tf.cpp 31.8 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Khalique's avatar
Khalique committed
27
    using node_map      = std::unordered_map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
28
29
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
30

Khalique's avatar
Khalique committed
31
32
33
34
35
36
37
38
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

39
40
41
42
43
44
45
46
    void nhwc_to_nchw(std::size_t& dim)
    {
        switch(dim)
        {
        case 0: dim = 0; break;
        case 1: dim = 2; break;
        case 2: dim = 3; break;
        case 3: dim = 1; break;
Khalique's avatar
Khalique committed
47
        default: break;
48
49
50
        }
    }

Khalique's avatar
Khalique committed
51
52
53
54
55
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});

56
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
57

58
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
59
60
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
        add_mem_op("ConcatV2", &tf_parser::parse_concat);
Khalique's avatar
Khalique committed
61
62
63
        add_mem_op("Const", &tf_parser::parse_constant);
        add_mem_op("Conv2D", &tf_parser::parse_conv);
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
64
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
65
66
67
        add_mem_op("Reshape", &tf_parser::parse_reshape);
        add_mem_op("Softmax", &tf_parser::parse_softmax);
        add_mem_op("Squeeze", &tf_parser::parse_squeeze);
Khalique's avatar
Khalique committed
68
69
    }

70
71
72
73
74
75
76
77
78
79
80
81
82
    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

Khalique's avatar
Khalique committed
83
84
85
    template <class F>
    void add_mem_op(std::string name, F f)
    {
86
        add_op(name, [=](auto&&... xs) {
Khalique's avatar
Khalique committed
87
88
89
90
91
92
93
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Khalique's avatar
Khalique committed
94
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
95
96
            if(args.size() != 2)
                MIGRAPHX_THROW("binary operators should have 2 operands");
97
98
99
100
101
            auto l0 = args[1];
            if(contains(attributes, "data_format"))
            {
                if(is_nhwc)
                {
Khalique's avatar
Khalique committed
102
                    l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
103
104
105
                }
            }
            return add_broadcastable_binary_op(args[0], l0, x);
Khalique's avatar
Khalique committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

            std::vector<std::size_t> output_lens(*s1);
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
    }

    template <class T>
    void add_generic_op(std::string name, T x)
    {
156
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
157
158
159
160
161
162
163
            return prog.add_instruction(x, args);
        });
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
164
165
166
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
167
168
169
170
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
Khalique's avatar
Khalique committed
171

172
173
174
175
176
177
178
        auto l0 = args[0];
        if(l0->name() == "@param")
        {
            if(is_nhwc)
                l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, l0);
        };
        args[0] = l0;
Khalique's avatar
Khalique committed
179
180
181
182
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

183
    instruction_ref
Khalique's avatar
Khalique committed
184
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
185
    {
186
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Khalique's avatar
Khalique committed
187
        auto l0       = args[0];
188
189
190
191
192
193
194
195
        // otherwise, if the input is a parameter to the graph, then first insert transpose
        if(l0->name() == "@param")
        {
            if(is_nhwc)
                l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, l0);
        };
        auto l1 = prog.add_instruction(op::broadcast{axis, l0->get_shape()}, args[1]);
        return prog.add_instruction(op::add{}, l0, l1);
196
197
    }

Khalique's avatar
Khalique committed
198
199
200
201
202
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
        std::size_t axis_idx = attributes.at("N").i();
Khalique's avatar
Khalique committed
203
        std::size_t axis     = args[axis_idx]->eval().at<int64_t>();
204
205
206
207
        if(is_nhwc and axis < 4)
        {
            nhwc_to_nchw(axis);
        }
Khalique's avatar
Khalique committed
208
        op::concat op{axis};
209
        // return only first N arguments (assuming last index is the axis value)
Khalique's avatar
Khalique committed
210
        return prog.add_instruction(
211
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
        literal v = parse_tensor(attributes.at("value").tensor());
        return prog.add_literal(v);
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
231
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
232
            }
Khalique's avatar
Khalique committed
233
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
234
            {
235
236
                std::vector<std::size_t> padding;
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
        if(contains(attributes, "strides"))
        {
251
252
            std::vector<std::size_t> stride;
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
253
254
            if(stride.size() != 4)
            {
255
                MIGRAPHX_THROW("strides should have 4 values");
256
            }
257
258
259
260
261
262
263
264
            if(is_nhwc)
            {
                op.stride[0] = stride[1];
                op.stride[1] = stride[2];
            }
            else
            {
                op.stride[0] = stride[2];
Khalique's avatar
Khalique committed
265
                op.stride[1] = stride[3];
266
            }
Khalique's avatar
Khalique committed
267
268
269
        }
        if(contains(attributes, "dilations"))
        {
270
271
            std::vector<std::size_t> dilation;
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
272
273
274
275
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
276
277
278
279
280
281
282
283
284
285
            if(is_nhwc)
            {
                op.dilation[0] = dilation[1];
                op.dilation[1] = dilation[2];
            }
            else
            {
                op.dilation[0] = dilation[2];
                op.dilation[1] = dilation[3];
            }
Khalique's avatar
Khalique committed
286
        }
287
        auto l0 = args[0];
Khalique's avatar
Khalique committed
288
        if(l0->name() == "@param")
289
290
291
292
        {
            if(is_nhwc)
                l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, l0);
        }
293
        auto l1 = args[1];
Khalique's avatar
Khalique committed
294
        if(is_nhwc)
295
            l1 = prog.add_instruction(op::transpose{{3, 2, 0, 1}}, args[1]);
296
        return prog.add_instruction(op, {l0, l1});
Khalique's avatar
Khalique committed
297
298
    }

299
300
301
302
303
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
304

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
        if(contains(attributes, "strides"))
        {
            std::vector<std::size_t> stride;
320
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
            if(is_nhwc)
            {
                op.stride[0] = stride[1];
                op.stride[1] = stride[2];
            }
            else
            {
                op.stride[0] = stride[2];
                op.stride[1] = stride[3];
            }
        }
        if(contains(attributes, "ksize"))
        {
            std::vector<std::size_t> ksize;
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
            }
            if(is_nhwc)
            {
                op.lengths[0] = ksize[1];
                op.lengths[1] = ksize[2];
            }
            else
            {
                op.lengths[0] = ksize[2];
                op.lengths[1] = ksize[3];
            }
        }
355
356
357
358
359
360
361
        auto l0 = args[0];
        if(l0->name() == "@param")
        {
            if(is_nhwc)
                l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, l0);
        }
        return prog.add_instruction(op, l0);
362
    }
Khalique's avatar
Khalique committed
363

364
    instruction_ref
Khalique's avatar
Khalique committed
365
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
366
367
368
369
370
371
372
373
374
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
        literal s = args[1]->get_literal();
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        return prog.add_instruction(op, args[0]);
    }

Khalique's avatar
Khalique committed
375
376
377
378
379
380
381
382
383
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
384
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
385
386
387
        }
    }

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    }

    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        auto axes = attributes.at("squeeze_dims").list().i();
        copy(axes, std::back_inserter(op.axes));
        auto l0 = args[0];
        if(is_nhwc)
        {
407
            if(l0->name() != "@param")
Khalique's avatar
Khalique committed
408
409
                // squeeze dims are represented for nhwc,
                // but intermediate shapes are in nchw
410
411
412
413
414
                l0 = prog.add_instruction(op::transpose{{0, 2, 3, 1}}, args[0]);
        }
        auto l0_dims = l0->get_shape().lens();
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
Khalique's avatar
Khalique committed
415
            for(size_t i = 0; i < l0_dims.size(); i++)
416
            {
Khalique's avatar
Khalique committed
417
                if(l0_dims.at(i) == 1)
418
419
420
421
                {
                    op.axes.push_back(i);
                }
            }
422
423
424
425
        }
        return prog.add_instruction(op, l0);
    }

Khalique's avatar
Khalique committed
426
427
428
429
430
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
431
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
432
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
433
434
435
436
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
            shape s                   = shape{shape_type, dims};
            instructions[name]        = prog.add_parameter(name, s);
Khalique's avatar
Khalique committed
437
438
439
        }
        for(auto&& p : nodes)
        {
440
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
441
442
443
444
445
446
447
448
449
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
450
            // std::cout << name << std::endl;
Khalique's avatar
Khalique committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op()}, args);
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
480
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
481
482
483
484
485
486
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
487
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
488

Khalique's avatar
Khalique committed
489
490
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_INVALID:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
        case tensorflow::DataType::DT_STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case tensorflow::DataType::DT_COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case tensorflow::DataType::DT_QINT8:
            break; // throw std::runtime_error("Unsupported type QINT8");
        case tensorflow::DataType::DT_QUINT8:
            break; // throw std::runtime_error("Unsupported type QUINT8");
        case tensorflow::DataType::DT_QINT32:
            break; // throw std::runtime_error("Unsupported type QINT32");
        case tensorflow::DataType::DT_BFLOAT16:
            break; // throw std::runtime_error("Unsupported type BFLOAT16");
        case tensorflow::DataType::DT_QINT16:
            break; // throw std::runtime_error("Unsupported type QINT16");
        case tensorflow::DataType::DT_QUINT16:
            break; // throw std::runtime_error("Unsupported type QUINT16");
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_RESOURCE:
            break; // throw std::runtime_error("Unsupported type RESOURCE");
        case tensorflow::DataType::DT_VARIANT:
            break; // throw std::runtime_error("Unsupported type VARIANT");
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Khalique's avatar
Khalique committed
550
551
552
        case tensorflow::DataType::DT_UINT64:
            shape_type = shape::uint64_type;
            break;
Khalique's avatar
Khalique committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

        // tf pb should not use these types
        case tensorflow::DataType::DT_FLOAT_REF: break;
        case tensorflow::DataType::DT_DOUBLE_REF: break;
        case tensorflow::DataType::DT_INT32_REF: break;
        case tensorflow::DataType::DT_UINT8_REF: break;
        case tensorflow::DataType::DT_INT16_REF: break;
        case tensorflow::DataType::DT_INT8_REF: break;
        case tensorflow::DataType::DT_STRING_REF: break;
        case tensorflow::DataType::DT_COMPLEX64_REF: break;
        case tensorflow::DataType::DT_INT64_REF: break;
        case tensorflow::DataType::DT_BOOL_REF: break;
        case tensorflow::DataType::DT_QINT8_REF: break;
        case tensorflow::DataType::DT_QUINT8_REF: break;
        case tensorflow::DataType::DT_QINT32_REF: break;
        case tensorflow::DataType::DT_BFLOAT16_REF: break;
        case tensorflow::DataType::DT_QINT16_REF: break;
        case tensorflow::DataType::DT_QUINT16_REF: break;
        case tensorflow::DataType::DT_UINT16_REF: break;
        case tensorflow::DataType::DT_COMPLEX128_REF: break;
        case tensorflow::DataType::DT_HALF_REF: break;
        case tensorflow::DataType::DT_RESOURCE_REF: break;
        case tensorflow::DataType::DT_VARIANT_REF: break;
        case tensorflow::DataType::DT_UINT32_REF: break;
        case tensorflow::DataType::DT_UINT64_REF: break;
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_: break;
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
580
581
582
583
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
584
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
585
586
587
588
589
590
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
        if(dims.empty())
        {
            dims = {1};
        }
591
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
592
593
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
594
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
595
596
597
            switch(t.dtype())
            {
            case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
Khalique's avatar
Khalique committed
598
599
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Khalique's avatar
Khalique committed
600
601
            case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8: return literal{{shape::int32_type, dims}, s.data()};
Khalique's avatar
Khalique committed
602
603
604
605
606
607
608
609
            case tensorflow::DataType::DT_UINT16:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT16:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
610
611
612
            case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL: return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
613
614
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Khalique's avatar
Khalique committed
615
616
617
618
            case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
            case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
            case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
650
651
652
653
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
654
655
656
657
658
659
660
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT:
661
            return literal{{shape::float_type, dims}, get_data_vals(t.float_val(), shape_size)};
Khalique's avatar
Khalique committed
662
663
        case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8:
664
            return literal{{shape::int32_type, dims}, get_data_vals(t.int_val(), shape_size)};
Khalique's avatar
Khalique committed
665
        case tensorflow::DataType::DT_UINT16:
666
            return literal{{shape::int32_type, dims}, get_data_vals(t.int_val(), shape_size)};
Khalique's avatar
Khalique committed
667
        case tensorflow::DataType::DT_INT16:
668
            return literal{{shape::int32_type, dims}, get_data_vals(t.int_val(), shape_size)};
Khalique's avatar
Khalique committed
669
        case tensorflow::DataType::DT_INT32:
670
            return literal{{shape::int32_type, dims}, get_data_vals(t.int_val(), shape_size)};
Khalique's avatar
Khalique committed
671
        case tensorflow::DataType::DT_INT64:
672
            return literal{{shape::int64_type, dims}, get_data_vals(t.int64_val(), shape_size)};
Khalique's avatar
Khalique committed
673
674
        case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL:
675
            return literal{{shape::int32_type, dims}, get_data_vals(t.bool_val(), shape_size)};
Khalique's avatar
Khalique committed
676
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
677
        {
678
679
680
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
            return literal{{shape::half_type, dims}, data_uint16};
Khalique's avatar
Khalique committed
681
        }
Khalique's avatar
Khalique committed
682
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
683
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Khalique's avatar
Khalique committed
684
685
686
687
        case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
        case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
719
720
721
722
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
723
724
725
726
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

727
    template <class T>
Khalique's avatar
Khalique committed
728
729
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
                                        const std::size_t& shape_size)
730
731
732
733
734
735
736
737
738
739
740
741
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
742
743
744
745
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
746
747
748
749
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
                       [](tensorflow::TensorShapeProto_Dim dim) { return dim.size(); });
Khalique's avatar
Khalique committed
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
        return dims;
    }
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx