onnx.cpp 27.8 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
18
19
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>

namespace migraphx {
20
inline namespace MIGRAPH_INLINE_NS {
Paul's avatar
Paul committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
struct unknown
{
    std::string op;
    std::string name() const { return "unknown:" + op; }
    shape compute_shape(std::vector<shape> input) const
    {
        if(input.empty())
            return {};
        else
            return input.front();
    }
    friend std::ostream& operator<<(std::ostream& os, const unknown& x)
    {
        os << x.name();
        return os;
    }
};

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
43
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
44
45
46
47
48
49
50
51
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
52
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
53
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
54
55
56
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Tanh", op::tanh{});
        add_generic_op("Abs", op::abs{});
Khalique's avatar
Khalique committed
57
58
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
59
        add_generic_op("Identity", op::identity{});
Paul's avatar
Paul committed
60

61
62
63
64
65
        add_broadcastable_binary_op("Add", op::add{});
        add_broadcastable_binary_op("Div", op::div{});
        add_broadcastable_binary_op("Mul", op::mul{});
        add_broadcastable_binary_op("Sub", op::sub{});
        add_broadcastable_binary_op("Sum", op::add{});
Paul's avatar
Paul committed
66

Khalique's avatar
Khalique committed
67
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
68
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
69
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
70
71
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
72
73
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
74
75
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
76
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
77
78
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
79
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
80
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
81
82
83
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
84
        add_mem_op("Concat", &onnx_parser::parse_concat);
Khalique's avatar
Khalique committed
85
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Paul's avatar
Paul committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
101
102
103
104
    template <class T>
    void add_broadcastable_binary_op(std::string name, T x)
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
105
            if(args.size() != 2)
Paul's avatar
Paul committed
106
                MIGRAPH_THROW("binary operators should have 2 operands");
107
108
109
110
111
112
113
114
115
116
117
118
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
119
                return prog.add_instruction(x, args);
120
            }
121
            else if(args[0]->get_shape() != args[1]->get_shape())
122
123
124
125
            {
                // Example:
                // s0 = (3,2,4,5) and s1 = (2,1,1)
                //
Scott Thornton's avatar
Scott Thornton committed
126
127
                // In this case we need to broadcast (:,1,1) portion of
                // s1 plus broadcast the 1st dimension of s1
128
129
130
131
132
133
134
135
136
                // giving output_lens = (3,2,4,5)
                //
                // Another example:
                // s0 = (3,2,1,5) and s1 = (2,7,5)
                // In this case we need to broadcast the (:,:,1:,:) axis
                // of s0 plus the 1st dimension of s1 giving
                // output_lens = (3,2,7,5)
                //
                // Get lengths for both arguments
Paul's avatar
Paul committed
137
138
139
                const std::vector<std::size_t>* s0 = &args[0]->get_shape().lens();
                const std::vector<std::size_t>* s1 = &args[1]->get_shape().lens();

Khalique's avatar
Khalique committed
140
                bool swapped = false;
Paul's avatar
Paul committed
141
142
                // Make sure s0 is the smaller size
                if(s0->size() > s1->size())
Khalique's avatar
Khalique committed
143
                {
Paul's avatar
Paul committed
144
                    std::swap(s0, s1);
Khalique's avatar
Khalique committed
145
146
                    swapped = true;
                }
147

Paul's avatar
Paul committed
148
                std::vector<std::size_t> output_lens(s1->size());
Khalique's avatar
Khalique committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
                // if (s0->size() == 0)
                // {
                //     shape s = swapped ? args[0]->get_shape() : args[1]->get_shape();
                //     auto l0 = prog.add_instruction(migraphx::op::scalar{s}, 1.0f);
                //     return prog.add_instruction(x, l0, args[1]);
                // }
                // else
                // {
                    // Copy the larger vector to output_lens
                    auto offset = s1->size() - s0->size();
                    std::transform(s0->begin(),
                                s0->end(),
                                s1->begin() + offset,
                                output_lens.begin() + offset,
                                [](auto a, auto b) { return std::max(a, b); });
Paul's avatar
Paul committed
164

Khalique's avatar
Khalique committed
165
166
167
168
169
                    auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, args[0]);
                    auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, args[1]);
                    return prog.add_instruction(x, l0, l1);
                // }
                
Paul's avatar
Paul committed
170
171
            }
            else
172
173
            {
                return prog.add_instruction(x, args);
174
175
176
177
            }
        });
    }

Paul's avatar
Paul committed
178
    template <class T>
Paul's avatar
Paul committed
179
180
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
181
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
182
183
184
185
            return prog.add_instruction(x, args);
        });
    }

Paul's avatar
Paul committed
186
    instruction_ref
Paul's avatar
Paul committed
187
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
188
189
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
190
191
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
192
193
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
194
195
    }

Paul's avatar
Paul committed
196
    instruction_ref
Paul's avatar
Paul committed
197
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
198
    {
199
        op::convolution op;
Paul's avatar
Paul committed
200
201
202
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
Paul's avatar
Paul committed
203
        }
Paul's avatar
Paul committed
204
205
206
207
208
209
210
211
212
213
214
215
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
216
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
217
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
218
        }
Paul's avatar
Paul committed
219
220
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
221

Paul's avatar
Paul committed
222
223
224
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
225
    {
Khalique's avatar
Khalique committed
226
227
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
228
        {
Khalique's avatar
Khalique committed
229
230
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
231
        }
Paul's avatar
Paul committed
232
233
234
235
236
237
238
239
240
241
242
243
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Paul's avatar
Paul committed
244
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
245
246
    }

Paul's avatar
Paul committed
247
    instruction_ref
Paul's avatar
Paul committed
248
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
249
    {
250
        op::reshape op;
Paul's avatar
Paul committed
251
252
253
254
255
256
257
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
258
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
259
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
260
        }
Paul's avatar
Paul committed
261
262
263
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
264
    instruction_ref
Paul's avatar
Paul committed
265
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
266
267
    {
        uint64_t axis = 0;
Paul's avatar
Paul committed
268
269
270
271
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
272
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
273
274
    }

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
293
294
295
296
297
298
299
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
321
322
323
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
324
325
326
327
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
328

Paul's avatar
Paul committed
329
    instruction_ref
Paul's avatar
Paul committed
330
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
    {
        float alpha = 1.0f;
        float beta  = 0.0f;
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
            alpha = parse_value(attributes.at("beta")).at<float>();
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
353
354
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
355
356
357
        if(args.size() == 3)
        {
            uint64_t axis = 1;
Shucai Xiao's avatar
Shucai Xiao committed
358
            auto l3       = prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Scott Thornton's avatar
Scott Thornton committed
359
            auto l4       = prog.add_instruction(op::broadcast{axis, l3->get_shape()}, args[2]);
360
            return prog.add_instruction(op::add{}, l3, l4);
Paul's avatar
Paul committed
361
        }
Shucai Xiao's avatar
Shucai Xiao committed
362
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
363
364
    }

365
    instruction_ref
Paul's avatar
Paul committed
366
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
367
    {
Scott Thornton's avatar
Scott Thornton committed
368
369
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
370
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
371
        bool is_test                                      = false;
372
373
374
375
376
377
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
378
            momentum = parse_value(attributes.at("momentum")).at<float>();
379
380
381
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
382
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
383
384
385
        }
        if(contains(attributes, "spatial"))
        {
386
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
387
388
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
389
        }
Paul's avatar
Paul committed
390
        (void)is_test;
Paul's avatar
Paul committed
391
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
392
        return prog.add_instruction(op, std::move(args));
393
394
    }

395
396
397
398
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
399
        float alpha = 0.01; // default alpha val for leaky relu
400
401
402
403
404
405
406
407
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
408
409
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
410
411
412
413
414
415
416
417
418
419
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
437

Khalique's avatar
Khalique committed
438
439
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
440
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
441

Paul's avatar
Paul committed
442
443
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
444
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
445
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
446
    }
Khalique's avatar
Khalique committed
447

Khalique's avatar
Khalique committed
448
449
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
450
451
452
453
454
455
456
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
457
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
458
459
    }

Paul's avatar
Paul committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
479
480
481
482
483
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
484
485
486
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
487
488
489
490
491
492
493
494
495
496
497
498
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
499
500
501
        }
        for(auto&& p : nodes)
        {
502
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
503
504
505
        }
    }

Paul's avatar
Paul committed
506
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
507
    {
Paul's avatar
Paul committed
508
        if(name.empty())
Paul's avatar
Paul committed
509
            MIGRAPH_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
510
511
512
513
514
515
516
517
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
518
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
519
                    assert(name != iname);
Paul's avatar
Paul committed
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

549
550
551
552
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
Paul's avatar
Paul committed
553
            std::string generated = "migraphx_unnamed_node";
Paul's avatar
Paul committed
554
555
556
557
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
558
559
560
561
        }
        return node.name();
    }

Paul's avatar
Paul committed
562
563
564
565
566
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
567
            result[get_name(node)] = node;
Paul's avatar
Paul committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
593
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
594
595
596
597
598
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
599
        MIGRAPH_THROW("Invalid attribute type");
Paul's avatar
Paul committed
600
601
602
603
604
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
605
606
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
607
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
608
609
610
611
612
613
614
615
616
617
618
619
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
620
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
621
622
623
624
625
626
627
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
            MIGRAPH_THROW("Invalid tensor type");
628
        }
Paul's avatar
Paul committed
629
630
631
632
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
633
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
634
635
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
636
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
637
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
638
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
639
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
640
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
641
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
642
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
643
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
644
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
645
646
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
647
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
648
649
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
650
651
652
653
654
655
656
657
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
658
        MIGRAPH_THROW("Invalid tensor type");
Paul's avatar
Paul committed
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
680
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
681
682
683
684
685
686
687
688
689
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
690
        auto&& tensor_dims = t.tensor_type().shape().dim();
691
692
693
694
695
696
697
698
699
700
701
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

727
} // namespace MIGRAPH_INLINE_NS
Paul's avatar
Paul committed
728
} // namespace migraphx