onnx.cpp 57.7 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
57

Khalique's avatar
Khalique committed
58
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
63
64
65
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
66

Khalique's avatar
Khalique committed
67
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
68
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
69
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
70
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
71
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
72
73
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
74
75
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
76
77
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
78
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
79
80
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
81
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
82
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
83
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
84
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
85
86
87
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
88
        add_mem_op("Concat", &onnx_parser::parse_concat);
89
90
91
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
92
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
93
        add_mem_op("RNN", &onnx_parser::parse_rnn);
94
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
95
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
96
        add_mem_op("Pad", &onnx_parser::parse_pad);
97
98
99
100
101
102
103

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
104
105
106
107
108
109
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
110
111
112
113
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
114
115
116
117
118
119
120
121
122
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
123
124
125
126
127
128
129
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
130
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
131
132
133
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
134

135
    template <class T>
Khalique's avatar
Khalique committed
136
    void add_binary_op(std::string name, T x)
137
    {
Paul's avatar
Paul committed
138
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
139
            if(args.size() != 2)
Paul's avatar
Paul committed
140
                MIGRAPHX_THROW("binary operators should have 2 operands");
141
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
142
143
144
145
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
146
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
147
148
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
149
150
                    return prog.add_instruction(x, args[0], l);
                }
151
                return prog.add_instruction(x, args);
152
            }
Paul's avatar
Paul committed
153
            else
154
            {
Khalique's avatar
Khalique committed
155
                return add_broadcastable_binary_op(args[0], args[1], x);
156
157
158
159
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
160
161
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
162
163
164
165
166
167
168
169
170
171
172
173
174
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
175
        if(s0.size() > s1.size())
176
177
178
179
180
181
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
182
183
184
185
186
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
                       [](auto a, auto b) { return std::max(a, b); });
187
188
189
190

        return out_lens;
    }

Khalique's avatar
Khalique committed
191
192
193
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
194
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
195
196
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
197
198
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
199
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
200
201
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
202
203
204
205
206
207
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
208
209
    }

Paul's avatar
Paul committed
210
    template <class T>
Paul's avatar
Paul committed
211
212
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
213
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
214
215
216
217
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
218
    template <class T>
Khalique's avatar
Khalique committed
219
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
220
    {
Paul's avatar
Paul committed
221
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
222
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
223
224
225
226
227
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
228
        });
Khalique's avatar
Khalique committed
229
230
    }

Khalique's avatar
Khalique committed
231
232
233
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
234
235
236
237
238
239
240
241
242
243
244
245
246
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Paul's avatar
Paul committed
247
    instruction_ref
Paul's avatar
Paul committed
248
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
249
250
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
251
252
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
253
254
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
255
256
    }

Shucai Xiao's avatar
Shucai Xiao committed
257
258
259
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
260
261
262
263
264
265
266
267
268
269
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

Paul's avatar
Paul committed
270
    instruction_ref
Paul's avatar
Paul committed
271
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
272
    {
273
        op::convolution op;
274
        auto l0 = args[0];
Paul's avatar
Paul committed
275
276
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
277
            if(contains(attributes, "auto_pad"))
278
            {
Paul's avatar
Paul committed
279
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
280
            }
281
282
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
283
            if(padding.size() != 4)
284
            {
Paul's avatar
Paul committed
285
                MIGRAPHX_THROW("padding should have 4 values");
286
            }
Scott Thornton's avatar
Scott Thornton committed
287
            if(padding[0] != padding[2] || padding[1] != padding[3])
288
            {
289
290
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
291
                l0      = prog.add_instruction(op::pad{padding}, l0);
292
            }
293
294
295
296
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
297
            }
Paul's avatar
Paul committed
298
        }
Paul's avatar
Paul committed
299
300
301
302
303
304
305
306
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
307
        if(contains(attributes, "auto_pad"))
308
309
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
310
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
311
            {
Paul's avatar
Paul committed
312
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
313
314
            }

wsttiger's avatar
fixes  
wsttiger committed
315
            if(s.find("SAME") != std::string::npos)
316
            {
317
                op.padding_mode = op::padding_mode_t::same;
318
319
            }
        }
Khalique's avatar
Khalique committed
320
321
322
323
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
324
325
326
327
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
328
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
329
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
330
        }
331
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
332
    }
Paul's avatar
Paul committed
333

Paul's avatar
Paul committed
334
335
336
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
337
    {
Khalique's avatar
Khalique committed
338
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
339
        auto l0 = args[0];
Khalique's avatar
Khalique committed
340
        if(starts_with(name, "Global"))
341
        {
Khalique's avatar
Khalique committed
342
343
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
344
        }
Paul's avatar
Paul committed
345
346
        if(contains(attributes, "pads"))
        {
347
348
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
349
            if(padding.size() != 4)
350
            {
Paul's avatar
Paul committed
351
                MIGRAPHX_THROW("padding should have 4 values");
352
            }
Scott Thornton's avatar
Scott Thornton committed
353
            if(padding[0] != padding[2] || padding[1] != padding[3])
354
            {
355
356
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
357
358
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
359
360
361
362
363
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
364
            }
Paul's avatar
Paul committed
365
366
367
368
369
370
371
372
373
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
374
        if(contains(attributes, "auto_pad"))
375
376
        {
            auto s = attributes["auto_pad"].s();
377
            if(s.find("SAME_UPPER") == std::string::npos)
378
            {
379
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
380
            }
381
            op.padding_mode = op::padding_mode_t::same;
382
383
        }

384
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
385
386
    }

Paul's avatar
Paul committed
387
    instruction_ref
Paul's avatar
Paul committed
388
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
389
    {
390
        op::reshape op;
Paul's avatar
Paul committed
391
392
393
394
395
396
397
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
398
            auto s = args[1]->eval();
Paul's avatar
Paul committed
399
            if(s.empty())
Paul's avatar
Paul committed
400
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
401
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
402
        }
Paul's avatar
Paul committed
403
404
405
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
406
    instruction_ref
Paul's avatar
Paul committed
407
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
408
    {
409
        uint64_t axis = 1;
Paul's avatar
Paul committed
410
411
412
413
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
414
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
415
416
    }

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
435
436
437
438
439
440
441
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
442

443
444
445
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
446
        int axis = 0;
447
448
449
450
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
451
        op::gather op{axis};
452
453
454
        return prog.add_instruction(op, std::move(args));
    }

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
475
476
477
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
478
    {
Shucai Xiao's avatar
Shucai Xiao committed
479
        literal v     = parse_value(attributes.at("value"));
480
481
482
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
483
        {
484
            migraphx::shape scalar_shape{v.get_shape().type()};
485
486
487
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
488
489
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
490

Paul's avatar
Paul committed
491
    instruction_ref
Paul's avatar
Paul committed
492
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
493
494
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
495
        float beta  = 1.0f;
Paul's avatar
Paul committed
496
497
498
499
500
501
502
503
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
504
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
505
506
507
508
509
510
511
512
513
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
514
515
516
517
518
519

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

520
521
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
522
523
        if(args.size() == 3)
        {
524
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
525
            {
Shucai Xiao's avatar
Shucai Xiao committed
526
                auto out_lens   = l1->get_shape().lens();
527
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
528
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
529
530
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
531
                {
532
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
533
                }
534
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
535
            }
Paul's avatar
Paul committed
536
        }
537
538

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
539
540
    }

541
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
542
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
543
    {
Shucai Xiao's avatar
Shucai Xiao committed
544
545
        auto l0      = args[0];
        auto l1      = args[1];
546
547
548
549
550
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
551
        if(l0_lens.size() == 1)
552
553
554
555
556
557
558
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
559
        if(l1_lens.size() == 1)
560
561
562
563
564
565
566
567
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
568
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
569
570
571
572
573
574
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
575
            l0_broadcasted_lens = output_lens;
576
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
577
            l1_broadcasted_lens = output_lens;
578
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
579
            if(l0_lens != l0_broadcasted_lens)
580
581
582
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
583
            if(l1_lens != l1_broadcasted_lens)
584
585
586
587
588
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
589
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
590
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
591
        if(is_a_prepended)
592
593
594
595
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
596
        if(is_b_appended)
597
598
599
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
600

601
602
603
        return dot_res;
    }

604
    instruction_ref
Paul's avatar
Paul committed
605
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
606
    {
Scott Thornton's avatar
Scott Thornton committed
607
608
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
609
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
610
        bool is_test                                      = false;
611
612
613
614
615
616
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
617
            momentum = parse_value(attributes.at("momentum")).at<float>();
618
619
620
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
621
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
622
623
624
        }
        if(contains(attributes, "spatial"))
        {
625
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
626
627
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
628
        }
Paul's avatar
Paul committed
629
        (void)is_test;
Paul's avatar
Paul committed
630
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
631
        return prog.add_instruction(op, std::move(args));
632
633
    }

634
635
636
637
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
638
        float alpha = 0.01; // default alpha val for leaky relu
639
640
641
642
643
644
645
646
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
647
648
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
649
650
651
652
653
654
655
656
657
658
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
659
660
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
661
662
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
663
664
665
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
666
667
668
669
670
671
672
673
674
675
676
677
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
694
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
695

Khalique's avatar
Khalique committed
696
697
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
698
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
699

700
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
701
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
702
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
703
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
704
    }
Khalique's avatar
Khalique committed
705

Khalique's avatar
Khalique committed
706
707
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
708
709
710
711
712
713
714
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
715
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
716
717
    }

Khalique's avatar
Khalique committed
718
719
720
721
722
723
724
725
726
727
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
728
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
729
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
730
731
732
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
733
734
735
736
737
738
739
740
741
742
743
744
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
745
746
747
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
748
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
749
750
    {
        if(args.size() != 1)
751
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
788
789
        if(contains(attributes, "extra_shape"))
        {
790
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
791
792
        }

793
794
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
795
            if(args.size() != 1)
796
            {
797
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
798
799
            }

Shucai Xiao's avatar
Shucai Xiao committed
800
801
            if(contains(attributes, "shape"))
            {
802
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
803
                               "at the same time");
804
805
            }

806
807
808
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
809
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
810
            }
811

812
813
814
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
815
816
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
817
818
819
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
820
821
            if(!contains(attributes, "shape"))
            {
822
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
823
824
825
            }

            literal ls = parse_value(attributes.at("shape"));
826
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
827
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
828
            migraphx::shape s{type, dims};
829
830
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
831
832
833
        }
        else
        {
834
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
835
836
837
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
838
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
839
840
841
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
842
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
843
844
845

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
846
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
847
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
848
849
850
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
851
852
853
854
855
856
857
858
859
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

860
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
861
862
        if(direction == "bidirectional")
        {
863
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
864
865
866
        }
        else if(direction == "reverse")
        {
867
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
868
869
        }

870
        std::vector<std::string> vec_names{"tanh"};
871
872
873
874
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
875
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
876
877
878
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
879
880
        }

881
882
883
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
884
        if(name_it != vec_names.end())
885
886
887
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
888

Shucai Xiao's avatar
Shucai Xiao committed
889
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
890
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
891
        // if only one actv function is provided, we use it in both
892
        // forward and reverse direction
893
        if(dirct == op::rnn_direction::bidirectional)
894
        {
Shucai Xiao's avatar
Shucai Xiao committed
895
            if(vec_names.size() == 1)
896
897
898
899
900
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
901
902
903
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
904
        });
Shucai Xiao's avatar
Shucai Xiao committed
905

Shucai Xiao's avatar
Shucai Xiao committed
906
907
908
909
910
911
912
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

913
914
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
915
        if(args.size() < 6)
916
917
918
919
920
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
921
922
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
923
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
924

925
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
926
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
927

Shucai Xiao's avatar
Shucai Xiao committed
928
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
929
930
    }

931
    std::vector<instruction_ref>
932
933
934
935
936
937
938
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
939
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
940
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
941
942
943
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
944
945
946
947
948
949
950
951
952
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

953
        op::rnn_direction dirct = op::rnn_direction::forward;
954
955
        if(direction == "bidirectional")
        {
956
            dirct = op::rnn_direction::bidirectional;
957
958
959
        }
        else if(direction == "reverse")
        {
960
            dirct = op::rnn_direction::reverse;
961
962
        }

963
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
964
965
        if(contains(attributes, "activations"))
        {
966
            auto names = attributes.at("activations").strings();
967
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
968
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
969
970
971
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
972
973
        }

974
        // need 4 activation functions
975
        if(dirct == op::rnn_direction::bidirectional)
976
        {
Shucai Xiao's avatar
Shucai Xiao committed
977
            // 4 activation functions are used in the bidirectional
978
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
979
980
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
981
982
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
983
984
985
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
986
            if(vec_names.size() == 1)
987
            {
988
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
989
            }
990
            else if(vec_names.size() == 2)
991
            {
992
993
994
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
995
            }
996
            else if(vec_names.size() == 3)
997
            {
998
                vec_names.push_back(vec_names.at(2));
999
1000
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1001
        else
1002
        {
1003
            if(vec_names.size() == 1)
1004
            {
1005
                vec_names.push_back(vec_names.at(0));
1006
1007
1008
            }
        }

1009
1010
1011
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1012
        if(name_it != vec_names.end())
1013
1014
1015
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1016

Shucai Xiao's avatar
Shucai Xiao committed
1017
1018
1019
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1020
        });
1021
1022
1023
1024
1025
1026
1027
1028

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1029
        if(contains(attributes, "linear_before_reset"))
1030
1031
1032
1033
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1034
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1035
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1036
1037
1038
1039
1040
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1041
1042
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1043
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1044
            std::move(args));
1045
1046

        // second output for last gru output
1047
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1048

Shucai Xiao's avatar
Shucai Xiao committed
1049
        return {hidden_states, last_output};
1050
1051
    }

Shucai Xiao's avatar
Shucai Xiao committed
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1074
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1075
1076
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1077
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1078
1079
1080
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1081
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1082
        }
Shucai Xiao's avatar
Shucai Xiao committed
1083
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1084
        {
Shucai Xiao's avatar
Shucai Xiao committed
1085
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1086
1087
1088
1089
1090
1091
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1092
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1093
1094
1095
1096
1097
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1098
1099
1100
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1101
1102
1103
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1104
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1105
1106
1107
1108
1109
1110
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1111
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1112
1113
1114
1115
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1116
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1117
1118
1119
1120
1121
1122
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1123
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1124
1125
1126

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1127
1128
1129
1130
1131
1132
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1133
1134
1135
1136
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1137
1138
1139
1140
1141
1142
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1143
1144
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1145
1146
1147
1148
1149
1150
1151
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1152
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1153

Shucai Xiao's avatar
Shucai Xiao committed
1154
1155
1156
1157
1158
1159
1160
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1161
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1162

Shucai Xiao's avatar
Shucai Xiao committed
1163
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1164
1165
1166
1167
1168
1169
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1170
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1171
1172
1173

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1174
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1175
1176
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1177
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1178
1179
1180
            }
        }

1181
1182
1183
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1184
        if(name_it != vec_names.end())
1185
1186
1187
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1210
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1211
1212
1213
1214
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1215
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1216
1217

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1218
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1219
1220
1221
1222
1223
1224
1225

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }

Paul's avatar
Paul committed
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1238
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1239
1240
1241
1242
1243
1244
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1245
1246
1247
1248
1249
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1250
1251
1252
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1265
        }
Paul's avatar
Paul committed
1266
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1267
        {
Paul's avatar
Paul committed
1268
            this->parse_node(output.name());
Paul's avatar
Paul committed
1269
1270
1271
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1272
    void parse_undefined(const std::string& name)
1273
    {
Shucai Xiao's avatar
Shucai Xiao committed
1274
        auto ins           = prog.add_instruction(op::undefined{});
1275
1276
1277
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1278
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1279
    {
Paul's avatar
Paul committed
1280
        if(name.empty())
Paul's avatar
Paul committed
1281
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1282
1283
1284
1285
1286
1287
1288
1289
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1290
1291
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1292
                }
Shucai Xiao's avatar
Shucai Xiao committed
1293
                else if(input.empty())
Paul's avatar
Paul committed
1294
                {
1295
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1296
                }
1297
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1298
            }
Paul's avatar
Paul committed
1299
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1300
1301
            if(ops.count(node.op_type()) == 0)
            {
1302
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1303
1304
1305
            }
            else
            {
Paul's avatar
Paul committed
1306
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1307
            }
Paul's avatar
Paul committed
1308
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1309
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1310
1311
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1312
1313
1314
            }
            else
            {
Paul's avatar
Paul committed
1315
1316
1317
1318
1319
1320
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1338
        std::size_t n = 0;
Paul's avatar
Paul committed
1339
1340
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1341
            if(node.output().empty())
Paul's avatar
Paul committed
1342
            {
Paul's avatar
Paul committed
1343
                if(node.name().empty())
Paul's avatar
Paul committed
1344
1345
1346
1347
1348
1349
1350
1351
1352
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1378
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1379
1380
1381
1382
1383
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1384
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1385
1386
1387
1388
1389
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1390
1391
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1392
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1393
1394
1395
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1396
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1397
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1398
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1399
1400
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1401
1402
1403
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1404
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1405
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1406
1407
1408
1409
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1410
1411
1412
1413
1414
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1415
            MIGRAPHX_THROW("Invalid tensor type");
1416
        }
Paul's avatar
Paul committed
1417
1418
1419
1420
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1421
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1422
1423
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1424
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1425
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1426
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1427
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1428
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1429
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1430
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1431
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1432
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1433
1434
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1435
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1436
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1437
        {
Khalique's avatar
Khalique committed
1438
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1439
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1440
1441
1442
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1443
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1444
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1445
        }
Paul's avatar
Paul committed
1446
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1447
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1448
1449
1450
1451
1452
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1453
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1454
1455
    }

Khalique's avatar
Khalique committed
1456
    static literal
1457
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1458
    {
Khalique's avatar
Khalique committed
1459
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1460
        if(dims.empty())
1461
            return literal{{shape_type}, data};
1462
1463
1464
        return literal{{shape_type, dims}, data};
    }

1465
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1466
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1467
1468
    {
        if(dims.empty())
1469
            return literal{{shape_type}, data.begin(), data.end()};
1470
        return literal{{shape_type, dims}, data.begin(), data.end()};
1471
1472
    }

Paul's avatar
Paul committed
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1492
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1493
1494
1495
1496
1497
1498
1499
1500
1501
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1502
        auto&& tensor_dims = t.tensor_type().shape().dim();
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1514
1515
        return {shape_type, dims};
    }
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1561
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1562
} // namespace migraphx