onnx.cpp 53.3 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
39
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
40
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
41
42
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
43
44
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
57

Khalique's avatar
Khalique committed
58
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
63
64
65
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
66

Khalique's avatar
Khalique committed
67
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
68
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
69
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
70
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
71
72
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
73
74
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
75
76
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
77
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
78
79
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
80
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
81
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
82
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
83
84
85
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
86
        add_mem_op("Concat", &onnx_parser::parse_concat);
87
88
89
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
90
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
91
        add_mem_op("RNN", &onnx_parser::parse_rnn);
92
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
93
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
94
        add_mem_op("Pad", &onnx_parser::parse_pad);
95
96
97
98
99
100
101

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
102
103
104
105
106
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
107
108
109
110
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
111
112
113
114
115
116
117
118
119
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
120
121
122
123
124
125
126
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
127
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
128
129
130
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
131

132
    template <class T>
Khalique's avatar
Khalique committed
133
    void add_binary_op(std::string name, T x)
134
    {
Paul's avatar
Paul committed
135
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
136
            if(args.size() != 2)
Paul's avatar
Paul committed
137
                MIGRAPHX_THROW("binary operators should have 2 operands");
138
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
139
140
141
142
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
143
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
144
145
146
147
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
148
                return prog.add_instruction(x, args);
149
            }
Paul's avatar
Paul committed
150
            else
151
            {
Khalique's avatar
Khalique committed
152
                return add_broadcastable_binary_op(args[0], args[1], x);
153
154
155
156
            }
        });
    }

Khalique's avatar
Khalique committed
157
158
159
160
161
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
162
163
164
165
166
167
168
169
170
171
172
173
174
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
175
176
177
178
179
180
181
182
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

Khalique's avatar
Khalique committed
183
            std::vector<std::size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
184
185
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
186
187
188
189
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
190
191
192
193
194
195
196
197
198

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
199
200
    }

Paul's avatar
Paul committed
201
    template <class T>
Paul's avatar
Paul committed
202
203
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
204
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
205
206
207
208
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
209
    template <class T>
Khalique's avatar
Khalique committed
210
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
211
    {
Paul's avatar
Paul committed
212
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
213
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
214
215
216
217
218
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
219
        });
Khalique's avatar
Khalique committed
220
221
    }

Paul's avatar
Paul committed
222
    instruction_ref
Paul's avatar
Paul committed
223
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
224
225
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
226
227
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
228
229
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
230
231
    }

Shucai Xiao's avatar
Shucai Xiao committed
232
233
234
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
235
236
237
238
239
240
241
242
243
244
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

Paul's avatar
Paul committed
245
    instruction_ref
Paul's avatar
Paul committed
246
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
247
    {
248
        op::convolution op;
249
        auto l0 = args[0];
Paul's avatar
Paul committed
250
251
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
252
            if(contains(attributes, "auto_pad"))
253
            {
Paul's avatar
Paul committed
254
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
255
            }
256
257
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
258
            if(padding.size() != 4)
259
            {
Paul's avatar
Paul committed
260
                MIGRAPHX_THROW("padding should have 4 values");
261
            }
Scott Thornton's avatar
Scott Thornton committed
262
            if(padding[0] != padding[2] || padding[1] != padding[3])
263
            {
264
265
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
266
                l0      = prog.add_instruction(op::pad{padding}, l0);
267
            }
268
269
270
271
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
272
            }
Paul's avatar
Paul committed
273
        }
Paul's avatar
Paul committed
274
275
276
277
278
279
280
281
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
282
        if(contains(attributes, "auto_pad"))
283
284
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
285
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
286
            {
Paul's avatar
Paul committed
287
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
288
289
            }

wsttiger's avatar
fixes  
wsttiger committed
290
            if(s.find("SAME") != std::string::npos)
291
            {
292
                op.padding_mode = op::padding_mode_t::same;
293
294
            }
        }
Khalique's avatar
Khalique committed
295
296
297
298
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
299
300
301
302
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
303
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
304
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
305
        }
306
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
307
    }
Paul's avatar
Paul committed
308

Paul's avatar
Paul committed
309
310
311
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
312
    {
Khalique's avatar
Khalique committed
313
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
314
        auto l0 = args[0];
Khalique's avatar
Khalique committed
315
        if(starts_with(name, "Global"))
316
        {
Khalique's avatar
Khalique committed
317
318
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
319
        }
Paul's avatar
Paul committed
320
321
        if(contains(attributes, "pads"))
        {
322
323
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
324
            if(padding.size() != 4)
325
            {
Paul's avatar
Paul committed
326
                MIGRAPHX_THROW("padding should have 4 values");
327
            }
Scott Thornton's avatar
Scott Thornton committed
328
            if(padding[0] != padding[2] || padding[1] != padding[3])
329
            {
330
331
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
332
                l0      = prog.add_instruction(op::pad{padding}, l0);
333
334
335
336
337
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
338
            }
Paul's avatar
Paul committed
339
340
341
342
343
344
345
346
347
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
348
        if(contains(attributes, "auto_pad"))
349
350
        {
            auto s = attributes["auto_pad"].s();
351
            if(s.find("SAME_UPPER") == std::string::npos)
352
            {
353
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
354
            }
355
            op.padding_mode = op::padding_mode_t::same;
356
357
        }

358
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
359
360
    }

Paul's avatar
Paul committed
361
    instruction_ref
Paul's avatar
Paul committed
362
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
363
    {
364
        op::reshape op;
Paul's avatar
Paul committed
365
366
367
368
369
370
371
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
372
            auto s = args[1]->eval();
Paul's avatar
Paul committed
373
            if(s.empty())
Paul's avatar
Paul committed
374
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
375
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
376
        }
Paul's avatar
Paul committed
377
378
379
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
380
    instruction_ref
Paul's avatar
Paul committed
381
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
382
    {
383
        uint64_t axis = 1;
Paul's avatar
Paul committed
384
385
386
387
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
388
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
389
390
    }

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
409
410
411
412
413
414
415
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
416

417
418
419
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
420
        int axis = 0;
421
422
423
424
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
425
        op::gather op{axis};
426
427
428
        return prog.add_instruction(op, std::move(args));
    }

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
449
450
451
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
452
    {
Shucai Xiao's avatar
Shucai Xiao committed
453
        literal v     = parse_value(attributes.at("value"));
454
455
456
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
457
        {
458
            migraphx::shape scalar_shape{v.get_shape().type()};
459
460
461
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
462
463
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
464

Paul's avatar
Paul committed
465
    instruction_ref
Paul's avatar
Paul committed
466
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
467
468
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
469
        float beta  = 1.0f;
Paul's avatar
Paul committed
470
471
472
473
474
475
476
477
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
478
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
479
480
481
482
483
484
485
486
487
488
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
489
490
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
491
492
        if(args.size() == 3)
        {
Khalique's avatar
Khalique committed
493
            if(beta != 0.f)
494
            {
Khalique's avatar
Khalique committed
495
                auto l3 = prog.add_instruction(op::dot{alpha}, l1, l2);
Khalique's avatar
Khalique committed
496
                auto l4 = args[2];
Khalique's avatar
Khalique committed
497
                if(l4->get_shape().scalar()) // ignore args[2] (no C value added to alpha*A*B)
Khalique's avatar
Khalique committed
498
                    return l3;
Khalique's avatar
Khalique committed
499
                if(beta != 1.f)
Khalique's avatar
Khalique committed
500
501
                {
                    auto beta_val = prog.add_literal(beta);
Khalique's avatar
Khalique committed
502
503
                    auto l5 = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
                    l4      = prog.add_instruction(op::mul{}, args[2], l5);
Khalique's avatar
Khalique committed
504
505
                }
                return add_broadcastable_binary_op(l3, l4, op::add{});
506
            }
Paul's avatar
Paul committed
507
        }
508

Shucai Xiao's avatar
Shucai Xiao committed
509
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
510
511
    }

512
    instruction_ref
Paul's avatar
Paul committed
513
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
514
    {
Scott Thornton's avatar
Scott Thornton committed
515
516
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
517
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
518
        bool is_test                                      = false;
519
520
521
522
523
524
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
525
            momentum = parse_value(attributes.at("momentum")).at<float>();
526
527
528
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
529
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
530
531
532
        }
        if(contains(attributes, "spatial"))
        {
533
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
534
535
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
536
        }
Paul's avatar
Paul committed
537
        (void)is_test;
Paul's avatar
Paul committed
538
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
539
        return prog.add_instruction(op, std::move(args));
540
541
    }

542
543
544
545
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
546
        float alpha = 0.01; // default alpha val for leaky relu
547
548
549
550
551
552
553
554
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
555
556
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
557
558
559
560
561
562
563
564
565
566
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
567
568
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
569
570
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
571
572
573
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
574
575
576
577
578
579
580
581
582
583
584
585
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
603

Khalique's avatar
Khalique committed
604
605
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
606
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
607

Paul's avatar
Paul committed
608
609
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
610
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
611
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
612
    }
Khalique's avatar
Khalique committed
613

Khalique's avatar
Khalique committed
614
615
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
616
617
618
619
620
621
622
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
623
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
624
625
    }

Khalique's avatar
Khalique committed
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
648
649
650
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
651
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
652
653
    {
        if(args.size() != 1)
654
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
691
692
        if(contains(attributes, "extra_shape"))
        {
693
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
694
695
        }

696
697
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
698
            if(args.size() != 1)
699
            {
700
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
701
702
            }

Shucai Xiao's avatar
Shucai Xiao committed
703
704
            if(contains(attributes, "shape"))
            {
705
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
706
                               "at the same time");
707
708
            }

709
710
711
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
712
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
713
            }
714

715
716
717
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
718
719
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
720
721
722
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
723
724
            if(!contains(attributes, "shape"))
            {
725
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
726
727
728
            }

            literal ls = parse_value(attributes.at("shape"));
729
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
730
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
731
            migraphx::shape s{type, dims};
732
733
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
734
735
736
        }
        else
        {
737
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
738
739
740
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
741
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
742
743
744
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
745
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
746
747
748

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
749
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
750
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
751
752
753
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
754
755
756
757
758
759
760
761
762
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

763
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
764
765
        if(direction == "bidirectional")
        {
766
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
767
768
769
        }
        else if(direction == "reverse")
        {
770
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
771
772
        }

773
774
775
776
777
        std::vector<std::string> vec_names{"tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
778
            vec_names.resize(names.size());
779
            std::copy(names.begin(), names.end(), vec_names.begin());
780
781
        }

782
783
784
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
785
        if(name_it != vec_names.end())
786
787
788
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
789

Shucai Xiao's avatar
Shucai Xiao committed
790
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
791
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
792
        // if only one actv function is provided, we use it in both
793
        // forward and reverse direction
794
        if(dirct == op::rnn_direction::bidirectional)
795
        {
Shucai Xiao's avatar
Shucai Xiao committed
796
            if(vec_names.size() == 1)
797
798
799
800
801
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
802
803
804
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
805
        });
Shucai Xiao's avatar
Shucai Xiao committed
806

Shucai Xiao's avatar
Shucai Xiao committed
807
808
809
810
811
812
813
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

814
815
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
816
        if(args.size() < 6)
817
818
819
820
821
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
822
823
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
824
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
825

826
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
827
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
828

Shucai Xiao's avatar
Shucai Xiao committed
829
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
830
831
    }

832
    std::vector<instruction_ref>
833
834
835
836
837
838
839
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
840
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
841
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
842
843
844
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
845
846
847
848
849
850
851
852
853
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

854
        op::rnn_direction dirct = op::rnn_direction::forward;
855
856
        if(direction == "bidirectional")
        {
857
            dirct = op::rnn_direction::bidirectional;
858
859
860
        }
        else if(direction == "reverse")
        {
861
            dirct = op::rnn_direction::reverse;
862
863
        }

864
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
865
866
        if(contains(attributes, "activations"))
        {
867
            auto names = attributes.at("activations").strings();
868
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
869
            vec_names.resize(names.size());
870
            std::copy(names.begin(), names.end(), vec_names.begin());
871
872
        }

873
        // need 4 activation functions
874
        if(dirct == op::rnn_direction::bidirectional)
875
        {
Shucai Xiao's avatar
Shucai Xiao committed
876
            // 4 activation functions are used in the bidirectional
877
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
878
879
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
880
881
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
882
883
884
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
885
            if(vec_names.size() == 1)
886
            {
887
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
888
            }
889
            else if(vec_names.size() == 2)
890
            {
891
892
893
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
894
            }
895
            else if(vec_names.size() == 3)
896
            {
897
                vec_names.push_back(vec_names.at(2));
898
899
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
900
        else
901
        {
902
            if(vec_names.size() == 1)
903
            {
904
                vec_names.push_back(vec_names.at(0));
905
906
907
            }
        }

908
909
910
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
911
912
        if(name_it != vec_names.end())
        {
913
914
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
915

Shucai Xiao's avatar
Shucai Xiao committed
916
917
918
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
919
        });
920
921
922
923
924
925
926
927

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
928
        if(contains(attributes, "linear_before_reset"))
929
930
931
932
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
933
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
934
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
935
936
937
938
939
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

940
941
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
942
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
943
            std::move(args));
944
945

        // second output for last gru output
946
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
947

Shucai Xiao's avatar
Shucai Xiao committed
948
        return {hidden_states, last_output};
949
950
    }

Shucai Xiao's avatar
Shucai Xiao committed
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
973
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
974
975
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
976
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
977
978
979
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
980
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
981
        }
Shucai Xiao's avatar
Shucai Xiao committed
982
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
983
        {
Shucai Xiao's avatar
Shucai Xiao committed
984
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
985
986
987
988
989
990
991
992
993
994
995
996
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
997
            std::copy(names.begin(), names.end(), vec_names.begin());
Shucai Xiao's avatar
Shucai Xiao committed
998
999
1000
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1001
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1002
1003
1004
1005
1006
1007
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1008
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1009
1010
1011
1012
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1013
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1014
1015
1016
1017
1018
1019
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1020
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1021
1022
1023

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1024
1025
1026
1027
1028
1029
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1030
1031
1032
1033
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1034
1035
1036
1037
1038
1039
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1040
1041
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1042
1043
1044
1045
1046
1047
1048
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1049
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1050

Shucai Xiao's avatar
Shucai Xiao committed
1051
1052
1053
1054
1055
1056
1057
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1058
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1059

Shucai Xiao's avatar
Shucai Xiao committed
1060
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1061
1062
1063
1064
1065
1066
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1067
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1068
1069
1070

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1071
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1072
1073
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1074
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1075
1076
1077
            }
        }

1078
1079
1080
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1081
        if(name_it != vec_names.end())
1082
1083
1084
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1107
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1108
1109
1110
1111
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1112
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1113
1114

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1115
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1116
1117
1118
1119
1120
1121
1122

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }

Paul's avatar
Paul committed
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1135
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1136
1137
1138
1139
1140
1141
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1142
1143
1144
1145
1146
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1147
1148
1149
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1162
1163
1164
        }
        for(auto&& p : nodes)
        {
Paul's avatar
Paul committed
1165
            this->parse_node(p.first);
Paul's avatar
Paul committed
1166
1167
1168
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1169
    void parse_undefined(const std::string& name)
1170
    {
Shucai Xiao's avatar
Shucai Xiao committed
1171
        auto ins           = prog.add_instruction(op::undefined{});
1172
1173
1174
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1175
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1176
    {
Paul's avatar
Paul committed
1177
        if(name.empty())
Paul's avatar
Paul committed
1178
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1179
1180
1181
1182
1183
1184
1185
1186
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1187
1188
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1189
                }
Shucai Xiao's avatar
Shucai Xiao committed
1190
                else if(input.empty())
Paul's avatar
Paul committed
1191
                {
1192
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1193
                }
1194
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1195
            }
Paul's avatar
Paul committed
1196
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1197
1198
            if(ops.count(node.op_type()) == 0)
            {
Paul's avatar
Paul committed
1199
                result.push_back(prog.add_instruction(unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1200
1201
1202
            }
            else
            {
Paul's avatar
Paul committed
1203
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1204
            }
Paul's avatar
Paul committed
1205
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1206
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1207
1208
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1209
1210
1211
            }
            else
            {
Paul's avatar
Paul committed
1212
1213
1214
1215
1216
1217
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1235
        std::size_t n = 0;
Paul's avatar
Paul committed
1236
1237
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1238
            if(node.output().empty())
Paul's avatar
Paul committed
1239
            {
Paul's avatar
Paul committed
1240
                if(node.name().empty())
Paul's avatar
Paul committed
1241
1242
1243
1244
1245
1246
1247
1248
1249
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1275
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1276
1277
1278
1279
1280
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1281
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1282
1283
1284
1285
1286
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
1287
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1288
        if(dims.empty())
Khalique's avatar
Khalique committed
1289
1290
1291
        {
            dims = {1};
        }
1292
1293
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1294
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
1307
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
1308
1309
1310
1311
1312
1313
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1314
            MIGRAPHX_THROW("Invalid tensor type");
1315
        }
Paul's avatar
Paul committed
1316
1317
1318
1319
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
1320
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
1321
1322
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
1323
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1324
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
1325
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1326
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
1327
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1328
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
1329
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1330
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
1331
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
1332
1333
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
1334
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1335
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1336
        {
Khalique's avatar
Khalique committed
1337
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1338
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1339
1340
1341
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1342
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1343
            return literal{{shape::half_type, dims}, data_half.begin(), data_half.end()};
Khalique's avatar
Khalique committed
1344
        }
Paul's avatar
Paul committed
1345
1346
1347
1348
1349
1350
1351
1352
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1353
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1375
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1376
1377
1378
1379
1380
1381
1382
1383
1384
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1385
        auto&& tensor_dims = t.tensor_type().shape().dim();
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1397
1398
        return {shape_type, dims};
    }
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1444
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1445
} // namespace migraphx