tf.cpp 42.2 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Khalique's avatar
Khalique committed
27
    using node_map      = std::unordered_map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
28
29
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
30

Khalique's avatar
Khalique committed
31
32
33
34
35
36
37
38
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Khalique's avatar
Khalique committed
39
    std::vector<size_t> parse_axes(const attribute_map& attributes, const std::string& s) const
40
    {
41
42
43
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
44
        if(is_nhwc)
45
        {
Khalique's avatar
Khalique committed
46
47
48
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
                return parse_axis(axis);
            });
49
50
51
52
        }
        return axes;
    }

Khalique's avatar
Khalique committed
53
54
55
56
57
    template <class T>
    std::vector<T> parse_axes(std::vector<T> axes) const
    {
        if(is_nhwc)
        {
58
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
59
60
61
62
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
                           [&](size_t axis) { return parse_axis(axis); });
63
            return new_axes;
Khalique's avatar
Khalique committed
64
        }
65
        return axes;
Khalique's avatar
Khalique committed
66
67
    }

Khalique's avatar
Khalique committed
68
69
70
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
71
    template <class T>
72
    void reorder_data(std::vector<T>& prev_data) const
73
74
    {
        std::vector<T> new_data(prev_data.size());
75
        for(size_t i = 0; i < new_data.size(); i++)
76
        {
Khalique's avatar
Khalique committed
77
            auto new_idx         = parse_axis(i);
78
            new_data.at(new_idx) = prev_data.at(i);
79
        }
80
81
82
83
        prev_data = new_data;
    }

    template <class T>
Khalique's avatar
Khalique committed
84
    T parse_axis(const T& dim) const
85
    {
Khalique's avatar
Khalique committed
86
        T new_dim = dim;
87
88
89
90
        if(is_nhwc)
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
91
92
93
94
95
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
96
97
            }
        }
Khalique's avatar
Khalique committed
98
        return new_dim;
99
100
    }

101
102
103
104
105
106
107
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
108
109
110
111
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
112
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
113

114
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
115
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
116

117
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
118
119
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
        add_mem_op("ConcatV2", &tf_parser::parse_concat);
Khalique's avatar
Khalique committed
120
121
        add_mem_op("Const", &tf_parser::parse_constant);
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Khalique's avatar
Khalique committed
122
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
Khalique's avatar
Khalique committed
123
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
124
        add_mem_op("MatMul", &tf_parser::parse_matmul);
125
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
126
        add_mem_op("Mean", &tf_parser::parse_mean);
Khalique's avatar
Khalique committed
127
        add_mem_op("Pack", &tf_parser::parse_pack);
Khalique's avatar
Khalique committed
128
        add_mem_op("Pad", &tf_parser::parse_pad);
129
130
131
        add_mem_op("Reshape", &tf_parser::parse_reshape);
        add_mem_op("Softmax", &tf_parser::parse_softmax);
        add_mem_op("Squeeze", &tf_parser::parse_squeeze);
132
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice);
Khalique's avatar
Khalique committed
133
134
    }

135
136
137
138
139
140
141
142
143
144
145
146
147
    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

Khalique's avatar
Khalique committed
148
149
150
    template <class F>
    void add_mem_op(std::string name, F f)
    {
151
        add_op(name, [=](auto&&... xs) {
Khalique's avatar
Khalique committed
152
153
154
155
156
157
158
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
159
        add_op(name, [this, x](const attribute_map& attributes, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
160
161
            if(args.size() != 2)
                MIGRAPHX_THROW("binary operators should have 2 operands");
162
163
164
165
166
            auto l0 = args[1];
            if(contains(attributes, "data_format"))
            {
                if(is_nhwc)
                {
Khalique's avatar
Khalique committed
167
                    l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
168
169
170
                }
            }
            return add_broadcastable_binary_op(args[0], l0, x);
Khalique's avatar
Khalique committed
171
172
173
174
175
176
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
177
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
193
194
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
195
196
197
198
199

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

200
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
    }

    template <class T>
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
221
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
222
223
224
225
226
227
228
            return prog.add_instruction(x, args);
        });
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
229
230
231
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
232
233
234
235
236
237
238
239
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

240
    instruction_ref
Khalique's avatar
Khalique committed
241
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
242
    {
243
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
244
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
245
        return prog.add_instruction(op::add{}, args[0], l0);
246
247
    }

Khalique's avatar
Khalique committed
248
249
250
251
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
252
        size_t axis_idx = attributes.at("N").i();
Khalique's avatar
Khalique committed
253
        size_t axis     = parse_axis(args[axis_idx]->eval().at<int64_t>());
Khalique's avatar
Khalique committed
254
        op::concat op{axis};
255
        // return only first N arguments (assuming last index is the axis value)
Khalique's avatar
Khalique committed
256
        return prog.add_instruction(
257
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
258
259
260
261
262
263
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Khalique's avatar
Khalique committed
264
265
        literal v       = parse_tensor(attributes.at("value").tensor());
        auto l0         = prog.add_literal(v);
266
267
268
269
270
271
        size_t num_axes = l0->get_shape().lens().size();
        if(num_axes >= 4)
        {
            std::vector<int64_t> transpose_axes = get_axes(num_axes);
            reorder_data(transpose_axes);
            l0 = prog.add_instruction(op::transpose{transpose_axes}, l0);
Khalique's avatar
Khalique committed
272
        }
273
        return l0;
Khalique's avatar
Khalique committed
274
275
276
277
278
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
279
        op::convolution op;
Khalique's avatar
Khalique committed
280
281
        if(contains(attributes, "strides"))
        {
282
            std::vector<size_t> stride;
283
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
284
            reorder_data(stride);
285
286
            if(stride.size() != 4)
            {
287
                MIGRAPHX_THROW("strides should have 4 values");
288
            }
289
290
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
291
292
293
        }
        if(contains(attributes, "dilations"))
        {
294
            std::vector<size_t> dilation;
295
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
296
            reorder_data(dilation);
297
298
299
300
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
301
302
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
303
        }
Khalique's avatar
Khalique committed
304
        auto weights = args[1];
305
        // check if weights are from a constant
Khalique's avatar
Khalique committed
306
307

        if(weights->name() != "@param")
308
        {
Khalique's avatar
Khalique committed
309
310
311
312
313
314
315
316
            if(is_nhwc)
            {
                weights = prog.add_instruction(op::transpose{{1, 3, 0, 2}}, args[1]);
            }
            else
            {
                weights = prog.add_instruction(op::transpose{{3, 2, 0, 1}}, args[1]);
            }
317
        }
Khalique's avatar
Khalique committed
318

319
320
        if(contains(attributes, "padding"))
        {
Khalique's avatar
Khalique committed
321
            const std::string& pad_mode     = attributes.at("padding").s();
322
            std::vector<size_t> weight_dims = weights->get_shape().lens();
Khalique's avatar
Khalique committed
323
324
            size_t weight_h                 = weight_dims[2];
            size_t weight_w                 = weight_dims[3];
325
326
            if(pad_mode.find("SAME") != std::string::npos)
            {
327
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
328
329
330
331
332
333
334
335
                op.padding[0] =
                    static_cast<size_t>(std::ceil(static_cast<double>(
                                            -op.stride[0] + op.dilation[0] * (weight_h - 1) + 1)) /
                                        2);
                op.padding[1] =
                    static_cast<size_t>(std::ceil(static_cast<double>(
                                            -op.stride[1] + op.dilation[1] * (weight_w - 1) + 1)) /
                                        2);
336
337
338
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
339
                op.padding_mode = op::padding_mode_t::valid;
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
            }
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
            {
                std::vector<size_t> padding;
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }

Khalique's avatar
Khalique committed
358
        return prog.add_instruction(op, {args[0], weights});
Khalique's avatar
Khalique committed
359
360
    }

Khalique's avatar
Khalique committed
361
362
363
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
364
365
366
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
367
        op.group            = num_channels;
Khalique's avatar
Khalique committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
        }
        if(contains(attributes, "strides"))
        {
            std::vector<size_t> stride;
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
            reorder_data(stride);
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
        }
        auto weights = args[1];
        // check if weights are from a constant
        if(weights->name() != "@param")
        {
            if(is_nhwc)
            {
                weights = prog.add_instruction(op::transpose{{1, 3, 0, 2}}, args[1]);
            }
            else
            {
                weights = prog.add_instruction(op::transpose{{3, 2, 0, 1}}, args[1]);
Khalique's avatar
Khalique committed
399
            }
Khalique's avatar
Khalique committed
400
        }
Khalique's avatar
Khalique committed
401

Khalique's avatar
Khalique committed
402
403
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
404
405
406
407

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
408
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
409
410
411
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
412
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
413
414
        auto cweights    = prog.add_instruction(op::contiguous{}, weights);
        auto new_weights = prog.add_instruction(op::reshape{new_weights_shape}, cweights);
Khalique's avatar
Khalique committed
415

Khalique's avatar
Khalique committed
416
417
418
        return prog.add_instruction(op, {args[0], new_weights});
    }

Khalique's avatar
Khalique committed
419
420
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
421
422
423
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
424

425
426
427
428
429
430
431
432
433
434
435
436
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
            transb = attributes.at("transpose_a").b();
        }

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
437
        std::iter_swap(perm.end() - 1, perm.end() - 2);
438
439
440
441
442
443
444

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
445
446
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
447
    {
Khalique's avatar
Khalique committed
448
        auto axes      = parse_axes(args[1]->eval().get<int32_t>().to_vector());
Khalique's avatar
Khalique committed
449
        bool keep_dims = attributes.at("keep_dims").b();
Khalique's avatar
Khalique committed
450
        std::vector<int32_t> hw_axes{2, 3};
Khalique's avatar
Khalique committed
451
        // check if conditions for GlobalAvgPool are met
Khalique's avatar
Khalique committed
452
453
        auto lens = args[0]->get_shape().lens();
        if(axes == hw_axes and lens.size() == 4)
Khalique's avatar
Khalique committed
454
455
        {
            op::pooling op{"average"};
Khalique's avatar
Khalique committed
456
457
            op.lengths[0] = lens[2];
            op.lengths[1] = lens[3];
Khalique's avatar
Khalique committed
458
459
460
461
462
            auto l0       = prog.add_instruction(op, args.front());
            if(keep_dims)
                return l0;
            return prog.add_instruction(
                op::squeeze{std::vector<int64_t>(hw_axes.begin(), hw_axes.end())}, l0);
Khalique's avatar
Khalique committed
463
464
465
466
        }
        MIGRAPHX_THROW("MIGraphX does not support mean outside of GlobalAvgPool transformation");
    }

Khalique's avatar
Khalique committed
467
468
469
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
470
471
472
473
474
475
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
476
477
478
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
479
480
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
481
482
483
484
485
        }
        // check if input arg needs axis to be converted to NCHW
        if(input_size >= 4)
            axis = parse_axis(axis);

Khalique's avatar
Khalique committed
486
487
488
489
490
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Khalique's avatar
Khalique committed
491
492
493
        return prog.add_instruction(op::concat{static_cast<size_t>(axis)}, unsqueezed_args);
    }

Khalique's avatar
Khalique committed
494
495
496
497
498
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
499
500
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
501
502
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
503
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
504
        {
Khalique's avatar
Khalique committed
505
506
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
507
508
509
510
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
511
512
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
513
        {
Khalique's avatar
Khalique committed
514
515
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
516
517
518
519
520
        }
        op.pads = pads;
        return prog.add_instruction(op, args.front());
    }

521
522
523
524
525
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
526

527
528
529
530
531
532
533
534
535
536
537
538
539
540
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
        if(contains(attributes, "strides"))
        {
541
            std::vector<size_t> stride;
542
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
543
            reorder_data(stride);
544
545
546
547
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
548
549
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
550
551
552
        }
        if(contains(attributes, "ksize"))
        {
553
            std::vector<size_t> ksize;
554
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
555
            reorder_data(ksize);
556
557
558
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
559
            }
560
561
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
562
        }
563
        return prog.add_instruction(op, args[0]);
564
    }
Khalique's avatar
Khalique committed
565

566
    instruction_ref
Khalique's avatar
Khalique committed
567
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
568
569
570
571
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
572
        auto s = args[1]->eval();
573
574
575
576
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        return prog.add_instruction(op, args[0]);
    }

Khalique's avatar
Khalique committed
577
578
579
580
581
582
583
584
585
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
586
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
587
588
589
        }
    }

590
591
592
593
594
595
596
597
598
599
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    }

Khalique's avatar
Khalique committed
600
601
602
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
603
604
    {
        op::squeeze op;
605
        auto axes = parse_axes(attributes, "squeeze_dims");
606
        copy(axes, std::back_inserter(op.axes));
607
        auto args0_dims = args[0]->get_shape().lens();
608
609
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
610
            for(size_t i = 0; i < args0_dims.size(); i++)
611
            {
612
                if(args0_dims.at(i) == 1)
613
614
615
616
                {
                    op.axes.push_back(i);
                }
            }
617
        }
618
        return prog.add_instruction(op, args[0]);
619
620
    }

Khalique's avatar
Khalique committed
621
622
623
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
624
625
    {
        op::slice op;
Khalique's avatar
Khalique committed
626
627
628
629
630
631
632
633
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto ends       = args[2]->eval().get<int32_t>().to_vector();
        size_t num_axes = args[0]->get_shape().lens().size();
        if(num_axes >= 4)
        {
            reorder_data(starts);
            reorder_data(ends);
        }
634

Khalique's avatar
Khalique committed
635
636
637
638
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
639
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
640
        uint32_t bitwise_compare  = 1;
641
642
643
        std::vector<int64_t> squeeze_axes;

        if(contains(attributes, "shrink_axis_mask"))
644
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
645

Khalique's avatar
Khalique committed
646
        for(size_t i = 0; i < num_axes; i++)
647
        {
648
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
649
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
650
651
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
652
653
654
655
656
        if(num_axes >= 4)
        {
            squeeze_axes = parse_axes(squeeze_axes);
        }

657
658
659
660
        auto l0 = prog.add_instruction(op, args[0]);
        return prog.add_instruction(op::squeeze{squeeze_axes}, l0);
    }

Khalique's avatar
Khalique committed
661
662
663
664
665
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
666
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
667
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
668
669
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
670
            if(is_nhwc and dims.size() >= 4)
671
            {
672
                reorder_data(dims);
673
            }
Khalique's avatar
Khalique committed
674
675
            shape s            = shape{shape_type, dims};
            instructions[name] = prog.add_parameter(name, s);
Khalique's avatar
Khalique committed
676
677
678
        }
        for(auto&& p : nodes)
        {
679
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
706
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
707
708
709
710
711
712
713
714
715
716
717
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
718
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
719
720
721
722
723
724
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
725
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
726

Khalique's avatar
Khalique committed
727
728
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_INVALID:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
        case tensorflow::DataType::DT_STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case tensorflow::DataType::DT_COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case tensorflow::DataType::DT_QINT8:
            break; // throw std::runtime_error("Unsupported type QINT8");
        case tensorflow::DataType::DT_QUINT8:
            break; // throw std::runtime_error("Unsupported type QUINT8");
        case tensorflow::DataType::DT_QINT32:
            break; // throw std::runtime_error("Unsupported type QINT32");
        case tensorflow::DataType::DT_BFLOAT16:
            break; // throw std::runtime_error("Unsupported type BFLOAT16");
        case tensorflow::DataType::DT_QINT16:
            break; // throw std::runtime_error("Unsupported type QINT16");
        case tensorflow::DataType::DT_QUINT16:
            break; // throw std::runtime_error("Unsupported type QUINT16");
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_RESOURCE:
            break; // throw std::runtime_error("Unsupported type RESOURCE");
        case tensorflow::DataType::DT_VARIANT:
            break; // throw std::runtime_error("Unsupported type VARIANT");
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Khalique's avatar
Khalique committed
788
789
790
        case tensorflow::DataType::DT_UINT64:
            shape_type = shape::uint64_type;
            break;
Khalique's avatar
Khalique committed
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817

        // tf pb should not use these types
        case tensorflow::DataType::DT_FLOAT_REF: break;
        case tensorflow::DataType::DT_DOUBLE_REF: break;
        case tensorflow::DataType::DT_INT32_REF: break;
        case tensorflow::DataType::DT_UINT8_REF: break;
        case tensorflow::DataType::DT_INT16_REF: break;
        case tensorflow::DataType::DT_INT8_REF: break;
        case tensorflow::DataType::DT_STRING_REF: break;
        case tensorflow::DataType::DT_COMPLEX64_REF: break;
        case tensorflow::DataType::DT_INT64_REF: break;
        case tensorflow::DataType::DT_BOOL_REF: break;
        case tensorflow::DataType::DT_QINT8_REF: break;
        case tensorflow::DataType::DT_QUINT8_REF: break;
        case tensorflow::DataType::DT_QINT32_REF: break;
        case tensorflow::DataType::DT_BFLOAT16_REF: break;
        case tensorflow::DataType::DT_QINT16_REF: break;
        case tensorflow::DataType::DT_QUINT16_REF: break;
        case tensorflow::DataType::DT_UINT16_REF: break;
        case tensorflow::DataType::DT_COMPLEX128_REF: break;
        case tensorflow::DataType::DT_HALF_REF: break;
        case tensorflow::DataType::DT_RESOURCE_REF: break;
        case tensorflow::DataType::DT_VARIANT_REF: break;
        case tensorflow::DataType::DT_UINT32_REF: break;
        case tensorflow::DataType::DT_UINT64_REF: break;
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_: break;
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
818
819
820
821
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
822
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
823
824
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
825
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
826
827
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
828
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
829
830
831
            switch(t.dtype())
            {
            case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
Khalique's avatar
Khalique committed
832
833
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Khalique's avatar
Khalique committed
834
            case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
835
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
836
            case tensorflow::DataType::DT_UINT16:
837
                return literal{{shape::uint16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
838
            case tensorflow::DataType::DT_INT16:
839
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
840
841
842
843
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
844
            case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
845
            case tensorflow::DataType::DT_BOOL: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
846
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
847
848
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Khalique's avatar
Khalique committed
849
850
851
852
            case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
            case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
            case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
884
885
886
887
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
888
889
890
891
892
893
894
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
895
896
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
897
898
        case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8:
899
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
900
        case tensorflow::DataType::DT_UINT16:
901
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
902
        case tensorflow::DataType::DT_INT16:
903
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
904
        case tensorflow::DataType::DT_INT32:
905
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
906
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
907
908
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
909
910
        case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL:
911
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
912
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
913
        {
914
915
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
916
917
918
919
920
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
921
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
922
        }
Khalique's avatar
Khalique committed
923
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
924
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Khalique's avatar
Khalique committed
925
926
927
928
        case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
        case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
960
961
962
963
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
964
965
966
967
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

968
    template <class T>
Khalique's avatar
Khalique committed
969
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
970
                                        const size_t& shape_size)
971
972
973
974
975
976
977
978
979
980
981
982
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
983
984
985
986
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
987
988
989
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
990
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
991
992
        return dims;
    }
993
994

    template <class T>
Khalique's avatar
Khalique committed
995
    static literal
996
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
997
    {
Khalique's avatar
Khalique committed
998
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
999
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1000
            return literal{{shape_type}, data};
1001
1002
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx