onnx.cpp 30.1 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
28
29
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
30
    program prog    = program();
31
    bool is_pytorch = false;
Paul's avatar
Paul committed
32
33
34
35
36

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
37
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
38
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
39
40
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
41
42
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
43
44
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
45
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
46
47
48
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
49
50
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
51
        add_generic_op("Tanh", op::tanh{});
52
53
54
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
55

Khalique's avatar
Khalique committed
56
57
58
59
60
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
61
62
63
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
64

Khalique's avatar
Khalique committed
65
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
66
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
67
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
68
69
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
70
71
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
72
73
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
74
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
75
76
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
77
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
78
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
79
80
81
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
82
        add_mem_op("Concat", &onnx_parser::parse_concat);
Khalique's avatar
Khalique committed
83
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Paul's avatar
Paul committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
99

100
    template <class T>
Khalique's avatar
Khalique committed
101
    void add_binary_op(std::string name, T x)
102
103
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
104
            if(args.size() != 2)
Paul's avatar
Paul committed
105
                MIGRAPHX_THROW("binary operators should have 2 operands");
106
107
108
109
110
111
112
113
114
115
116
117
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
118
                return prog.add_instruction(x, args);
119
            }
Khalique's avatar
Khalique committed
120
            else
121
            {
Khalique's avatar
Khalique committed
122
123
124
125
126
127
128
129
130
131
                return add_broadcastable_binary_op(args[0], args[1], x);
            }
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
132
133
134
135
136
137
138
139
140
141
142
143
144
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
145
146
147
148
149
150
151
152
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

Khalique's avatar
Khalique committed
153
            std::vector<std::size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
154
155
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
156
157
158
159
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
160
161
162
163
164
165
166
167
168

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
169
170
    }

Paul's avatar
Paul committed
171
    template <class T>
Paul's avatar
Paul committed
172
173
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
174
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
175
176
177
178
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
179
    template <class T>
Khalique's avatar
Khalique committed
180
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
181
    {
Khalique's avatar
Khalique committed
182
183
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
184
185
186
187
188
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
189
        });
Khalique's avatar
Khalique committed
190
191
    }

Paul's avatar
Paul committed
192
    instruction_ref
Paul's avatar
Paul committed
193
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
194
195
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
196
197
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
198
199
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
200
201
    }

Paul's avatar
Paul committed
202
    instruction_ref
Paul's avatar
Paul committed
203
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
204
    {
205
        op::convolution op;
Paul's avatar
Paul committed
206
207
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
208
            if(contains(attributes, "auto_pad"))
209
            {
Paul's avatar
Paul committed
210
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
211
212
213
            }
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
214
            if(padding.size() != 4)
215
            {
Paul's avatar
Paul committed
216
                MIGRAPHX_THROW("padding should have 4 values");
217
            }
Scott Thornton's avatar
Scott Thornton committed
218
            if(padding[0] != padding[2] || padding[1] != padding[3])
219
            {
Paul's avatar
Paul committed
220
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
221
222
223
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
224
        }
Paul's avatar
Paul committed
225
226
227
228
229
230
231
232
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
233
        if(contains(attributes, "auto_pad"))
234
235
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
236
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
237
            {
Paul's avatar
Paul committed
238
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
239
240
            }

wsttiger's avatar
fixes  
wsttiger committed
241
            if(s.find("SAME") != std::string::npos)
242
243
244
245
            {
                op.padding_mode = op::convolution::same;
            }
        }
Paul's avatar
Paul committed
246
247
248
249
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
250
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
251
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
252
        }
Paul's avatar
Paul committed
253
254
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
255

Paul's avatar
Paul committed
256
257
258
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
259
    {
Khalique's avatar
Khalique committed
260
261
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
262
        {
Khalique's avatar
Khalique committed
263
264
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
265
        }
Paul's avatar
Paul committed
266
267
        if(contains(attributes, "pads"))
        {
268
269
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
270
            if(padding.size() != 4)
271
            {
Paul's avatar
Paul committed
272
                MIGRAPHX_THROW("padding should have 4 values");
273
            }
Scott Thornton's avatar
Scott Thornton committed
274
            if(padding[0] != padding[2] || padding[1] != padding[3])
275
            {
Paul's avatar
Paul committed
276
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
277
278
279
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
280
281
282
283
284
285
286
287
288
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
289
        if(contains(attributes, "auto_pad"))
290
291
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
292
            if(to_upper(s) != "NOTSET")
293
            {
Paul's avatar
Paul committed
294
                MIGRAPHX_THROW("auto_pad is not supported for pooling");
295
296
297
            }
        }

Paul's avatar
Paul committed
298
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
299
300
    }

Paul's avatar
Paul committed
301
    instruction_ref
Paul's avatar
Paul committed
302
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
303
    {
304
        op::reshape op;
Paul's avatar
Paul committed
305
306
307
308
309
310
311
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
312
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
313
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
314
        }
Paul's avatar
Paul committed
315
316
317
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
318
    instruction_ref
Paul's avatar
Paul committed
319
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
320
    {
321
        uint64_t axis = 1;
Paul's avatar
Paul committed
322
323
324
325
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
326
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
327
328
    }

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
347
348
349
350
351
352
353
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
375
376
377
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
378
379
380
381
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
382

Paul's avatar
Paul committed
383
    instruction_ref
Paul's avatar
Paul committed
384
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
385
386
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
387
        float beta  = 1.0f;
Paul's avatar
Paul committed
388
389
390
391
392
393
394
395
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
396
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
397
398
399
400
401
402
403
404
405
406
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
407
408
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
409
410
        if(args.size() == 3)
        {
Khalique's avatar
Khalique committed
411
            if(beta != 0.f)
412
            {
Khalique's avatar
Khalique committed
413
                auto l3 = prog.add_instruction(op::dot{alpha}, l1, l2);
Khalique's avatar
Khalique committed
414
                auto l4 = args[2];
Khalique's avatar
Khalique committed
415
                if(beta != 1.f)
Khalique's avatar
Khalique committed
416
417
                {
                    auto beta_val = prog.add_literal(beta);
Khalique's avatar
Khalique committed
418
419
                    auto l5 = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
                    l4      = prog.add_instruction(op::mul{}, args[2], l5);
Khalique's avatar
Khalique committed
420
421
                }
                return add_broadcastable_binary_op(l3, l4, op::add{});
422
            }
Paul's avatar
Paul committed
423
        }
Shucai Xiao's avatar
Shucai Xiao committed
424
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
425
426
    }

427
    instruction_ref
Paul's avatar
Paul committed
428
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
429
    {
Scott Thornton's avatar
Scott Thornton committed
430
431
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
432
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
433
        bool is_test                                      = false;
434
435
436
437
438
439
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
440
            momentum = parse_value(attributes.at("momentum")).at<float>();
441
442
443
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
444
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
445
446
447
        }
        if(contains(attributes, "spatial"))
        {
448
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
449
450
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
451
        }
Paul's avatar
Paul committed
452
        (void)is_test;
Paul's avatar
Paul committed
453
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
454
        return prog.add_instruction(op, std::move(args));
455
456
    }

457
458
459
460
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
461
        float alpha = 0.01; // default alpha val for leaky relu
462
463
464
465
466
467
468
469
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
470
471
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
472
473
474
475
476
477
478
479
480
481
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
499

Khalique's avatar
Khalique committed
500
501
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
502
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
503

Paul's avatar
Paul committed
504
505
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
506
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
507
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
508
    }
Khalique's avatar
Khalique committed
509

Khalique's avatar
Khalique committed
510
511
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
512
513
514
515
516
517
518
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
519
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
520
521
    }

Paul's avatar
Paul committed
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
541
542
543
544
545
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
546
547
548
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
549
550
551
552
553
554
555
556
557
558
559
560
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
561
562
563
        }
        for(auto&& p : nodes)
        {
564
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
565
566
567
        }
    }

Paul's avatar
Paul committed
568
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
569
    {
Paul's avatar
Paul committed
570
        if(name.empty())
Paul's avatar
Paul committed
571
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
572
573
574
575
576
577
578
579
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
580
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
581
                    assert(name != iname);
Paul's avatar
Paul committed
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

611
612
613
614
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
Paul's avatar
Paul committed
615
            std::string generated = "migraphx_unnamed_node";
Paul's avatar
Paul committed
616
617
618
619
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
620
621
622
623
        }
        return node.name();
    }

Paul's avatar
Paul committed
624
625
626
627
628
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
629
            result[get_name(node)] = node;
Paul's avatar
Paul committed
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
655
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
656
657
658
659
660
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
661
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
662
663
664
665
666
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
667
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
668
        if(dims.empty())
Khalique's avatar
Khalique committed
669
670
671
        {
            dims = {1};
        }
672
673
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
674
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
675
676
677
678
679
680
681
682
683
684
685
686
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
687
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
688
689
690
691
692
693
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
694
            MIGRAPHX_THROW("Invalid tensor type");
695
        }
Paul's avatar
Paul committed
696
697
698
699
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
700
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
701
702
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
703
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
704
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
705
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
706
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
707
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
708
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
709
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
710
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
711
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
712
713
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
714
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
715
716
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
717
718
719
720
721
722
723
724
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
725
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
747
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
748
749
750
751
752
753
754
755
756
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
757
        auto&& tensor_dims = t.tensor_type().shape().dim();
758
759
760
761
762
763
764
765
766
767
768
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
794
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
795
} // namespace migraphx