onnx.cpp 52.6 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
39
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
40
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
41
42
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
43
44
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
57

Khalique's avatar
Khalique committed
58
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
63
64
65
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
66

Khalique's avatar
Khalique committed
67
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
68
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
69
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
70
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
71
72
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
73
74
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
75
76
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
77
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
78
79
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
80
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
81
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
82
83
84
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
85
        add_mem_op("Concat", &onnx_parser::parse_concat);
86
87
88
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
89
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
90
        add_mem_op("RNN", &onnx_parser::parse_rnn);
91
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
92
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
93
        add_mem_op("Pad", &onnx_parser::parse_pad);
94
95
96
97
98
99
100

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
101
102
103
104
105
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
106
107
108
109
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
110
111
112
113
114
115
116
117
118
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
119
120
121
122
123
124
125
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
126
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
127
128
129
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
130

131
    template <class T>
Khalique's avatar
Khalique committed
132
    void add_binary_op(std::string name, T x)
133
    {
Paul's avatar
Paul committed
134
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
135
            if(args.size() != 2)
Paul's avatar
Paul committed
136
                MIGRAPHX_THROW("binary operators should have 2 operands");
137
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
138
139
140
141
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
142
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
143
144
145
146
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
147
                return prog.add_instruction(x, args);
148
            }
Paul's avatar
Paul committed
149
            else
150
            {
Khalique's avatar
Khalique committed
151
                return add_broadcastable_binary_op(args[0], args[1], x);
152
153
154
155
            }
        });
    }

Khalique's avatar
Khalique committed
156
157
158
159
160
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
161
162
163
164
165
166
167
168
169
170
171
172
173
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
174
175
176
177
178
179
180
181
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

Khalique's avatar
Khalique committed
182
            std::vector<std::size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
183
184
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
185
186
187
188
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
189
190
191
192
193
194
195
196
197

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
198
199
    }

Paul's avatar
Paul committed
200
    template <class T>
Paul's avatar
Paul committed
201
202
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
203
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
204
205
206
207
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
208
    template <class T>
Khalique's avatar
Khalique committed
209
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
210
    {
Paul's avatar
Paul committed
211
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
212
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
213
214
215
216
217
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
218
        });
Khalique's avatar
Khalique committed
219
220
    }

Paul's avatar
Paul committed
221
    instruction_ref
Paul's avatar
Paul committed
222
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
223
224
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
225
226
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
227
228
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
229
230
    }

Paul's avatar
Paul committed
231
    instruction_ref
Paul's avatar
Paul committed
232
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
233
    {
234
        op::convolution op;
235
        auto l0 = args[0];
Paul's avatar
Paul committed
236
237
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
238
            if(contains(attributes, "auto_pad"))
239
            {
Paul's avatar
Paul committed
240
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
241
            }
242
243
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
244
            if(padding.size() != 4)
245
            {
Paul's avatar
Paul committed
246
                MIGRAPHX_THROW("padding should have 4 values");
247
            }
Scott Thornton's avatar
Scott Thornton committed
248
            if(padding[0] != padding[2] || padding[1] != padding[3])
249
            {
250
251
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
252
                l0      = prog.add_instruction(op::pad{padding}, l0);
253
            }
254
255
256
257
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
258
            }
Paul's avatar
Paul committed
259
        }
Paul's avatar
Paul committed
260
261
262
263
264
265
266
267
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
268
        if(contains(attributes, "auto_pad"))
269
270
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
271
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
272
            {
Paul's avatar
Paul committed
273
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
274
275
            }

wsttiger's avatar
fixes  
wsttiger committed
276
            if(s.find("SAME") != std::string::npos)
277
            {
278
                op.padding_mode = op::padding_mode_t::same;
279
280
            }
        }
Khalique's avatar
Khalique committed
281
282
283
284
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
285
286
287
288
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
289
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
290
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
291
        }
292
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
293
    }
Paul's avatar
Paul committed
294

Paul's avatar
Paul committed
295
296
297
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
298
    {
Khalique's avatar
Khalique committed
299
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
300
        auto l0 = args[0];
Khalique's avatar
Khalique committed
301
        if(starts_with(name, "Global"))
302
        {
Khalique's avatar
Khalique committed
303
304
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
305
        }
Paul's avatar
Paul committed
306
307
        if(contains(attributes, "pads"))
        {
308
309
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
310
            if(padding.size() != 4)
311
            {
Paul's avatar
Paul committed
312
                MIGRAPHX_THROW("padding should have 4 values");
313
            }
Scott Thornton's avatar
Scott Thornton committed
314
            if(padding[0] != padding[2] || padding[1] != padding[3])
315
            {
316
317
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
318
                l0      = prog.add_instruction(op::pad{padding}, l0);
319
320
321
322
323
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
324
            }
Paul's avatar
Paul committed
325
326
327
328
329
330
331
332
333
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
334
        if(contains(attributes, "auto_pad"))
335
336
        {
            auto s = attributes["auto_pad"].s();
337
            if(s.find("SAME_UPPER") == std::string::npos)
338
            {
339
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
340
            }
341
            op.padding_mode = op::padding_mode_t::same;
342
343
        }

344
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
345
346
    }

Paul's avatar
Paul committed
347
    instruction_ref
Paul's avatar
Paul committed
348
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
349
    {
350
        op::reshape op;
Paul's avatar
Paul committed
351
352
353
354
355
356
357
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
358
            auto s = args[1]->eval();
Paul's avatar
Paul committed
359
            if(s.empty())
Paul's avatar
Paul committed
360
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
361
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
362
        }
Paul's avatar
Paul committed
363
364
365
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
366
    instruction_ref
Paul's avatar
Paul committed
367
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
368
    {
369
        uint64_t axis = 1;
Paul's avatar
Paul committed
370
371
372
373
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
374
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
375
376
    }

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
395
396
397
398
399
400
401
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
402

403
404
405
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
406
        int axis = 0;
407
408
409
410
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
411
        op::gather op{axis};
412
413
414
        return prog.add_instruction(op, std::move(args));
    }

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
435
436
437
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
438
439
440
441
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
442

Paul's avatar
Paul committed
443
    instruction_ref
Paul's avatar
Paul committed
444
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
445
446
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
447
        float beta  = 1.0f;
Paul's avatar
Paul committed
448
449
450
451
452
453
454
455
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
456
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
457
458
459
460
461
462
463
464
465
466
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
467
468
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
469
470
        if(args.size() == 3)
        {
Khalique's avatar
Khalique committed
471
            if(beta != 0.f)
472
            {
Khalique's avatar
Khalique committed
473
                auto l3 = prog.add_instruction(op::dot{alpha}, l1, l2);
Khalique's avatar
Khalique committed
474
                auto l4 = args[2];
Khalique's avatar
Khalique committed
475
                if(l4->get_shape().scalar()) // ignore args[2] (no C value added to alpha*A*B)
Khalique's avatar
Khalique committed
476
                    return l3;
Khalique's avatar
Khalique committed
477
                if(beta != 1.f)
Khalique's avatar
Khalique committed
478
479
                {
                    auto beta_val = prog.add_literal(beta);
Khalique's avatar
Khalique committed
480
481
                    auto l5 = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
                    l4      = prog.add_instruction(op::mul{}, args[2], l5);
Khalique's avatar
Khalique committed
482
483
                }
                return add_broadcastable_binary_op(l3, l4, op::add{});
484
            }
Paul's avatar
Paul committed
485
        }
Shucai Xiao's avatar
Shucai Xiao committed
486
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
487
488
    }

489
    instruction_ref
Paul's avatar
Paul committed
490
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
491
    {
Scott Thornton's avatar
Scott Thornton committed
492
493
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
494
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
495
        bool is_test                                      = false;
496
497
498
499
500
501
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
502
            momentum = parse_value(attributes.at("momentum")).at<float>();
503
504
505
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
506
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
507
508
509
        }
        if(contains(attributes, "spatial"))
        {
510
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
511
512
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
513
        }
Paul's avatar
Paul committed
514
        (void)is_test;
Paul's avatar
Paul committed
515
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
516
        return prog.add_instruction(op, std::move(args));
517
518
    }

519
520
521
522
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
523
        float alpha = 0.01; // default alpha val for leaky relu
524
525
526
527
528
529
530
531
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
532
533
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
534
535
536
537
538
539
540
541
542
543
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
544
545
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
546
547
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
548
549
550
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
551
552
553
554
555
556
557
558
559
560
561
562
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
580

Khalique's avatar
Khalique committed
581
582
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
583
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
584

Paul's avatar
Paul committed
585
586
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
587
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
588
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
589
    }
Khalique's avatar
Khalique committed
590

Khalique's avatar
Khalique committed
591
592
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
593
594
595
596
597
598
599
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
600
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
601
602
    }

Khalique's avatar
Khalique committed
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
625
626
627
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
628
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
629
630
    {
        if(args.size() != 1)
631
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
668
669
        if(contains(attributes, "extra_shape"))
        {
670
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
671
672
        }

673
674
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
675
            if(args.size() != 1)
676
            {
677
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
678
679
            }

Shucai Xiao's avatar
Shucai Xiao committed
680
681
            if(contains(attributes, "shape"))
            {
682
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
683
                               "at the same time");
684
685
            }

686
687
688
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
689
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
690
            }
691

692
693
694
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
695
696
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
697
698
699
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
700
701
            if(!contains(attributes, "shape"))
            {
702
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
703
704
705
            }

            literal ls = parse_value(attributes.at("shape"));
706
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
707
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
708
            migraphx::shape s{type, dims};
709
710
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
711
712
713
        }
        else
        {
714
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
715
716
717
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
718
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
719
720
721
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
722
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
723
724
725

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
726
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
727
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
728
729
730
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
731
732
733
734
735
736
737
738
739
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

740
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
741
742
        if(direction == "bidirectional")
        {
743
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
744
745
746
        }
        else if(direction == "reverse")
        {
747
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
748
749
        }

750
751
752
753
754
        std::vector<std::string> vec_names{"tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
755
            vec_names.resize(names.size());
756
            std::copy(names.begin(), names.end(), vec_names.begin());
757
758
        }

759
760
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
761
        });
Shucai Xiao's avatar
Shucai Xiao committed
762
        if(name_it != vec_names.end())
763
764
765
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
766

Shucai Xiao's avatar
Shucai Xiao committed
767
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
768
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
769
        // if only one actv function is provided, we use it in both
770
        // forward and reverse direction
771
        if(dirct == op::rnn_direction::bidirectional)
772
        {
Shucai Xiao's avatar
Shucai Xiao committed
773
            if(vec_names.size() == 1)
774
775
776
777
778
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
779
780
781
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
782
        });
Shucai Xiao's avatar
Shucai Xiao committed
783

Shucai Xiao's avatar
Shucai Xiao committed
784
785
786
787
788
789
790
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

791
792
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
793
        if(args.size() < 6)
794
795
796
797
798
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
799
800
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
801
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
802

803
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
804
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
805

Shucai Xiao's avatar
Shucai Xiao committed
806
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
807
808
    }

809
    std::vector<instruction_ref>
810
811
812
813
814
815
816
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
817
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
818
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
819
820
821
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
822
823
824
825
826
827
828
829
830
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

831
        op::rnn_direction dirct = op::rnn_direction::forward;
832
833
        if(direction == "bidirectional")
        {
834
            dirct = op::rnn_direction::bidirectional;
835
836
837
        }
        else if(direction == "reverse")
        {
838
            dirct = op::rnn_direction::reverse;
839
840
        }

841
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
842
843
        if(contains(attributes, "activations"))
        {
844
            auto names = attributes.at("activations").strings();
845
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
846
            vec_names.resize(names.size());
847
            std::copy(names.begin(), names.end(), vec_names.begin());
848
849
        }

850
        // need 4 activation functions
851
        if(dirct == op::rnn_direction::bidirectional)
852
        {
Shucai Xiao's avatar
Shucai Xiao committed
853
            // 4 activation functions are used in the bidirectional
854
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
855
856
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
857
858
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
859
860
861
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
862
            if(vec_names.size() == 1)
863
            {
864
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
865
            }
866
            else if(vec_names.size() == 2)
867
            {
868
869
870
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
871
            }
872
            else if(vec_names.size() == 3)
873
            {
874
                vec_names.push_back(vec_names.at(2));
875
876
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
877
        else
878
        {
879
            if(vec_names.size() == 1)
880
            {
881
                vec_names.push_back(vec_names.at(0));
882
883
884
            }
        }

885
886
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
Shucai Xiao's avatar
Shucai Xiao committed
887
        });
Shucai Xiao's avatar
Shucai Xiao committed
888
889
        if(name_it != vec_names.end())
        {
890
891
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
892

Shucai Xiao's avatar
Shucai Xiao committed
893
894
895
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
896
        });
897
898
899
900
901
902
903
904

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
905
        if(contains(attributes, "linear_before_reset"))
906
907
908
909
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
910
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
911
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
912
913
914
915
916
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

917
918
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
919
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
920
            std::move(args));
921
922

        // second output for last gru output
923
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
924

Shucai Xiao's avatar
Shucai Xiao committed
925
        return {hidden_states, last_output};
926
927
    }

Shucai Xiao's avatar
Shucai Xiao committed
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
950
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
951
952
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
953
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
954
955
956
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
957
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
958
        }
Shucai Xiao's avatar
Shucai Xiao committed
959
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
960
        {
Shucai Xiao's avatar
Shucai Xiao committed
961
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
962
963
964
965
966
967
968
969
970
971
972
973
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
974
            std::copy(names.begin(), names.end(), vec_names.begin());
Shucai Xiao's avatar
Shucai Xiao committed
975
976
977
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
978
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
979
980
981
982
983
984
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
985
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
986
987
988
989
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
990
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
991
992
993
994
995
996
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
997
                break;
Shucai Xiao's avatar
Shucai Xiao committed
998
999
1000

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1001
1002
1003
1004
1005
1006
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1007
1008
1009
1010
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1011
1012
1013
1014
1015
1016
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1017
1018
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1019
1020
1021
1022
1023
1024
1025
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1026
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1027

Shucai Xiao's avatar
Shucai Xiao committed
1028
1029
1030
1031
1032
1033
1034
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1035
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1036

Shucai Xiao's avatar
Shucai Xiao committed
1037
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1038
1039
1040
1041
1042
1043
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1044
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1045
1046
1047

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1048
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1049
1050
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1051
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1052
1053
1054
            }
        }

1055
1056
1057
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1058
        if(name_it != vec_names.end())
1059
1060
1061
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1084
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1085
1086
1087
1088
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1089
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1090
1091

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1092
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1093
1094
1095
1096
1097
1098
1099

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }

Paul's avatar
Paul committed
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1112
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1113
1114
1115
1116
1117
1118
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1119
1120
1121
1122
1123
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1124
1125
1126
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1139
1140
1141
        }
        for(auto&& p : nodes)
        {
Paul's avatar
Paul committed
1142
            this->parse_node(p.first);
Paul's avatar
Paul committed
1143
1144
1145
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1146
    void parse_undefined(const std::string& name)
1147
    {
Shucai Xiao's avatar
Shucai Xiao committed
1148
        auto ins           = prog.add_instruction(op::undefined{});
1149
1150
1151
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1152
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1153
    {
Paul's avatar
Paul committed
1154
        if(name.empty())
Paul's avatar
Paul committed
1155
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1156
1157
1158
1159
1160
1161
1162
1163
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1164
1165
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1166
                }
Shucai Xiao's avatar
Shucai Xiao committed
1167
                else if(input.empty())
Paul's avatar
Paul committed
1168
                {
1169
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1170
                }
1171
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1172
            }
Paul's avatar
Paul committed
1173
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1174
1175
            if(ops.count(node.op_type()) == 0)
            {
Paul's avatar
Paul committed
1176
                result.push_back(prog.add_instruction(unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1177
1178
1179
            }
            else
            {
Paul's avatar
Paul committed
1180
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1181
            }
Paul's avatar
Paul committed
1182
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1183
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1184
1185
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1186
1187
1188
            }
            else
            {
Paul's avatar
Paul committed
1189
1190
1191
1192
1193
1194
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1212
        std::size_t n = 0;
Paul's avatar
Paul committed
1213
1214
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1215
            if(node.output().empty())
Paul's avatar
Paul committed
1216
            {
Paul's avatar
Paul committed
1217
                if(node.name().empty())
Paul's avatar
Paul committed
1218
1219
1220
1221
1222
1223
1224
1225
1226
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1252
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1253
1254
1255
1256
1257
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1258
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1259
1260
1261
1262
1263
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
1264
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1265
        if(dims.empty())
Khalique's avatar
Khalique committed
1266
1267
1268
        {
            dims = {1};
        }
1269
1270
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1271
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
1284
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
1285
1286
1287
1288
1289
1290
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1291
            MIGRAPHX_THROW("Invalid tensor type");
1292
        }
Paul's avatar
Paul committed
1293
1294
1295
1296
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
1297
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
1298
1299
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
1300
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1301
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
1302
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1303
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
1304
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1305
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
1306
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1307
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
1308
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
1309
1310
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
1311
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1312
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1313
        {
Khalique's avatar
Khalique committed
1314
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1315
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1316
1317
1318
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1319
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1320
            return literal{{shape::half_type, dims}, data_half.begin(), data_half.end()};
Khalique's avatar
Khalique committed
1321
        }
Paul's avatar
Paul committed
1322
1323
1324
1325
1326
1327
1328
1329
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1330
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1352
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1353
1354
1355
1356
1357
1358
1359
1360
1361
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1362
        auto&& tensor_dims = t.tensor_type().shape().dim();
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1374
1375
        return {shape_type, dims};
    }
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1421
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1422
} // namespace migraphx