onnx.cpp 53.4 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
39
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
40
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
41
42
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
43
44
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
57

Khalique's avatar
Khalique committed
58
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
63
64
65
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
66

Khalique's avatar
Khalique committed
67
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
68
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
69
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
70
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
71
72
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
73
74
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
75
76
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
77
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
78
79
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
80
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
81
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
82
83
84
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
85
        add_mem_op("Concat", &onnx_parser::parse_concat);
86
87
88
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
89
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
90
        add_mem_op("RNN", &onnx_parser::parse_rnn);
91
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
92
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
93
        add_mem_op("Pad", &onnx_parser::parse_pad);
94
95
96
97
98
99
100

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
101
102
103
104
105
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
106
107
108
109
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
110
111
112
113
114
115
116
117
118
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
119
120
121
122
123
124
125
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
126
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
127
128
129
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
130

131
    template <class T>
Khalique's avatar
Khalique committed
132
    void add_binary_op(std::string name, T x)
133
    {
Paul's avatar
Paul committed
134
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
135
            if(args.size() != 2)
Paul's avatar
Paul committed
136
                MIGRAPHX_THROW("binary operators should have 2 operands");
137
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
138
139
140
141
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
142
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
143
144
145
146
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
147
                return prog.add_instruction(x, args);
148
            }
Paul's avatar
Paul committed
149
            else
150
            {
Khalique's avatar
Khalique committed
151
                return add_broadcastable_binary_op(args[0], args[1], x);
152
153
154
155
            }
        });
    }

Khalique's avatar
Khalique committed
156
157
158
159
160
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
161
162
163
164
165
166
167
168
169
170
171
172
173
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
174
175
176
177
178
179
180
181
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

Khalique's avatar
Khalique committed
182
            std::vector<std::size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
183
184
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
185
186
187
188
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
189
190
191
192
193
194
195
196
197

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
198
199
    }

Paul's avatar
Paul committed
200
    template <class T>
Paul's avatar
Paul committed
201
202
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
203
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
204
205
206
207
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
208
    template <class T>
Khalique's avatar
Khalique committed
209
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
210
    {
Paul's avatar
Paul committed
211
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
212
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
213
214
215
216
217
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
218
        });
Khalique's avatar
Khalique committed
219
220
    }

Paul's avatar
Paul committed
221
    instruction_ref
Paul's avatar
Paul committed
222
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
223
224
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
225
226
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
227
228
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
229
230
    }

Paul's avatar
Paul committed
231
    instruction_ref
Paul's avatar
Paul committed
232
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
233
    {
234
        op::convolution op;
235
        auto l0 = args[0];
Paul's avatar
Paul committed
236
237
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
238
            if(contains(attributes, "auto_pad"))
239
            {
Paul's avatar
Paul committed
240
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
241
            }
242
243
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
244
            if(padding.size() != 4)
245
            {
Paul's avatar
Paul committed
246
                MIGRAPHX_THROW("padding should have 4 values");
247
            }
Scott Thornton's avatar
Scott Thornton committed
248
            if(padding[0] != padding[2] || padding[1] != padding[3])
249
            {
250
251
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
252
                l0      = prog.add_instruction(op::pad{padding}, l0);
253
            }
254
255
256
257
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
258
            }
Paul's avatar
Paul committed
259
        }
Paul's avatar
Paul committed
260
261
262
263
264
265
266
267
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
268
        if(contains(attributes, "auto_pad"))
269
270
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
271
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
272
            {
Paul's avatar
Paul committed
273
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
274
275
            }

wsttiger's avatar
fixes  
wsttiger committed
276
            if(s.find("SAME") != std::string::npos)
277
            {
278
                op.padding_mode = op::padding_mode_t::same;
279
280
            }
        }
Khalique's avatar
Khalique committed
281
282
283
284
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
285
286
287
288
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
289
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
290
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
291
        }
292
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
293
    }
Paul's avatar
Paul committed
294

Paul's avatar
Paul committed
295
296
297
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
298
    {
Khalique's avatar
Khalique committed
299
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
300
        auto l0 = args[0];
Khalique's avatar
Khalique committed
301
        if(starts_with(name, "Global"))
302
        {
Khalique's avatar
Khalique committed
303
304
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
305
        }
Paul's avatar
Paul committed
306
307
        if(contains(attributes, "pads"))
        {
308
309
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
310
            if(padding.size() != 4)
311
            {
Paul's avatar
Paul committed
312
                MIGRAPHX_THROW("padding should have 4 values");
313
            }
Scott Thornton's avatar
Scott Thornton committed
314
            if(padding[0] != padding[2] || padding[1] != padding[3])
315
            {
316
317
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
318
                l0      = prog.add_instruction(op::pad{padding}, l0);
319
320
321
322
323
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
324
            }
Paul's avatar
Paul committed
325
326
327
328
329
330
331
332
333
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
334
        if(contains(attributes, "auto_pad"))
335
336
        {
            auto s = attributes["auto_pad"].s();
337
            if(s.find("SAME_UPPER") == std::string::npos)
338
            {
339
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
340
            }
341
            op.padding_mode = op::padding_mode_t::same;
342
343
        }

344
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
345
346
    }

Paul's avatar
Paul committed
347
    instruction_ref
Paul's avatar
Paul committed
348
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
349
    {
350
        op::reshape op;
Paul's avatar
Paul committed
351
352
353
354
355
356
357
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
358
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
359
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
360
        }
Paul's avatar
Paul committed
361
362
363
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
364
    instruction_ref
Paul's avatar
Paul committed
365
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
366
    {
367
        uint64_t axis = 1;
Paul's avatar
Paul committed
368
369
370
371
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
372
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
373
374
    }

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
393
394
395
396
397
398
399
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
400

401
402
403
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
404
        int axis = 0;
405
406
407
408
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
409
        op::gather op{axis};
410
411
412
        return prog.add_instruction(op, std::move(args));
    }

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
433
434
435
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
436
    {
Shucai Xiao's avatar
Shucai Xiao committed
437
        literal v     = parse_value(attributes.at("value"));
438
439
440
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
441
        {
442
            migraphx::shape scalar_shape{v.get_shape().type(), {1}, {0}};
443
444
445
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
446
447
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
448

Paul's avatar
Paul committed
449
    instruction_ref
Paul's avatar
Paul committed
450
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
451
452
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
453
        float beta  = 1.0f;
Paul's avatar
Paul committed
454
455
456
457
458
459
460
461
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
462
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
463
464
465
466
467
468
469
470
471
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
472
473
474
475

        // beginning or end of both args have dimension 1, need to squeeze
        // before calling gemm, then doing unsqueeze after getting results
        std::size_t num_squeeze = args[0]->get_shape().lens().size();
Shucai Xiao's avatar
Shucai Xiao committed
476
        if(num_squeeze > 2)
477
478
479
480
481
482
483
        {
            std::vector<int64_t> vec_axises(num_squeeze - 2);
            std::iota(vec_axises.begin(), vec_axises.end(), 0);
            args[0] = prog.add_instruction(op::squeeze{vec_axises}, args[0]);
            args[1] = prog.add_instruction(op::squeeze{vec_axises}, args[1]);
        }

Paul's avatar
Paul committed
484
        std::vector<int64_t> perm = {1, 0};
485
486
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
487
488
        if(args.size() == 3)
        {
Khalique's avatar
Khalique committed
489
            if(beta != 0.f)
490
            {
Khalique's avatar
Khalique committed
491
                auto l3 = prog.add_instruction(op::dot{alpha}, l1, l2);
Shucai Xiao's avatar
Shucai Xiao committed
492
                if(num_squeeze > 2)
493
494
495
496
497
498
                {
                    std::vector<int64_t> vec_axises(num_squeeze - 2);
                    std::iota(vec_axises.begin(), vec_axises.end(), 0);
                    l3 = prog.add_instruction(op::unsqueeze{vec_axises}, l3);
                }

Khalique's avatar
Khalique committed
499
                auto l4 = args[2];
Khalique's avatar
Khalique committed
500
                if(l4->get_shape().scalar()) // ignore args[2] (no C value added to alpha*A*B)
Khalique's avatar
Khalique committed
501
                    return l3;
Khalique's avatar
Khalique committed
502
                if(beta != 1.f)
Khalique's avatar
Khalique committed
503
504
                {
                    auto beta_val = prog.add_literal(beta);
Khalique's avatar
Khalique committed
505
506
                    auto l5 = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
                    l4      = prog.add_instruction(op::mul{}, args[2], l5);
Khalique's avatar
Khalique committed
507
508
                }
                return add_broadcastable_binary_op(l3, l4, op::add{});
509
            }
Paul's avatar
Paul committed
510
        }
511
512

        auto dot_res = prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Shucai Xiao's avatar
Shucai Xiao committed
513
        if(num_squeeze > 2)
514
515
516
517
518
519
520
        {
            std::vector<int64_t> vec_axises(num_squeeze - 2);
            std::iota(vec_axises.begin(), vec_axises.end(), 0);
            dot_res = prog.add_instruction(op::unsqueeze{vec_axises}, dot_res);
        }

        return dot_res;
Paul's avatar
Paul committed
521
522
    }

523
    instruction_ref
Paul's avatar
Paul committed
524
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
525
    {
Scott Thornton's avatar
Scott Thornton committed
526
527
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
528
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
529
        bool is_test                                      = false;
530
531
532
533
534
535
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
536
            momentum = parse_value(attributes.at("momentum")).at<float>();
537
538
539
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
540
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
541
542
543
        }
        if(contains(attributes, "spatial"))
        {
544
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
545
546
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
547
        }
Paul's avatar
Paul committed
548
        (void)is_test;
Paul's avatar
Paul committed
549
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
550
        return prog.add_instruction(op, std::move(args));
551
552
    }

553
554
555
556
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
557
        float alpha = 0.01; // default alpha val for leaky relu
558
559
560
561
562
563
564
565
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
566
567
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
568
569
570
571
572
573
574
575
576
577
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
578
579
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
580
581
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
582
583
584
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
585
586
587
588
589
590
591
592
593
594
595
596
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
614

Khalique's avatar
Khalique committed
615
616
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
617
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
618

Paul's avatar
Paul committed
619
620
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
621
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
622
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
623
    }
Khalique's avatar
Khalique committed
624

Khalique's avatar
Khalique committed
625
626
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
627
628
629
630
631
632
633
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
634
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
635
636
    }

Khalique's avatar
Khalique committed
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
659
660
661
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
662
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
663
664
    {
        if(args.size() != 1)
665
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
702
703
        if(contains(attributes, "extra_shape"))
        {
704
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
705
706
        }

707
708
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
709
            if(args.size() != 1)
710
            {
711
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
712
713
            }

Shucai Xiao's avatar
Shucai Xiao committed
714
715
            if(contains(attributes, "shape"))
            {
716
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
717
                               "at the same time");
718
719
            }

720
721
722
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
723
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
724
            }
725

726
727
728
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
729
730
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
731
732
733
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
734
735
            if(!contains(attributes, "shape"))
            {
736
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
737
738
739
            }

            literal ls = parse_value(attributes.at("shape"));
740
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
741
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
742
            migraphx::shape s{type, dims};
743
744
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
745
746
747
        }
        else
        {
748
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
749
750
751
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
752
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
753
754
755
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
756
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
757
758
759

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
760
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
761
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
762
763
764
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
765
766
767
768
769
770
771
772
773
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

774
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
775
776
        if(direction == "bidirectional")
        {
777
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
778
779
780
        }
        else if(direction == "reverse")
        {
781
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
782
783
        }

784
785
786
787
788
        std::vector<std::string> vec_names{"tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
789
            for_each(names.begin(), names.end(), [&](auto& fn) { vec_names.push_back(fn); });
790
791
        }

Shucai Xiao's avatar
Shucai Xiao committed
792
        for_each(vec_names.begin(), vec_names.end(), [&](auto& fn) {
793
794
            if(map_actv_funcs.count(fn) == 0)
            {
Shucai Xiao's avatar
Shucai Xiao committed
795
                MIGRAPHX_THROW("RNN: activation function " + std::string(fn) + " not supported");
796
797
798
            }
        });

Shucai Xiao's avatar
Shucai Xiao committed
799
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
800
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
801
        // if only one actv function is provided, we use it in both
802
        // forward and reverse direction
803
        if(dirct == op::rnn_direction::bidirectional)
804
        {
Shucai Xiao's avatar
Shucai Xiao committed
805
            if(vec_names.size() == 1)
806
807
808
809
810
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
811
812
813
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
814
        });
Shucai Xiao's avatar
Shucai Xiao committed
815

Shucai Xiao's avatar
Shucai Xiao committed
816
817
818
819
820
821
822
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

823
824
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
825
        if(args.size() < 6)
826
827
828
829
830
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
831
832
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
833
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
834

835
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
836
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
837

Shucai Xiao's avatar
Shucai Xiao committed
838
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
839
840
    }

841
    std::vector<instruction_ref>
842
843
844
845
846
847
848
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
849
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
850
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
851
852
853
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
854
855
856
857
858
859
860
861
862
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

863
        op::rnn_direction dirct = op::rnn_direction::forward;
864
865
        if(direction == "bidirectional")
        {
866
            dirct = op::rnn_direction::bidirectional;
867
868
869
        }
        else if(direction == "reverse")
        {
870
            dirct = op::rnn_direction::reverse;
871
872
        }

873
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
874
875
        if(contains(attributes, "activations"))
        {
876
            auto names = attributes.at("activations").strings();
877
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
878
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
879
880
            std::transform(
                names.begin(), names.end(), vec_names.begin(), [](auto& str) { return str; });
881
882
        }

883
        // need 4 activation functions
884
        if(dirct == op::rnn_direction::bidirectional)
885
        {
Shucai Xiao's avatar
Shucai Xiao committed
886
            // 4 activation functions are used in the bidirectional
887
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
888
889
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
890
891
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
892
893
894
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
895
            if(vec_names.size() == 1)
896
            {
897
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
898
            }
899
            else if(vec_names.size() == 2)
900
            {
901
902
903
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
904
            }
905
            else if(vec_names.size() == 3)
906
            {
907
                vec_names.push_back(vec_names.at(2));
908
909
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
910
        else
911
        {
912
            if(vec_names.size() == 1)
913
            {
914
                vec_names.push_back(vec_names.at(0));
915
916
917
            }
        }

918
        for_each(vec_names.begin(), vec_names.end(), [&](auto& name) {
Shucai Xiao's avatar
Shucai Xiao committed
919
920
            if(map_actv_funcs.count(name) == 0)
            {
Shucai Xiao's avatar
Shucai Xiao committed
921
                MIGRAPHX_THROW("GRU: activation function " + std::string(name) + " not supported");
Shucai Xiao's avatar
Shucai Xiao committed
922
923
            }
        });
924

Shucai Xiao's avatar
Shucai Xiao committed
925
926
927
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
928
        });
929
930
931
932
933
934
935
936

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
937
        if(contains(attributes, "linear_before_reset"))
938
939
940
941
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
942
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
943
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
944
945
946
947
948
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

949
950
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
951
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
952
            std::move(args));
953
954

        // second output for last gru output
955
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
956

Shucai Xiao's avatar
Shucai Xiao committed
957
        return {hidden_states, last_output};
958
959
    }

Shucai Xiao's avatar
Shucai Xiao committed
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
982
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
983
984
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
985
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
986
987
988
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
989
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
990
        }
Shucai Xiao's avatar
Shucai Xiao committed
991
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
992
        {
Shucai Xiao's avatar
Shucai Xiao committed
993
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
            std::transform(
                names.begin(), names.end(), vec_names.begin(), [](auto& str) { return str; });
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1011
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1012
1013
1014
1015
1016
1017
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1018
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1019
1020
1021
1022
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1023
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1024
1025
1026
1027
1028
1029
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1030
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1031
1032
1033

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1034
1035
1036
1037
1038
1039
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1040
1041
1042
1043
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1044
1045
1046
1047
1048
1049
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1050
1051
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1052
1053
1054
1055
1056
1057
1058
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1059
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1060

Shucai Xiao's avatar
Shucai Xiao committed
1061
1062
1063
1064
1065
1066
1067
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1068
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1069

Shucai Xiao's avatar
Shucai Xiao committed
1070
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1071
1072
1073
1074
1075
1076
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1077
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1078
1079
1080

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1081
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1082
1083
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1084
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
            }
        }

        for_each(vec_names.begin(), vec_names.end(), [&](auto& name) {
            if(map_actv_funcs.count(name) == 0)
            {
                MIGRAPHX_THROW("LSTM: activation function " + std::string(name) + " not supported");
            }
        });

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1116
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1117
1118
1119
1120
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1121
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1122
1123

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1124
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1125
1126
1127
1128
1129
1130
1131

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }

Paul's avatar
Paul committed
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1144
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1145
1146
1147
1148
1149
1150
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1151
1152
1153
1154
1155
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1156
1157
1158
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1171
1172
1173
        }
        for(auto&& p : nodes)
        {
Paul's avatar
Paul committed
1174
            this->parse_node(p.first);
Paul's avatar
Paul committed
1175
1176
1177
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1178
    void parse_undefined(const std::string& name)
1179
    {
Shucai Xiao's avatar
Shucai Xiao committed
1180
        auto ins           = prog.add_instruction(op::undefined{});
1181
1182
1183
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1184
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1185
    {
Paul's avatar
Paul committed
1186
        if(name.empty())
Paul's avatar
Paul committed
1187
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1188
1189
1190
1191
1192
1193
1194
1195
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1196
1197
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1198
                }
Shucai Xiao's avatar
Shucai Xiao committed
1199
                else if(input.empty())
Paul's avatar
Paul committed
1200
                {
1201
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1202
                }
1203
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1204
            }
Paul's avatar
Paul committed
1205
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1206
1207
            if(ops.count(node.op_type()) == 0)
            {
Paul's avatar
Paul committed
1208
                result.push_back(prog.add_instruction(unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1209
1210
1211
            }
            else
            {
Paul's avatar
Paul committed
1212
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1213
            }
Paul's avatar
Paul committed
1214
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1215
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1216
1217
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1218
1219
1220
            }
            else
            {
Paul's avatar
Paul committed
1221
1222
1223
1224
1225
1226
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1244
        std::size_t n = 0;
Paul's avatar
Paul committed
1245
1246
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1247
            if(node.output().empty())
Paul's avatar
Paul committed
1248
            {
Paul's avatar
Paul committed
1249
                if(node.name().empty())
Paul's avatar
Paul committed
1250
1251
1252
1253
1254
1255
1256
1257
1258
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1284
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1285
1286
1287
1288
1289
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1290
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1291
1292
1293
1294
1295
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
1296
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1297
        if(dims.empty())
Khalique's avatar
Khalique committed
1298
1299
1300
        {
            dims = {1};
        }
1301
1302
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1303
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
1316
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
1317
1318
1319
1320
1321
1322
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1323
            MIGRAPHX_THROW("Invalid tensor type");
1324
        }
Paul's avatar
Paul committed
1325
1326
1327
1328
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
1329
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
1330
1331
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
1332
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1333
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
1334
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1335
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
1336
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1337
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
1338
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1339
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
1340
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
1341
1342
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
1343
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1344
1345
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
1346
1347
1348
1349
1350
1351
1352
1353
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1354
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1376
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1377
1378
1379
1380
1381
1382
1383
1384
1385
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1386
        auto&& tensor_dims = t.tensor_type().shape().dim();
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1398
1399
        return {shape_type, dims};
    }
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1445
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1446
} // namespace migraphx