false);
221
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice, false);
Khalique's avatar
Khalique committed
222
        add_mem_op("Transpose", &tf_parser::parse_transpose, false);
Khalique's avatar
Khalique committed
223
224
    }

225
    template <class F>
kahmed10's avatar
kahmed10 committed
226
    void add_op(const std::string& name, F f, bool transpose = true)
227
    {
Paul's avatar
Paul committed
228
        if(transpose)
Paul's avatar
Paul committed
229
        {
kahmed10's avatar
kahmed10 committed
230
231
232
233
234
235
            ops.emplace(
                name,
                op_func{
                    [=](const attribute_map& attributes, const std::vector<instruction_ref>& args) {
                        return std::vector<instruction_ref>{to_nhwc(f(attributes, to_nchw(args)))};
                    }});
Paul's avatar
Paul committed
236
237
238
        }
        else
        {
kahmed10's avatar
kahmed10 committed
239
240
241
242
243
            ops.emplace(name,
                        op_func{[=](const attribute_map& attributes,
                                    const std::vector<instruction_ref>& args) {
                            return std::vector<instruction_ref>{f(attributes, args)};
                        }});
Paul's avatar
Paul committed
244
        }
245
246
    }

Khalique's avatar
Khalique committed
247
    template <class F>
Paul's avatar
Paul committed
248
    void add_mem_op(std::string name, F f, bool transpose = true)
Khalique's avatar
Khalique committed
249
    {
Paul's avatar
Paul committed
250
251
252
253
254
        add_op(name,
               [=](auto&&... xs) {
                   return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
               },
               transpose);
Khalique's avatar
Khalique committed
255
256
257
258
259
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   if(args.size() != 2)
                       MIGRAPHX_THROW("binary operators should have 2 operands");
                   // TODO
                   // if(contains(attributes, "data_format"))
                   // {
                   //     if(is_nhwc)
                   //     {
                   //         l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
                   //     }
                   // }
                   return add_broadcastable_binary_op(args[0], args[1], x);
               },
               false);
Khalique's avatar
Khalique committed
275
276
277
278
279
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
280
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
296
297
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
298
299
300
301
302

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

303
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
304
305
306
307
308
309
310
311
312
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
Paul's avatar
Paul committed
313
            return to_nhwc(prog.add_instruction(x, to_nchw(l0), to_nchw(l1)));
Khalique's avatar
Khalique committed
314
315
316
        }
        else
        {
Paul's avatar
Paul committed
317
            return to_nhwc(prog.add_instruction(x, {to_nchw(arg0), to_nchw(arg1)}));
Khalique's avatar
Khalique committed
318
319
320
321
        }
    }

    template <class T>
Paul's avatar
Paul committed
322
    void add_generic_op(std::string name, T x, bool transpose = true)
Khalique's avatar
Khalique committed
323
    {
Paul's avatar
Paul committed
324
325
326
327
328
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   return prog.add_instruction(x, args);
               },
               transpose);
Khalique's avatar
Khalique committed
329
330
    }

331
332
333
334
335
336
337
338
339
340
    template <class Op>
    instruction_ref
    parse_arg_op(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        axis         = args[1]->eval().at<int64_t>();
        auto ins     = prog.add_instruction(Op{axis}, args.front());
        return prog.add_instruction(op::squeeze{{axis}}, ins);
    }

Khalique's avatar
Khalique committed
341
342
343
    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
344
345
346
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
347
348
349
350
351
352
353
354
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

355
    instruction_ref
Khalique's avatar
Khalique committed
356
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
357
    {
358
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
359
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
360
        return prog.add_instruction(op::add{}, args[0], l0);
361
362
    }

Khalique's avatar
Khalique committed
363
364
365
366
367
368
369
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        shape::type_t type = parse_type(attributes.at("DstT").type());
        return prog.add_instruction(op::convert{type}, std::move(args));
    }

Khalique's avatar
Khalique committed
370
371
372
373
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
374
        size_t axis_idx = attributes.at("N").i();
Shucai Xiao's avatar
Shucai Xiao committed
375
        int64_t axis    = args[axis_idx]->eval().at<int64_t>();
Khalique's avatar
Khalique committed
376
        op::concat op{axis};
377
        // return only first N arguments (assuming last index is the axis value)
Paul's avatar
Paul committed
378
379
        return prog.add_instruction(
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
380
381
382
383
384
385
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Paul's avatar
Paul committed
386
        literal v = parse_tensor(attributes.at("value").tensor());
Paul's avatar
Paul committed
387
        return prog.add_literal(v);
Khalique's avatar
Khalique committed
388
389
390
391
392
393
394
395
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "strides"))
        {
396
            std::vector<size_t> stride;
397
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
398
            reorder_data(stride);
399
400
            if(stride.size() != 4)
            {
401
                MIGRAPHX_THROW("strides should have 4 values");
402
            }
403
404
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
405
406
407
        }
        if(contains(attributes, "dilations"))
        {
408
            std::vector<size_t> dilation;
409
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
410
            reorder_data(dilation);
411
412
413
414
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
415
416
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
417
        }
Khalique's avatar
Khalique committed
418

Paul's avatar
Paul committed
419
        auto weights = to_kcxy(args[1]);
Paul's avatar
Paul committed
420
        auto l0      = args[0];
Khalique's avatar
Khalique committed
421
422
423
424
425
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
426
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
427
428
429
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];
Khalique's avatar
Khalique committed
430
431
432

                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> pads(input_dims.size());
433
434
                calculate_padding(0, pads, input_dims[2], op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_dims[3], op.stride[1], op.dilation[1], weight_w);
Khalique's avatar
Khalique committed
435
436
437
438
439
440
441
442

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
443
444
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
445
                }
446
447
448
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
449
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
450
            }
Khalique's avatar
Khalique committed
451
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
452
            {
453
                std::vector<size_t> padding;
454
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
455
456
457
458
459
460
461
462
463
464
465
466
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
Paul's avatar
Paul committed
467
        return prog.add_instruction(op, {l0, to_kcxy(args[1])});
Khalique's avatar
Khalique committed
468
469
    }

Khalique's avatar
Khalique committed
470
471
472
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
473
474
475
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
476
        op.group            = num_channels;
Khalique's avatar
Khalique committed
477

Khalique's avatar
Khalique committed
478
479
        if(contains(attributes, "strides"))
        {
480
            std::vector<size_t> stride;
481
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
482
            reorder_data(stride);
483
484
            if(stride.size() != 4)
            {
485
                MIGRAPHX_THROW("strides should have 4 values");
486
            }
487
488
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
489
        }
Paul's avatar
Paul committed
490
491

        auto weights = to_kcxy(args[1]);
Khalique's avatar
Khalique committed
492
493
        if(contains(attributes, "dilations"))
        {
494
            std::vector<size_t> dilation;
495
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
496
            reorder_data(dilation);
497
498
499
500
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
501
502
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
503
504
        }

Khalique's avatar
Khalique committed
505
        auto l0 = args[0];
Khalique's avatar
Khalique committed
506
507
508
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
Khalique's avatar
Khalique committed
509

Khalique's avatar
Khalique committed
510
511
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
512
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
513
514
515
516
517
518
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> pads(input_dims.size());
519
520
                calculate_padding(0, pads, input_dims[2], op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_dims[3], op.stride[1], op.dilation[1], weight_w);
Khalique's avatar
Khalique committed
521
522
523
524
525
526
527
528

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
529
530
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
531
                }
Khalique's avatar
Khalique committed
532
            }
Khalique's avatar
Khalique committed
533
            else if(pad_mode.find("VALID") != std::string::npos)
Khalique's avatar
Khalique committed
534
            {
Khalique's avatar
Khalique committed
535
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
536
537
            }
        }
Khalique's avatar
Khalique committed
538

Khalique's avatar
Khalique committed
539
540
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
541
542
543
544

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
545
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
546
547
548
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
549
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
550
551
        auto new_weights =
            prog.add_instruction(op::reshape{new_weights_shape}, make_contiguous(weights));
Khalique's avatar
Khalique committed
552

Khalique's avatar
Khalique committed
553
        return prog.add_instruction(op, {l0, new_weights});
Khalique's avatar
Khalique committed
554
555
    }

Khalique's avatar
Khalique committed
556
557
    instruction_ref
    parse_expanddims(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
558
559
    {
        std::vector<size_t> input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
560
        std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
Khalique's avatar
Khalique committed
561
        size_t num_dims = input_dims.size();
562
        int32_t dim     = args[1]->eval().at<int32_t>();
Khalique's avatar
Khalique committed
563
564

        if(dim < 0)
Khalique's avatar
Khalique committed
565
566
567
568
569
570
571
572
573
574
        {
            new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
        }
        else
        {
            new_dims.insert(new_dims.begin() + dim, 1);
        }
        return prog.add_instruction(op::reshape{new_dims}, args[0]);
    }

Khalique's avatar
Khalique committed
575
576
577
578
579
580
581
582
    instruction_ref
    parse_gather(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        int axis = args[2]->eval().at<int32_t>();
        op::gather op{axis};
        return prog.add_instruction(op, {args[0], args[1]});
    }

Khalique's avatar
Khalique committed
583
584
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
585
586
587
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
588

589
590
591
592
593
594
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
Khalique's avatar
Khalique committed
595
            transb = attributes.at("transpose_b").b();
596
597
        }

Khalique's avatar
Khalique committed
598
599
600
601
602
603
604
605
606
        if(contains(attributes, "adj_x"))
        {
            transa = attributes.at("adj_x").b();
        }
        if(contains(attributes, "adj_y"))
        {
            transb = attributes.at("adj_y").b();
        }

607
608
609
        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
610
        std::iter_swap(perm.end() - 1, perm.end() - 2);
611
612
613
614
615
616
617

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
618
619
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
620
    {
Khalique's avatar
Khalique committed
621
622
        bool keep_dims = attributes.at("keep_dims").b();
        auto axes      = args[1]->eval().get<int32_t>().to_vector<int64_t>();
Khalique's avatar
Khalique committed
623
624

        if(keep_dims)
Khalique's avatar
Khalique committed
625
        {
626
627
628
629
630
631
            return prog.add_instruction(op::reduce_mean{axes}, args[0]);
        }
        else
        {
            auto ins = prog.add_instruction(op::reduce_mean{axes}, args[0]);
            return prog.add_instruction(op::squeeze{axes}, ins);
Khalique's avatar
Khalique committed
632
633
634
        }
    }

Khalique's avatar
Khalique committed
635
636
637
    instruction_ref
    parse_onehot(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
638
639
        size_t depth = static_cast<size_t>(args[1]->eval().at<int32_t>());

Khalique's avatar
Khalique committed
640
        int64_t axis    = -1;
Khalique's avatar
Khalique committed
641
642
        float on_value  = args[2]->eval().at<float>();
        float off_value = args[3]->eval().at<float>();
Khalique's avatar
Khalique committed
643

Khalique's avatar
Khalique committed
644
        std::vector<float> depth_input(depth * depth, off_value);
Khalique's avatar
Khalique committed
645
646
        for(int i = 0; i < depth; i++)
        {
Khalique's avatar
Khalique committed
647
            depth_input[depth * i + i] = on_value;
Khalique's avatar
Khalique committed
648
        }
Khalique's avatar
Khalique committed
649

Khalique's avatar
Khalique committed
650
        if(contains(attributes, "axis"))
Khalique's avatar
Khalique committed
651
652
653
            axis = attributes.at("axis").i();
        if(axis == -1)
        {
Khalique's avatar
Khalique committed
654
655
656
            shape s{shape::float_type, {depth, depth}};
            auto l0 = prog.add_literal({s, depth_input});
            return prog.add_instruction(op::gather{0}, {l0, args[0]});
Khalique's avatar
Khalique committed
657
658
659
660
        }
        MIGRAPHX_THROW("MIGraphX does not support axis != -1");
    }

Khalique's avatar
Khalique committed
661
662
663
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
664
665
666
667
668
669
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
670
671
672
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
673
674
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
675
676
        }

Khalique's avatar
Khalique committed
677
678
679
680
681
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Shucai Xiao's avatar
Shucai Xiao committed
682
        return to_nhwc(prog.add_instruction(op::concat{axis}, unsqueezed_args));
Khalique's avatar
Khalique committed
683
684
    }

Khalique's avatar
Khalique committed
685
686
687
688
689
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
690
691
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
692
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
Paul's avatar
Paul committed
693
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
694
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
695
        {
Khalique's avatar
Khalique committed
696
697
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
698
699
700
701
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
702
703
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
704
        {
Khalique's avatar
Khalique committed
705
706
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
707
708
        }
        op.pads = pads;
Paul's avatar
Paul committed
709
        return prog.add_instruction(op, args.front());
Khalique's avatar
Khalique committed
710
711
    }

712
713
714
715
716
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
717

718
719
        if(contains(attributes, "strides"))
        {
720
            std::vector<size_t> stride;
721
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
722
            reorder_data(stride);
723
724
725
726
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
727
728
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
729
730
731
        }
        if(contains(attributes, "ksize"))
        {
732
            std::vector<size_t> ksize;
733
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
734
            reorder_data(ksize);
735
736
737
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
738
            }
739
740
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
741
        }
Khalique's avatar
Khalique committed
742
743

        auto l0 = args[0];
Khalique's avatar
Khalique committed
744
745
746
747
748
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
749
750
                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> pads(input_dims.size());
751
752
                calculate_padding(0, pads, input_dims[2], op.stride[0], 1, op.lengths[0]);
                calculate_padding(1, pads, input_dims[3], op.stride[1], 1, op.lengths[1]);
Khalique's avatar
Khalique committed
753
754
755
756

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
Khalique's avatar
Khalique committed
757
758
                    l0                           = prog.add_instruction(
                        migraphx::op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
Khalique's avatar
Khalique committed
759
760
761
                }
                else
                {
Khalique's avatar
Khalique committed
762
763
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
764
                }
Khalique's avatar
Khalique committed
765
766
            }
        }
Khalique's avatar
Khalique committed
767
        return prog.add_instruction(op, l0);
768
    }
Khalique's avatar
Khalique committed
769

kahmed10's avatar
kahmed10 committed
770
771
772
773
774
775
776
777
778
779
780
781
    instruction_ref
    parse_relu6(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto input_lens = args[0]->get_shape().lens();
        auto min_val    = prog.add_literal(0.0f);
        auto max_val    = prog.add_literal(6.0f);

        min_val = prog.add_instruction(op::multibroadcast{input_lens}, min_val);
        max_val = prog.add_instruction(op::multibroadcast{input_lens}, max_val);
        return prog.add_instruction(op::clip{}, args.front(), min_val, max_val);
    }

782
    instruction_ref
Khalique's avatar
Khalique committed
783
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
784
785
786
787
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
788
        auto s = args[1]->eval();
789
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
790
        return prog.add_instruction(op, make_contiguous(args[0]));
791
792
    }

793
794
795
796
    // Use a literal instruction to replace the shape since output of
    // shape operator are literals in migraphx
    instruction_ref
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
797
    {
798
799
800
801
802
803
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int32_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int32_type, {arg_shape.size()});
        std::transform(
            arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) { return i; });
        return prog.add_literal(migraphx::literal{s, vec_shape});
Khalique's avatar
Khalique committed
804
805
    }

806
    instruction_ref
Khalique's avatar
Khalique committed
807
    parse_slice(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
808
    {
Khalique's avatar
Khalique committed
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
        op::slice op;
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto size       = args[2]->eval().get<int32_t>().to_vector();
        auto axes       = args[0]->get_shape().lens();
        size_t num_axes = axes.size();

        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(num_axes);
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
        for(size_t i = 0; i < num_axes; i++)
        {
            if(size[i] == -1)
                op.ends[i] = axes[i];
            else
                op.ends[i] = starts[i] + size[i];
        }
        return prog.add_instruction(op, make_contiguous(args[0]));
    }

Khalique's avatar
Khalique committed
829
830
831
832
833
    // template to facilitate the logsoftmax later
    template <class Op>
    instruction_ref parse_softmax(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
834
    {
Khalique's avatar
Khalique committed
835
        int axis      = -1;
Khalique's avatar
Khalique committed
836
837
838
839
840
841
842
843
844
845
846
        auto num_dims = args[0]->get_shape().lens().size();
        if(contains(attributes, "axis"))
        {
            axis = static_cast<int>(attributes.at("axis").i());
        }
        if(axis < 0)
        {
            axis += num_dims;
        }

        return prog.add_instruction(Op{axis}, make_contiguous(args[0]));
847
848
    }

kahmed10's avatar
kahmed10 committed
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
    std::vector<instruction_ref> parse_split(const std::string&,
                                             const attribute_map& attributes,
                                             std::vector<instruction_ref> args)
    {
        bool vector_as_input = args.size() == 3;
        int num_outputs      = 1;
        auto axis_arg        = args[0];
        auto input_arg       = args[1];
        if(vector_as_input)
        {
            input_arg = args[0];
            axis_arg  = args[2];
        }

        if(contains(attributes, "num_split"))
            num_outputs = attributes.at("num_split").i();

        std::vector<int> splits(num_outputs);
        std::vector<int> slice_pos{0};
        if(vector_as_input)
        {
            splits      = args[1]->eval().get<int32_t>().to_vector();
            num_outputs = splits.size();
        }

        assert(num_outputs > 0);

        if(num_outputs == 1)
            return std::vector<instruction_ref>{prog.add_instruction(op::identity{}, input_arg)};

        auto lens     = input_arg->get_shape().lens();
        auto num_dims = lens.size();
        int axis      = axis_arg->eval().at<int32_t>();

        // ensure split is made evenly if "num_split" is used
        assert(vector_as_input or lens[axis] % num_outputs == 0);

        auto split_size = lens[axis] / num_outputs;

        // push back first end point of slice
        if(vector_as_input)
        {
            slice_pos.push_back(splits[0]);
        }
        else
        {
            slice_pos.push_back(split_size);
        }

        // calculate remaining end points for each slice
        for(auto i = 1; i < num_outputs; i++)
        {
            if(vector_as_input)
            {
                splits[i] += splits[i - 1];
                slice_pos.push_back(splits[i]);
            }
            else
            {
                slice_pos.push_back((i + 1) * split_size);
            }
        }
        std::vector<instruction_ref> result;
        for(auto i = 0; i < num_outputs; i++)
        {
            op::slice op;
            op.axes = std::vector<int64_t>(num_dims);
            std::iota(op.axes.begin(), op.axes.end(), 0);
            op.starts = std::vector<int64_t>(num_dims, 0);
            op.ends   = std::vector<int64_t>(lens.begin(), lens.end());

            op.starts[axis] = slice_pos[i];
            op.ends[axis]   = slice_pos[i + 1];
            result.push_back(prog.add_instruction(op, input_arg));
        }
        return result;
    }

Khalique's avatar
Khalique committed
927
928
929
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
930
931
    {
        op::squeeze op;
Khalique's avatar
Khalique committed
932
        auto input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
933
        auto axes       = attributes.at("squeeze_dims").list().i();
934
        copy(axes, std::back_inserter(op.axes));
Khalique's avatar
Khalique committed
935

936
937
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
Khalique's avatar
Khalique committed
938
            for(size_t i = 0; i < input_dims.size(); i++)
939
            {
Khalique's avatar
Khalique committed
940
                if(input_dims.at(i) == 1)
941
942
943
944
                {
                    op.axes.push_back(i);
                }
            }
945
        }
Paul's avatar
Paul committed
946
        return prog.add_instruction(op, make_contiguous(args[0]));
947
948
    }

Khalique's avatar
Khalique committed
949
950
951
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
952
953
    {
        op::slice op;
Khalique's avatar
Khalique committed
954
955
956
957
        auto starts              = args[1]->eval().get<int32_t>().to_vector();
        auto ends                = args[2]->eval().get<int32_t>().to_vector();
        auto l0                  = args[0];
        size_t num_axes          = l0->get_shape().lens().size();
958
        std::vector<size_t> axes = l0->get_shape().lens();
959

Khalique's avatar
Khalique committed
960
961
962
963
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
Khalique's avatar
Khalique committed
964
965
        uint32_t begin_mask       = 0;
        uint32_t end_mask         = 0;
966
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
967
        uint32_t bitwise_compare  = 1;
968
969
        std::vector<int64_t> squeeze_axes;

Khalique's avatar
Khalique committed
970
971
972
973
974
975
        if(contains(attributes, "begin_mask"))
            begin_mask = static_cast<uint32_t>(attributes.at("begin_mask").i());

        if(contains(attributes, "end_mask"))
            end_mask = static_cast<uint32_t>(attributes.at("end_mask").i());

976
        if(contains(attributes, "shrink_axis_mask"))
977
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
978

Khalique's avatar
Khalique committed
979
        std::vector<int64_t> begin_axes = get_axes_from_mask(num_axes, begin_mask);
Khalique's avatar
Khalique committed
980
        std::vector<int64_t> end_axes   = get_axes_from_mask(num_axes, end_mask);
Khalique's avatar
Khalique committed
981
982
983
984
985
986
987
988
989
990
991
992
993

        for(size_t i = 0; i < num_axes; i++)
        {
            if(begin_axes.at(i) == 1)
            {
                op.starts.at(i) = 0;
            }
            if(end_axes.at(i) == 1)
            {
                op.ends.at(i) = axes.at(i);
            }
        }

994
        auto l1 = prog.add_instruction(op, l0);
Khalique's avatar
Khalique committed
995
        if(shrink_axis_mask == 0)
996
            return l1;
Khalique's avatar
Khalique committed
997

Khalique's avatar
Khalique committed
998
        for(size_t i = 0; i < num_axes; i++)
999
        {
1000
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
1001
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
1002
1003
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
1004

1005
        return prog.add_instruction(op::squeeze{squeeze_axes}, l1);
1006
1007
    }

Khalique's avatar
Khalique committed
1008
1009
    instruction_ref
    parse_transpose(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1010
1011
1012
1013
1014
1015
1016
1017
    {
        auto perm = args[1]->eval().get<int32_t>().to_vector();
        op::transpose op;
        op.dims = std::vector<int64_t>(perm.begin(), perm.end());

        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
1018
1019
1020
1021
1022
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
1023
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
1024
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
1025
1026
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
1027
            if(is_nhwc and dims.size() >= 4)
1028
            {
1029
                reorder_data(dims);
1030
            }
1031
1032
1033
            std::transform(dims.begin(), dims.end(), dims.begin(), [&](auto dim) {
                return static_cast<int>(dim) <= 0 ? batch_size : dim;
            });
Khalique's avatar
Khalique committed
1034
            shape s            = shape{shape_type, dims};
Paul's avatar
Paul committed
1035
            instructions[name] = to_nhwc(prog.add_parameter(name, s));
Khalique's avatar
Khalique committed
1036
1037
1038
        }
        for(auto&& p : nodes)
        {
1039
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
1040
        }
1041
1042
1043

        // Needs to add a ret instruction at the end of
        // the program
Khalique's avatar
Khalique committed
1044
1045
1046
1047
1048
1049
1050
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
Khalique's avatar
Khalique committed
1051
1052
1053
            // assert ops ignored
            if(node.op() == "Assert" or contains(name, "Assert"))
                return;
Khalique's avatar
Khalique committed
1054
1055
1056
1057
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
Khalique's avatar
Khalique committed
1058
1059
1060
                // control dependencies (signified by ^ before the name) are ignored
                if(contains(input, "^"))
                    continue;
Khalique's avatar
Khalique committed
1061
1062
                if(nodes.count(input) > 0)
                {
kahmed10's avatar
kahmed10 committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
                    std::string iname;
                    // input was from a node with multiple outputs
                    if(contains(input, ':'))
                    {
                        iname = input.substr(0, input.find(':'));
                    }
                    else
                    {
                        iname = get_name(nodes.at(input));
                    }
Khalique's avatar
Khalique committed
1073
1074
                    assert(name != iname);
                    this->parse_node(iname);
kahmed10's avatar
kahmed10 committed
1075
                    args.push_back(instructions.at(input));
Khalique's avatar
Khalique committed
1076
1077
1078
1079
1080
1081
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
kahmed10's avatar
kahmed10 committed
1082
1083

            std::vector<instruction_ref> result;
Khalique's avatar
Khalique committed
1084
1085
            if(ops.count(node.op()) == 0)
            {
kahmed10's avatar
kahmed10 committed
1086
                result.push_back(prog.add_instruction(op::unknown{node.op()}, args));
Khalique's avatar
Khalique committed
1087
1088
1089
            }
            else
            {
kahmed10's avatar
kahmed10 committed
1090
1091
1092
1093
1094
1095
1096
1097
1098
                result = ops[node.op()](get_attributes(node), args);
            }

            assert(!result.empty());
            // First output has no ":" delimiter
            instructions[name] = result.front();
            for(size_t i = 1; i < result.size(); i++)
            {
                instructions[name + ":" + std::to_string(i)] = result.at(i);
Khalique's avatar
Khalique committed
1099
1100
1101
1102
            }
        }
    }

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
            throw std::runtime_error("Failed reading tf file");
        }
    }

Khalique's avatar
Khalique committed
1116
1117
1118
    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
1119
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
1120
1121
1122
1123
1124
1125
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
1126
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
1127

Khalique's avatar
Khalique committed
1128
1129
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
Paul's avatar
Paul committed
1157
1158
1159
1160
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Paul's avatar
Paul committed
1161
        case tensorflow::DataType::DT_UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
1162
1163
1164

        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
Khalique's avatar
Khalique committed
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_BOOL:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
Khalique's avatar
Khalique committed
1177
        // tf pb should not use these types
Paul's avatar
Paul committed
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Paul's avatar
Paul committed
1201
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
Khalique's avatar
Khalique committed
1202
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
1203
1204
1205
1206
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
1207
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
1208
1209
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
1210
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
1211
1212
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
1213
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
1214
1215
            switch(t.dtype())
            {
Khalique's avatar
Khalique committed
1216
1217
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Paul's avatar
Paul committed
1218
            case tensorflow::DataType::DT_BOOL:
1219
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1220
1221
            case tensorflow::DataType::DT_UINT16:
            case tensorflow::DataType::DT_INT16:
1222
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1223
1224
1225
1226
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1227
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1228
1229
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Paul's avatar
Paul committed
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
            case tensorflow::DataType::DT_INVALID:
            case tensorflow::DataType::DT_UINT8:
            case tensorflow::DataType::DT_STRING:
            case tensorflow::DataType::DT_UINT32:
            case tensorflow::DataType::DT_UINT64:
            case tensorflow::DataType::DT_COMPLEX64:
            case tensorflow::DataType::DT_COMPLEX128:
            case tensorflow::DataType::DT_QINT8:
            case tensorflow::DataType::DT_QUINT8:
            case tensorflow::DataType::DT_QINT32:
            case tensorflow::DataType::DT_BFLOAT16:
            case tensorflow::DataType::DT_QINT16:
            case tensorflow::DataType::DT_QUINT16:
            case tensorflow::DataType::DT_RESOURCE:
            case tensorflow::DataType::DT_VARIANT:
            case tensorflow::DataType::DT_FLOAT_REF:
            case tensorflow::DataType::DT_DOUBLE_REF:
            case tensorflow::DataType::DT_INT32_REF:
            case tensorflow::DataType::DT_UINT8_REF:
            case tensorflow::DataType::DT_INT16_REF:
            case tensorflow::DataType::DT_INT8_REF:
            case tensorflow::DataType::DT_STRING_REF:
            case tensorflow::DataType::DT_COMPLEX64_REF:
            case tensorflow::DataType::DT_INT64_REF:
            case tensorflow::DataType::DT_BOOL_REF:
            case tensorflow::DataType::DT_QINT8_REF:
            case tensorflow::DataType::DT_QUINT8_REF:
            case tensorflow::DataType::DT_QINT32_REF:
            case tensorflow::DataType::DT_BFLOAT16_REF:
            case tensorflow::DataType::DT_QINT16_REF:
            case tensorflow::DataType::DT_QUINT16_REF:
            case tensorflow::DataType::DT_UINT16_REF:
            case tensorflow::DataType::DT_COMPLEX128_REF:
            case tensorflow::DataType::DT_HALF_REF:
            case tensorflow::DataType::DT_RESOURCE_REF:
            case tensorflow::DataType::DT_VARIANT_REF:
            case tensorflow::DataType::DT_UINT32_REF:
            case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1268
1269
1270
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
1271
1272
1273
1274
1275
1276
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
1277
1278
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
1279
        case tensorflow::DataType::DT_INT8:
1280
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1281
        case tensorflow::DataType::DT_UINT16:
1282
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1283
        case tensorflow::DataType::DT_INT16:
1284
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1285
        case tensorflow::DataType::DT_INT32:
1286
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1287
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
1288
1289
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
1290
        case tensorflow::DataType::DT_BOOL:
1291
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
1292
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
1293
        {
1294
1295
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
1296
1297
1298
1299
1300
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1301
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1302
        }
Khalique's avatar
Khalique committed
1303
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
1304
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Paul's avatar
Paul committed
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_UINT32:
        case tensorflow::DataType::DT_UINT64:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1343
1344
1345
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
1346
1347
1348
1349
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

1350
    template <class T>
Khalique's avatar
Khalique committed
1351
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
1352
                                        const size_t& shape_size)
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
1365
1366
1367
1368
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
1369
1370
1371
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
1372
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
1373
1374
        return dims;
    }
1375
1376

    template <class T>
Khalique's avatar
Khalique committed
1377
    static literal
1378
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
1379
    {
Khalique's avatar
Khalique committed
1380
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
1381
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1382
            return literal{{shape_type}, data};
1383
1384
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1385
1386
};

1387
program parse_tf(const std::string& name, tf_options options)
Khalique's avatar
Khalique committed
1388
1389
1390
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
1391
1392
    parser.is_nhwc    = options.is_nhwc;
    parser.batch_size = options.batch_size;
Khalique's avatar
Khalique committed
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
Paul's avatar
Paul committed
1408
    parser.to_nchw(std::prev(parser.prog.end()));
Khalique's avatar
Khalique committed
1409
1410
1411
1412
1413
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx