onnx.cpp 45.9 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
39
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
40
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
41
42
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
43
44
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
57

Khalique's avatar
Khalique committed
58
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
63
64
65
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
66

Khalique's avatar
Khalique committed
67
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
68
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
69
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
70
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
71
72
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
73
74
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
75
76
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
77
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
78
79
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
80
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
81
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
82
83
84
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
85
        add_mem_op("Concat", &onnx_parser::parse_concat);
86
87
88
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
89
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
90
        add_mem_op("RNN", &onnx_parser::parse_rnn);
91
        add_mem_op("GRU", &onnx_parser::parse_gru);
Khalique's avatar
Khalique committed
92
        add_mem_op("Pad", &onnx_parser::parse_pad);
93
94
95
96
97
98
99

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
100
101
102
103
104
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
105
106
107
108
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
109
110
111
112
113
114
115
116
117
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
118
119
120
121
122
123
124
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
125
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
126
127
128
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
129

130
    template <class T>
Khalique's avatar
Khalique committed
131
    void add_binary_op(std::string name, T x)
132
    {
Paul's avatar
Paul committed
133
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
134
            if(args.size() != 2)
Paul's avatar
Paul committed
135
                MIGRAPHX_THROW("binary operators should have 2 operands");
136
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
137
138
139
140
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
141
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
142
143
144
145
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
146
                return prog.add_instruction(x, args);
147
            }
Paul's avatar
Paul committed
148
            else
149
            {
Khalique's avatar
Khalique committed
150
                return add_broadcastable_binary_op(args[0], args[1], x);
151
152
153
154
            }
        });
    }

Khalique's avatar
Khalique committed
155
156
157
158
159
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
160
161
162
163
164
165
166
167
168
169
170
171
172
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
173
174
175
176
177
178
179
180
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

Khalique's avatar
Khalique committed
181
            std::vector<std::size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
182
183
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
184
185
186
187
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
188
189
190
191
192
193
194
195
196

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
197
198
    }

Paul's avatar
Paul committed
199
    template <class T>
Paul's avatar
Paul committed
200
201
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
202
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
203
204
205
206
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
207
    template <class T>
Khalique's avatar
Khalique committed
208
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
209
    {
Paul's avatar
Paul committed
210
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
211
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
212
213
214
215
216
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
217
        });
Khalique's avatar
Khalique committed
218
219
    }

Paul's avatar
Paul committed
220
    instruction_ref
Paul's avatar
Paul committed
221
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
222
223
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
224
225
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
226
227
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
228
229
    }

Paul's avatar
Paul committed
230
    instruction_ref
Paul's avatar
Paul committed
231
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
232
    {
233
        op::convolution op;
234
        auto l0 = args[0];
Paul's avatar
Paul committed
235
236
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
237
            if(contains(attributes, "auto_pad"))
238
            {
Paul's avatar
Paul committed
239
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
240
            }
241
242
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
243
            if(padding.size() != 4)
244
            {
Paul's avatar
Paul committed
245
                MIGRAPHX_THROW("padding should have 4 values");
246
            }
Scott Thornton's avatar
Scott Thornton committed
247
            if(padding[0] != padding[2] || padding[1] != padding[3])
248
            {
249
250
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
251
                l0      = prog.add_instruction(op::pad{padding}, l0);
252
            }
253
254
255
256
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
257
            }
Paul's avatar
Paul committed
258
        }
Paul's avatar
Paul committed
259
260
261
262
263
264
265
266
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
267
        if(contains(attributes, "auto_pad"))
268
269
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
270
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
271
            {
Paul's avatar
Paul committed
272
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
273
274
            }

wsttiger's avatar
fixes  
wsttiger committed
275
            if(s.find("SAME") != std::string::npos)
276
            {
277
                op.padding_mode = op::padding_mode_t::same;
278
279
            }
        }
Khalique's avatar
Khalique committed
280
281
282
283
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
284
285
286
287
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
288
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
289
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
290
        }
291
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
292
    }
Paul's avatar
Paul committed
293

Paul's avatar
Paul committed
294
295
296
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
297
    {
Khalique's avatar
Khalique committed
298
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
299
        auto l0 = args[0];
Khalique's avatar
Khalique committed
300
        if(starts_with(name, "Global"))
301
        {
Khalique's avatar
Khalique committed
302
303
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
304
        }
Paul's avatar
Paul committed
305
306
        if(contains(attributes, "pads"))
        {
307
308
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
309
            if(padding.size() != 4)
310
            {
Paul's avatar
Paul committed
311
                MIGRAPHX_THROW("padding should have 4 values");
312
            }
Scott Thornton's avatar
Scott Thornton committed
313
            if(padding[0] != padding[2] || padding[1] != padding[3])
314
            {
315
316
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
317
                l0      = prog.add_instruction(op::pad{padding}, l0);
318
319
320
321
322
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
323
            }
Paul's avatar
Paul committed
324
325
326
327
328
329
330
331
332
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
333
        if(contains(attributes, "auto_pad"))
334
335
        {
            auto s = attributes["auto_pad"].s();
336
            if(s.find("SAME_UPPER") == std::string::npos)
337
            {
338
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
339
            }
340
            op.padding_mode = op::padding_mode_t::same;
341
342
        }

343
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
344
345
    }

Paul's avatar
Paul committed
346
    instruction_ref
Paul's avatar
Paul committed
347
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
348
    {
349
        op::reshape op;
Paul's avatar
Paul committed
350
351
352
353
354
355
356
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
357
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
358
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
359
        }
Paul's avatar
Paul committed
360
361
362
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
363
    instruction_ref
Paul's avatar
Paul committed
364
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
365
    {
366
        uint64_t axis = 1;
Paul's avatar
Paul committed
367
368
369
370
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
371
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
372
373
    }

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
392
393
394
395
396
397
398
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
399

400
401
402
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
403
        int axis = 0;
404
405
406
407
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
408
        op::gather op{axis};
409
410
411
        return prog.add_instruction(op, std::move(args));
    }

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
432
433
434
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
435
436
437
438
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
439

Paul's avatar
Paul committed
440
    instruction_ref
Paul's avatar
Paul committed
441
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
442
443
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
444
        float beta  = 1.0f;
Paul's avatar
Paul committed
445
446
447
448
449
450
451
452
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
453
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
454
455
456
457
458
459
460
461
462
463
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
464
465
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
466
467
        if(args.size() == 3)
        {
Khalique's avatar
Khalique committed
468
            if(beta != 0.f)
469
            {
Khalique's avatar
Khalique committed
470
                auto l3 = prog.add_instruction(op::dot{alpha}, l1, l2);
Khalique's avatar
Khalique committed
471
                auto l4 = args[2];
Khalique's avatar
Khalique committed
472
                if(l4->get_shape().scalar()) // ignore args[2] (no C value added to alpha*A*B)
Khalique's avatar
Khalique committed
473
                    return l3;
Khalique's avatar
Khalique committed
474
                if(beta != 1.f)
Khalique's avatar
Khalique committed
475
476
                {
                    auto beta_val = prog.add_literal(beta);
Khalique's avatar
Khalique committed
477
478
                    auto l5 = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
                    l4      = prog.add_instruction(op::mul{}, args[2], l5);
Khalique's avatar
Khalique committed
479
480
                }
                return add_broadcastable_binary_op(l3, l4, op::add{});
481
            }
Paul's avatar
Paul committed
482
        }
Shucai Xiao's avatar
Shucai Xiao committed
483
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
484
485
    }

486
    instruction_ref
Paul's avatar
Paul committed
487
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
488
    {
Scott Thornton's avatar
Scott Thornton committed
489
490
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
491
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
492
        bool is_test                                      = false;
493
494
495
496
497
498
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
499
            momentum = parse_value(attributes.at("momentum")).at<float>();
500
501
502
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
503
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
504
505
506
        }
        if(contains(attributes, "spatial"))
        {
507
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
508
509
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
510
        }
Paul's avatar
Paul committed
511
        (void)is_test;
Paul's avatar
Paul committed
512
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
513
        return prog.add_instruction(op, std::move(args));
514
515
    }

516
517
518
519
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
520
        float alpha = 0.01; // default alpha val for leaky relu
521
522
523
524
525
526
527
528
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
529
530
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
531
532
533
534
535
536
537
538
539
540
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
541
542
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
543
544
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
545
546
547
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
548
549
550
551
552
553
554
555
556
557
558
559
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
577

Khalique's avatar
Khalique committed
578
579
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
580
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
581

Paul's avatar
Paul committed
582
583
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
584
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
585
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
586
    }
Khalique's avatar
Khalique committed
587

Khalique's avatar
Khalique committed
588
589
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
590
591
592
593
594
595
596
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
597
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
598
599
    }

Khalique's avatar
Khalique committed
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
622
623
624
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
625
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
626
627
    {
        if(args.size() != 1)
628
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
665
666
        if(contains(attributes, "extra_shape"))
        {
667
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
668
669
        }

670
671
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
672
            if(args.size() != 1)
673
            {
674
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
675
676
            }

Shucai Xiao's avatar
Shucai Xiao committed
677
678
            if(contains(attributes, "shape"))
            {
679
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
680
                               "at the same time");
681
682
            }

683
684
685
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
686
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
687
            }
688

689
690
691
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
692
693
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
694
695
696
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
697
698
            if(!contains(attributes, "shape"))
            {
699
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
700
701
702
            }

            literal ls = parse_value(attributes.at("shape"));
703
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
704
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
705
            migraphx::shape s{type, dims};
706
707
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
708
709
710
        }
        else
        {
711
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
712
713
714
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
715
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
716
717
718
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
719
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
720
721
722

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
723
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
724
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
725
726
727
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
728
729
730
731
732
733
734
735
736
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

737
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
738
739
        if(direction == "bidirectional")
        {
740
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
741
742
743
        }
        else if(direction == "reverse")
        {
744
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
745
746
        }

747
748
749
750
751
        std::vector<std::string> vec_names{"tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
752
            for_each(names.begin(), names.end(), [&](auto& fn) { vec_names.push_back(fn); });
753
754
        }

Shucai Xiao's avatar
Shucai Xiao committed
755
        for_each(vec_names.begin(), vec_names.end(), [&](auto& fn) {
756
757
            if(map_actv_funcs.count(fn) == 0)
            {
Shucai Xiao's avatar
Shucai Xiao committed
758
                MIGRAPHX_THROW("RNN: activation function " + std::string(fn) + " not supported");
759
760
761
            }
        });

Shucai Xiao's avatar
Shucai Xiao committed
762
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
763
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
764
        // if only one actv function is provided, we use it in both
765
        // forward and reverse direction
766
        if(dirct == op::rnn_direction::bidirectional)
767
        {
Shucai Xiao's avatar
Shucai Xiao committed
768
            if(vec_names.size() == 1)
769
770
771
772
773
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
774
775
776
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
777
        });
Shucai Xiao's avatar
Shucai Xiao committed
778

Shucai Xiao's avatar
Shucai Xiao committed
779
780
781
782
783
784
785
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

786
787
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
788
        if(args.size() < 6)
789
790
791
792
793
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
794
795
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
796
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
797

798
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
799
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
800

Shucai Xiao's avatar
Shucai Xiao committed
801
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
802
803
    }

804
    std::vector<instruction_ref>
805
806
807
808
809
810
811
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
812
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
813
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
814
815
816
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
817
818
819
820
821
822
823
824
825
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

826
        op::rnn_direction dirct = op::rnn_direction::forward;
827
828
        if(direction == "bidirectional")
        {
829
            dirct = op::rnn_direction::bidirectional;
830
831
832
        }
        else if(direction == "reverse")
        {
833
            dirct = op::rnn_direction::reverse;
834
835
        }

836
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
837
838
        if(contains(attributes, "activations"))
        {
839
            auto names = attributes.at("activations").strings();
840
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
841
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
842
843
            std::transform(
                names.begin(), names.end(), vec_names.begin(), [](auto& str) { return str; });
844
845
        }

846
        // need 4 activation functions
847
        if(dirct == op::rnn_direction::bidirectional)
848
        {
Shucai Xiao's avatar
Shucai Xiao committed
849
            // 4 activation functions are used in the bidirectional
850
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
851
852
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
853
854
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
855
856
857
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
858
            if(vec_names.size() == 1)
859
            {
860
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
861
            }
862
            else if(vec_names.size() == 2)
863
            {
864
865
866
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
867
            }
868
            else if(vec_names.size() == 3)
869
            {
870
                vec_names.push_back(vec_names.at(2));
871
872
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
873
        else
874
        {
875
            if(vec_names.size() == 1)
876
            {
877
                vec_names.push_back(vec_names.at(0));
878
879
880
            }
        }

881
        for_each(vec_names.begin(), vec_names.end(), [&](auto& name) {
Shucai Xiao's avatar
Shucai Xiao committed
882
883
            if(map_actv_funcs.count(name) == 0)
            {
Shucai Xiao's avatar
Shucai Xiao committed
884
                MIGRAPHX_THROW("GRU: activation function " + std::string(name) + " not supported");
Shucai Xiao's avatar
Shucai Xiao committed
885
886
            }
        });
887

Shucai Xiao's avatar
Shucai Xiao committed
888
889
890
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
891
        });
892
893
894
895
896
897
898
899

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
900
        if(contains(attributes, "linear_before_reset"))
901
902
903
904
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
905
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
906
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
907
908
909
910
911
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

912
913
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
914
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
915
            std::move(args));
916
917

        // second output for last gru output
918
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
919

Shucai Xiao's avatar
Shucai Xiao committed
920
        return {hidden_states, last_output};
921
922
    }

Paul's avatar
Paul committed
923
924
925
926
927
928
929
930
931
932
933
934
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
935
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
936
937
938
939
940
941
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
942
943
944
945
946
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
947
948
949
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
950
951
952
953
954
955
956
957
958
959
960
961
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
962
963
964
        }
        for(auto&& p : nodes)
        {
Paul's avatar
Paul committed
965
            this->parse_node(p.first);
Paul's avatar
Paul committed
966
967
968
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
969
    void parse_undefined(const std::string& name)
970
    {
Shucai Xiao's avatar
Shucai Xiao committed
971
        auto ins           = prog.add_instruction(op::undefined{});
972
973
974
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
975
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
976
    {
Paul's avatar
Paul committed
977
        if(name.empty())
Paul's avatar
Paul committed
978
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
979
980
981
982
983
984
985
986
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
987
988
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
989
                }
Shucai Xiao's avatar
Shucai Xiao committed
990
                else if(input.empty())
Paul's avatar
Paul committed
991
                {
992
                    this->parse_undefined(input);
Paul's avatar
Paul committed
993
                }
994
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
995
            }
Paul's avatar
Paul committed
996
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
997
998
            if(ops.count(node.op_type()) == 0)
            {
Paul's avatar
Paul committed
999
                result.push_back(prog.add_instruction(unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1000
1001
1002
            }
            else
            {
Paul's avatar
Paul committed
1003
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1004
            }
Paul's avatar
Paul committed
1005
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1006
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1007
1008
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1009
1010
1011
            }
            else
            {
Paul's avatar
Paul committed
1012
1013
1014
1015
1016
1017
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1035
        std::size_t n = 0;
Paul's avatar
Paul committed
1036
1037
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1038
            if(node.output().empty())
Paul's avatar
Paul committed
1039
            {
Paul's avatar
Paul committed
1040
                if(node.name().empty())
Paul's avatar
Paul committed
1041
1042
1043
1044
1045
1046
1047
1048
1049
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1075
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1076
1077
1078
1079
1080
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1081
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1082
1083
1084
1085
1086
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
1087
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1088
        if(dims.empty())
Khalique's avatar
Khalique committed
1089
1090
1091
        {
            dims = {1};
        }
1092
1093
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1094
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
1107
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
1108
1109
1110
1111
1112
1113
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1114
            MIGRAPHX_THROW("Invalid tensor type");
1115
        }
Paul's avatar
Paul committed
1116
1117
1118
1119
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
1120
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
1121
1122
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
1123
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1124
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
1125
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1126
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
1127
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1128
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
1129
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1130
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
1131
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
1132
1133
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
1134
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1135
1136
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
1137
1138
1139
1140
1141
1142
1143
1144
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1145
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1167
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1168
1169
1170
1171
1172
1173
1174
1175
1176
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1177
        auto&& tensor_dims = t.tensor_type().shape().dim();
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1189
1190
        return {shape_type, dims};
    }
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1236
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1237
} // namespace migraphx