tf.cpp 47.2 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
Khalique's avatar
Khalique committed
20
#include <migraphx/pad_calc.hpp>
Khalique's avatar
Khalique committed
21
22
23
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Paul's avatar
Paul committed
28
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
29
30
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
31

Khalique's avatar
Khalique committed
32
33
34
35
36
37
38
39
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Paul's avatar
Paul committed
40
    bool should_transpose(instruction_ref ins) const
Paul's avatar
Paul committed
41
42
43
44
45
46
    {
        return is_nhwc and ins->get_shape().lens().size() == 4;
    }

    instruction_ref to_nhwc(instruction_ref ins)
    {
Paul's avatar
Paul committed
47
        if(should_transpose(ins))
Paul's avatar
Paul committed
48
49
50
51
52
53
            return prog.add_instruction(op::transpose{{0, 2, 3, 1}}, ins);
        return ins;
    }

    instruction_ref to_nchw(instruction_ref ins)
    {
Paul's avatar
Paul committed
54
        if(should_transpose(ins))
Paul's avatar
Paul committed
55
56
57
58
59
60
            return prog.add_instruction(op::transpose{{0, 3, 1, 2}}, ins);
        return ins;
    }

    instruction_ref to_kcxy(instruction_ref ins)
    {
Paul's avatar
Paul committed
61
        if(should_transpose(ins))
Paul's avatar
Paul committed
62
63
64
65
66
67
            return prog.add_instruction(op::transpose{{3, 2, 0, 1}}, ins);
        return ins;
    }

    instruction_ref make_contiguous(instruction_ref ins)
    {
Paul's avatar
Paul committed
68
        if(ins->get_shape().standard())
Paul's avatar
Paul committed
69
70
71
72
73
74
75
76
            return ins;
        else
            return prog.add_instruction(op::contiguous{}, ins);
    }

    std::vector<instruction_ref> to_nchw(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
Paul's avatar
Paul committed
77
        std::transform(
Paul's avatar
Paul committed
78
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nchw(ins); });
Paul's avatar
Paul committed
79
80
81
        return result;
    }

Khalique's avatar
Khalique committed
82
    std::vector<size_t> parse_axes(const attribute_map& attributes, const std::string& s) const
83
    {
84
85
86
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
87
        if(is_nhwc)
88
        {
Khalique's avatar
Khalique committed
89
90
91
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
                return parse_axis(axis);
            });
92
93
94
95
        }
        return axes;
    }

Khalique's avatar
Khalique committed
96
97
98
99
100
    template <class T>
    std::vector<T> parse_axes(std::vector<T> axes) const
    {
        if(is_nhwc)
        {
101
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
102
103
104
105
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
                           [&](size_t axis) { return parse_axis(axis); });
106
            return new_axes;
Khalique's avatar
Khalique committed
107
        }
108
        return axes;
Khalique's avatar
Khalique committed
109
110
    }

Khalique's avatar
Khalique committed
111
112
113
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
114
    template <class T>
115
    void reorder_data(std::vector<T>& prev_data) const
116
117
    {
        std::vector<T> new_data(prev_data.size());
118
        for(size_t i = 0; i < new_data.size(); i++)
119
        {
Khalique's avatar
Khalique committed
120
            auto new_idx         = parse_axis(i);
121
            new_data.at(new_idx) = prev_data.at(i);
122
        }
123
124
125
126
        prev_data = new_data;
    }

    template <class T>
Khalique's avatar
Khalique committed
127
    T parse_axis(const T& dim) const
128
    {
Khalique's avatar
Khalique committed
129
        T new_dim = dim;
130
131
132
133
        if(is_nhwc)
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
134
135
136
137
138
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
139
140
            }
        }
Khalique's avatar
Khalique committed
141
        return new_dim;
142
143
    }

144
145
146
147
148
149
150
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
151
152
153
154
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
155
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
156
        add_generic_op("Tanh", op::tanh{});
Khalique's avatar
Khalique committed
157

158
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
159
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
160
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
161

162
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
163
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
Paul's avatar
Paul committed
164
        add_mem_op("ConcatV2", &tf_parser::parse_concat, false);
Khalique's avatar
Khalique committed
165
        add_mem_op("Const", &tf_parser::parse_constant);
Paul's avatar
Paul committed
166
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Paul's avatar
Paul committed
167
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
Khalique's avatar
Khalique committed
168
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
Paul's avatar
Paul committed
169
        add_mem_op("MatMul", &tf_parser::parse_matmul, false);
170
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
171
        add_mem_op("Mean", &tf_parser::parse_mean);
Paul's avatar
Paul committed
172
        add_mem_op("Pack", &tf_parser::parse_pack, false);
Paul's avatar
Paul committed
173
        add_mem_op("Pad", &tf_parser::parse_pad);
Paul's avatar
Paul committed
174
        add_mem_op("Reshape", &tf_parser::parse_reshape, false);
175
        add_mem_op("Softmax", &tf_parser::parse_softmax);
Paul's avatar
Paul committed
176
        add_mem_op("Squeeze", &tf_parser::parse_squeeze, false);
177
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice);
Khalique's avatar
Khalique committed
178
179
    }

180
    template <class F>
Paul's avatar
Paul committed
181
    void add_op(std::string name, F f, bool transpose = true)
182
    {
Paul's avatar
Paul committed
183
        if(transpose)
Paul's avatar
Paul committed
184
        {
Paul's avatar
Paul committed
185
186
            ops.emplace(name,
                        op_func{[=](const attribute_map& attributes,
Paul's avatar
Paul committed
187
                                    const std::vector<instruction_ref>& args) -> instruction_ref {
Paul's avatar
Paul committed
188
189
                            return to_nhwc(f(attributes, to_nchw(args)));
                        }});
Paul's avatar
Paul committed
190
191
192
193
194
        }
        else
        {
            ops.emplace(name, f);
        }
195
196
    }

Khalique's avatar
Khalique committed
197
    template <class F>
Paul's avatar
Paul committed
198
    void add_mem_op(std::string name, F f, bool transpose = true)
Khalique's avatar
Khalique committed
199
    {
Paul's avatar
Paul committed
200
201
202
203
204
        add_op(name,
               [=](auto&&... xs) {
                   return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
               },
               transpose);
Khalique's avatar
Khalique committed
205
206
207
208
209
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   if(args.size() != 2)
                       MIGRAPHX_THROW("binary operators should have 2 operands");
                   // TODO
                   // if(contains(attributes, "data_format"))
                   // {
                   //     if(is_nhwc)
                   //     {
                   //         l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
                   //     }
                   // }
                   return add_broadcastable_binary_op(args[0], args[1], x);
               },
               false);
Khalique's avatar
Khalique committed
225
226
227
228
229
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
230
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
246
247
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
248
249
250
251
252

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

253
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
254
255
256
257
258
259
260
261
262
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
Paul's avatar
Paul committed
263
            return to_nhwc(prog.add_instruction(x, to_nchw(l0), to_nchw(l1)));
Khalique's avatar
Khalique committed
264
265
266
        }
        else
        {
Paul's avatar
Paul committed
267
            return to_nhwc(prog.add_instruction(x, {to_nchw(arg0), to_nchw(arg1)}));
Khalique's avatar
Khalique committed
268
269
270
271
        }
    }

    template <class T>
Paul's avatar
Paul committed
272
    void add_generic_op(std::string name, T x, bool transpose = true)
Khalique's avatar
Khalique committed
273
    {
Paul's avatar
Paul committed
274
275
276
277
278
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   return prog.add_instruction(x, args);
               },
               transpose);
Khalique's avatar
Khalique committed
279
280
281
282
283
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
284
285
286
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
287
288
289
290
291
292
293
294
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

295
    instruction_ref
Khalique's avatar
Khalique committed
296
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
297
    {
298
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
299
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
300
        return prog.add_instruction(op::add{}, args[0], l0);
301
302
    }

Khalique's avatar
Khalique committed
303
304
305
306
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
307
        size_t axis_idx = attributes.at("N").i();
Paul's avatar
Paul committed
308
        size_t axis     = args[axis_idx]->eval().at<int64_t>();
Khalique's avatar
Khalique committed
309
        op::concat op{axis};
310
        // return only first N arguments (assuming last index is the axis value)
Paul's avatar
Paul committed
311
312
        return prog.add_instruction(
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
313
314
315
316
317
318
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Paul's avatar
Paul committed
319
        literal v = parse_tensor(attributes.at("value").tensor());
Paul's avatar
Paul committed
320
        return prog.add_literal(v);
Khalique's avatar
Khalique committed
321
322
323
324
325
326
327
328
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "strides"))
        {
329
            std::vector<size_t> stride;
330
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
331
            reorder_data(stride);
332
333
            if(stride.size() != 4)
            {
334
                MIGRAPHX_THROW("strides should have 4 values");
335
            }
336
337
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
338
339
340
        }
        if(contains(attributes, "dilations"))
        {
341
            std::vector<size_t> dilation;
342
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
343
            reorder_data(dilation);
344
345
346
347
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
348
349
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
350
        }
Khalique's avatar
Khalique committed
351

Paul's avatar
Paul committed
352
        auto weights = to_kcxy(args[1]);
Paul's avatar
Paul committed
353
        auto l0      = args[0];
Khalique's avatar
Khalique committed
354
355
356
357
358
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
359
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
360
361
362
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];
Khalique's avatar
Khalique committed
363
364

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
365
366
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
367
368
369
370
371
372
373
374
375
376
377
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
378
379
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
380
                }
381
382
383
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
384
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
385
            }
Khalique's avatar
Khalique committed
386
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
387
            {
388
                std::vector<size_t> padding;
389
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
390
391
392
393
394
395
396
397
398
399
400
401
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
Paul's avatar
Paul committed
402
        return prog.add_instruction(op, {l0, to_kcxy(args[1])});
Khalique's avatar
Khalique committed
403
404
    }

Khalique's avatar
Khalique committed
405
406
407
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
408
409
410
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
411
        op.group            = num_channels;
Khalique's avatar
Khalique committed
412

Khalique's avatar
Khalique committed
413
414
        if(contains(attributes, "strides"))
        {
415
            std::vector<size_t> stride;
416
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
417
            reorder_data(stride);
418
419
            if(stride.size() != 4)
            {
420
                MIGRAPHX_THROW("strides should have 4 values");
421
            }
422
423
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
424
        }
Paul's avatar
Paul committed
425
426

        auto weights = to_kcxy(args[1]);
Khalique's avatar
Khalique committed
427
428
        if(contains(attributes, "dilations"))
        {
429
            std::vector<size_t> dilation;
430
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
431
            reorder_data(dilation);
432
433
434
435
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
436
437
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
438
439
        }

Khalique's avatar
Khalique committed
440
        auto l0 = args[0];
Khalique's avatar
Khalique committed
441
442
443
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
Khalique's avatar
Khalique committed
444

Khalique's avatar
Khalique committed
445
446
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
447
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
448
449
450
451
452
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
453
454
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
455
456
457
458
459
460
461
462
463
464
465
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
466
467
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
468
                }
Khalique's avatar
Khalique committed
469
            }
Khalique's avatar
Khalique committed
470
            else if(pad_mode.find("VALID") != std::string::npos)
Khalique's avatar
Khalique committed
471
            {
Khalique's avatar
Khalique committed
472
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
473
474
            }
        }
Khalique's avatar
Khalique committed
475

Khalique's avatar
Khalique committed
476
477
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
478
479
480
481

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
482
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
483
484
485
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
486
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
487
488
        auto new_weights =
            prog.add_instruction(op::reshape{new_weights_shape}, make_contiguous(weights));
Khalique's avatar
Khalique committed
489

Khalique's avatar
Khalique committed
490
        return prog.add_instruction(op, {l0, new_weights});
Khalique's avatar
Khalique committed
491
492
    }

Khalique's avatar
Khalique committed
493
494
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
495
496
497
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
498

499
500
501
502
503
504
505
506
507
508
509
510
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
            transb = attributes.at("transpose_a").b();
        }

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
511
        std::iter_swap(perm.end() - 1, perm.end() - 2);
512
513
514
515
516
517
518

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
519
520
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
521
    {
Paul's avatar
Paul committed
522
        auto axes      = parse_axes(args[1]->eval().get<int32_t>().to_vector());
Khalique's avatar
Khalique committed
523
        bool keep_dims = attributes.at("keep_dims").b();
Paul's avatar
Paul committed
524
        std::vector<int32_t> hw_axes{2, 3};
Khalique's avatar
Khalique committed
525
        // check if conditions for GlobalAvgPool are met
Khalique's avatar
Khalique committed
526
527
        auto lens = args[0]->get_shape().lens();
        if(axes == hw_axes and lens.size() == 4)
Khalique's avatar
Khalique committed
528
529
        {
            op::pooling op{"average"};
Khalique's avatar
Khalique committed
530
531
            op.lengths[0] = lens[2];
            op.lengths[1] = lens[3];
Khalique's avatar
Khalique committed
532
533
534
535
536
            auto l0       = prog.add_instruction(op, args.front());
            if(keep_dims)
                return l0;
            return prog.add_instruction(
                op::squeeze{std::vector<int64_t>(hw_axes.begin(), hw_axes.end())}, l0);
Khalique's avatar
Khalique committed
537
538
539
540
        }
        MIGRAPHX_THROW("MIGraphX does not support mean outside of GlobalAvgPool transformation");
    }

Khalique's avatar
Khalique committed
541
542
543
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
544
545
546
547
548
549
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
550
551
552
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
553
554
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
555
556
        }

Khalique's avatar
Khalique committed
557
558
559
560
561
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Paul's avatar
Paul committed
562
563
        return to_nhwc(
            prog.add_instruction(op::concat{static_cast<size_t>(axis)}, unsqueezed_args));
Khalique's avatar
Khalique committed
564
565
    }

Khalique's avatar
Khalique committed
566
567
568
569
570
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
571
572
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
573
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
Paul's avatar
Paul committed
574
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
575
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
576
        {
Khalique's avatar
Khalique committed
577
578
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
579
580
581
582
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
583
584
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
585
        {
Khalique's avatar
Khalique committed
586
587
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
588
589
        }
        op.pads = pads;
Paul's avatar
Paul committed
590
        return prog.add_instruction(op, args.front());
Khalique's avatar
Khalique committed
591
592
    }

593
594
595
596
597
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
598

599
600
        if(contains(attributes, "strides"))
        {
601
            std::vector<size_t> stride;
602
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
603
            reorder_data(stride);
604
605
606
607
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
608
609
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
610
611
612
        }
        if(contains(attributes, "ksize"))
        {
613
            std::vector<size_t> ksize;
614
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
615
            reorder_data(ksize);
616
617
618
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
619
            }
620
621
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
622
        }
Khalique's avatar
Khalique committed
623
624

        auto l0 = args[0];
Khalique's avatar
Khalique committed
625
626
627
628
629
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
630
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
631
                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
632
633
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
634
635
636
637
638
639
640
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], 1, op.lengths[0]);
                calculate_padding(1, pads, input_w, op.stride[1], 1, op.lengths[1]);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
Khalique's avatar
Khalique committed
641
642
                    l0                           = prog.add_instruction(
                        migraphx::op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
Khalique's avatar
Khalique committed
643
644
645
                }
                else
                {
Khalique's avatar
Khalique committed
646
647
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
648
                }
Khalique's avatar
Khalique committed
649
650
651
652
653
654
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
Khalique's avatar
Khalique committed
655
        return prog.add_instruction(op, l0);
656
    }
Khalique's avatar
Khalique committed
657

658
    instruction_ref
Khalique's avatar
Khalique committed
659
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
660
661
662
663
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
664
        auto s = args[1]->eval();
665
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
666
        return prog.add_instruction(op, make_contiguous(args[0]));
667
668
    }

Khalique's avatar
Khalique committed
669
670
671
672
673
674
675
676
677
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
678
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
679
680
681
        }
    }

682
683
684
685
686
687
688
689
690
691
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    }

Khalique's avatar
Khalique committed
692
693
694
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
695
696
    {
        op::squeeze op;
Paul's avatar
Paul committed
697
        auto axes = attributes.at("squeeze_dims").list().i();
698
        copy(axes, std::back_inserter(op.axes));
699
        auto args0_dims = args[0]->get_shape().lens();
700
701
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
702
            for(size_t i = 0; i < args0_dims.size(); i++)
703
            {
704
                if(args0_dims.at(i) == 1)
705
706
707
708
                {
                    op.axes.push_back(i);
                }
            }
709
        }
Paul's avatar
Paul committed
710
        return prog.add_instruction(op, make_contiguous(args[0]));
711
712
    }

Khalique's avatar
Khalique committed
713
714
715
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
716
717
    {
        op::slice op;
Khalique's avatar
Khalique committed
718
719
720
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto ends       = args[2]->eval().get<int32_t>().to_vector();
        size_t num_axes = args[0]->get_shape().lens().size();
721

Khalique's avatar
Khalique committed
722
723
724
725
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
Khalique's avatar
Khalique committed
726
727
        uint32_t begin_mask       = 0;
        uint32_t end_mask         = 0;
728
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
729
        uint32_t bitwise_compare  = 1;
Khalique's avatar
Khalique committed
730
731
        std::vector<int64_t> begin_axes;
        std::vector<int64_t> end_axes;
732
733
        std::vector<int64_t> squeeze_axes;

Khalique's avatar
Khalique committed
734
735
736
737
738
739
        if(contains(attributes, "begin_mask"))
            begin_mask = static_cast<uint32_t>(attributes.at("begin_mask").i());

        if(contains(attributes, "end_mask"))
            end_mask = static_cast<uint32_t>(attributes.at("end_mask").i());

740
        if(contains(attributes, "shrink_axis_mask"))
741
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
742

Khalique's avatar
Khalique committed
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
        for(size_t i = 0; i < num_axes; i++)
        {
            // the LSB corresponds to axis 0 when determining which axes to begin
            if(((begin_mask >> i) & bitwise_compare) == 1)
                begin_axes.push_back(1);
            else
                begin_axes.push_back(0);
        }

        for(size_t i = 0; i < num_axes; i++)
        {
            // the LSB corresponds to axis 0 when determining which axes to end
            if(((end_mask >> i) & bitwise_compare) == 1)
                end_axes.push_back(1);
            else
                end_axes.push_back(0);
        }

Khalique's avatar
Khalique committed
761
        if(num_axes >= 4)
Khalique's avatar
Khalique committed
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
        {
            reorder_data(begin_axes);
            reorder_data(end_axes);
        }

        for(size_t i = 0; i < num_axes; i++)
        {
            if(begin_axes.at(i) == 1)
            {
                op.starts.at(i) = 0;
            }
            if(end_axes.at(i) == 1)
            {
                op.ends.at(i) = axes.at(i);
            }
        }

        auto l0 = prog.add_instruction(op, args[0]);
        if(shrink_axis_mask == 0)
            return l0;

Khalique's avatar
Khalique committed
783
        for(size_t i = 0; i < num_axes; i++)
784
        {
785
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
786
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
787
788
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
789

Paul's avatar
Paul committed
790
791
        auto l0 = prog.add_instruction(op, make_contiguous(args[0]));
        return to_nhwc(prog.add_instruction(op::squeeze{squeeze_axes}, l0));
792
793
    }

Khalique's avatar
Khalique committed
794
795
796
797
798
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
799
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
800
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
801
802
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
803
            if(is_nhwc and dims.size() >= 4)
804
            {
805
                reorder_data(dims);
806
            }
Khalique's avatar
Khalique committed
807
            shape s            = shape{shape_type, dims};
Paul's avatar
Paul committed
808
            instructions[name] = to_nhwc(prog.add_parameter(name, s));
Khalique's avatar
Khalique committed
809
810
811
        }
        for(auto&& p : nodes)
        {
812
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
839
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
840
841
842
843
844
845
846
847
848
849
850
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
851
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
852
853
854
855
856
857
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
858
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
859

Khalique's avatar
Khalique committed
860
861
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_INVALID:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
        case tensorflow::DataType::DT_STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case tensorflow::DataType::DT_COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case tensorflow::DataType::DT_QINT8:
            break; // throw std::runtime_error("Unsupported type QINT8");
        case tensorflow::DataType::DT_QUINT8:
            break; // throw std::runtime_error("Unsupported type QUINT8");
        case tensorflow::DataType::DT_QINT32:
            break; // throw std::runtime_error("Unsupported type QINT32");
        case tensorflow::DataType::DT_BFLOAT16:
            break; // throw std::runtime_error("Unsupported type BFLOAT16");
        case tensorflow::DataType::DT_QINT16:
            break; // throw std::runtime_error("Unsupported type QINT16");
        case tensorflow::DataType::DT_QUINT16:
            break; // throw std::runtime_error("Unsupported type QUINT16");
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_RESOURCE:
            break; // throw std::runtime_error("Unsupported type RESOURCE");
        case tensorflow::DataType::DT_VARIANT:
            break; // throw std::runtime_error("Unsupported type VARIANT");
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Khalique's avatar
Khalique committed
921
922
923
        case tensorflow::DataType::DT_UINT64:
            shape_type = shape::uint64_type;
            break;
Khalique's avatar
Khalique committed
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950

        // tf pb should not use these types
        case tensorflow::DataType::DT_FLOAT_REF: break;
        case tensorflow::DataType::DT_DOUBLE_REF: break;
        case tensorflow::DataType::DT_INT32_REF: break;
        case tensorflow::DataType::DT_UINT8_REF: break;
        case tensorflow::DataType::DT_INT16_REF: break;
        case tensorflow::DataType::DT_INT8_REF: break;
        case tensorflow::DataType::DT_STRING_REF: break;
        case tensorflow::DataType::DT_COMPLEX64_REF: break;
        case tensorflow::DataType::DT_INT64_REF: break;
        case tensorflow::DataType::DT_BOOL_REF: break;
        case tensorflow::DataType::DT_QINT8_REF: break;
        case tensorflow::DataType::DT_QUINT8_REF: break;
        case tensorflow::DataType::DT_QINT32_REF: break;
        case tensorflow::DataType::DT_BFLOAT16_REF: break;
        case tensorflow::DataType::DT_QINT16_REF: break;
        case tensorflow::DataType::DT_QUINT16_REF: break;
        case tensorflow::DataType::DT_UINT16_REF: break;
        case tensorflow::DataType::DT_COMPLEX128_REF: break;
        case tensorflow::DataType::DT_HALF_REF: break;
        case tensorflow::DataType::DT_RESOURCE_REF: break;
        case tensorflow::DataType::DT_VARIANT_REF: break;
        case tensorflow::DataType::DT_UINT32_REF: break;
        case tensorflow::DataType::DT_UINT64_REF: break;
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_: break;
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
951
952
953
954
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
955
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
956
957
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
958
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
959
960
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
961
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
962
963
964
            switch(t.dtype())
            {
            case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
Khalique's avatar
Khalique committed
965
966
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Khalique's avatar
Khalique committed
967
            case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
968
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
969
            case tensorflow::DataType::DT_UINT16:
970
                return literal{{shape::uint16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
971
            case tensorflow::DataType::DT_INT16:
972
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
973
974
975
976
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
977
            case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
978
            case tensorflow::DataType::DT_BOOL: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
979
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
980
981
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Khalique's avatar
Khalique committed
982
983
984
985
            case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
            case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
            case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1017
1018
1019
1020
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
1021
1022
1023
1024
1025
1026
1027
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
1028
1029
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
1030
1031
        case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8:
1032
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1033
        case tensorflow::DataType::DT_UINT16:
1034
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1035
        case tensorflow::DataType::DT_INT16:
1036
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1037
        case tensorflow::DataType::DT_INT32:
1038
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1039
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
1040
1041
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
1042
1043
        case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL:
1044
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
1045
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
1046
        {
1047
1048
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
1049
1050
1051
1052
1053
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1054
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1055
        }
Khalique's avatar
Khalique committed
1056
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
1057
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Khalique's avatar
Khalique committed
1058
1059
1060
1061
        case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
        case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1093
1094
1095
1096
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
1097
1098
1099
1100
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

1101
    template <class T>
Khalique's avatar
Khalique committed
1102
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
1103
                                        const size_t& shape_size)
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
1116
1117
1118
1119
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
1120
1121
1122
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
1123
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
1124
1125
        return dims;
    }
1126
1127

    template <class T>
Khalique's avatar
Khalique committed
1128
    static literal
1129
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
1130
    {
Khalique's avatar
Khalique committed
1131
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
1132
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1133
            return literal{{shape_type}, data};
1134
1135
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
Paul's avatar
Paul committed
1158
    parser.to_nchw(std::prev(parser.prog.end()));
Khalique's avatar
Khalique committed
1159
1160
1161
1162
1163
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx