onnx.cpp 53 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
39
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
40
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
41
42
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
43
44
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
57

Khalique's avatar
Khalique committed
58
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
63
64
65
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
66

Khalique's avatar
Khalique committed
67
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
68
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
69
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
70
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
71
72
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
73
74
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
75
76
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
77
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
78
79
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
80
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
81
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
82
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
83
84
85
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
86
        add_mem_op("Concat", &onnx_parser::parse_concat);
87
88
89
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
90
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
91
        add_mem_op("RNN", &onnx_parser::parse_rnn);
92
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
93
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
94
        add_mem_op("Pad", &onnx_parser::parse_pad);
95
96
97
98
99
100
101

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
102
103
104
105
106
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
107
108
109
110
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
111
112
113
114
115
116
117
118
119
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
120
121
122
123
124
125
126
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
127
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
128
129
130
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
131

132
    template <class T>
Khalique's avatar
Khalique committed
133
    void add_binary_op(std::string name, T x)
134
    {
Paul's avatar
Paul committed
135
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
136
            if(args.size() != 2)
Paul's avatar
Paul committed
137
                MIGRAPHX_THROW("binary operators should have 2 operands");
138
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
139
140
141
142
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
143
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
144
145
146
147
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
148
                return prog.add_instruction(x, args);
149
            }
Paul's avatar
Paul committed
150
            else
151
            {
Khalique's avatar
Khalique committed
152
                return add_broadcastable_binary_op(args[0], args[1], x);
153
154
155
156
            }
        });
    }

Khalique's avatar
Khalique committed
157
158
159
160
161
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
162
163
164
165
166
167
168
169
170
171
172
173
174
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
175
176
177
178
179
180
181
182
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

Khalique's avatar
Khalique committed
183
            std::vector<std::size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
184
185
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
186
187
188
189
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
190
191
192
193
194
195
196
197
198

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
199
200
    }

Paul's avatar
Paul committed
201
    template <class T>
Paul's avatar
Paul committed
202
203
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
204
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
205
206
207
208
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
209
    template <class T>
Khalique's avatar
Khalique committed
210
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
211
    {
Paul's avatar
Paul committed
212
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
213
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
214
215
216
217
218
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
219
        });
Khalique's avatar
Khalique committed
220
221
    }

Paul's avatar
Paul committed
222
    instruction_ref
Paul's avatar
Paul committed
223
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
224
225
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
226
227
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
228
229
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
230
231
    }

Shucai Xiao's avatar
Shucai Xiao committed
232
233
234
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
235
236
237
238
239
240
241
242
243
244
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

Paul's avatar
Paul committed
245
    instruction_ref
Paul's avatar
Paul committed
246
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
247
    {
248
        op::convolution op;
249
        auto l0 = args[0];
Paul's avatar
Paul committed
250
251
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
252
            if(contains(attributes, "auto_pad"))
253
            {
Paul's avatar
Paul committed
254
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
255
            }
256
257
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
258
            if(padding.size() != 4)
259
            {
Paul's avatar
Paul committed
260
                MIGRAPHX_THROW("padding should have 4 values");
261
            }
Scott Thornton's avatar
Scott Thornton committed
262
            if(padding[0] != padding[2] || padding[1] != padding[3])
263
            {
264
265
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
266
                l0      = prog.add_instruction(op::pad{padding}, l0);
267
            }
268
269
270
271
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
272
            }
Paul's avatar
Paul committed
273
        }
Paul's avatar
Paul committed
274
275
276
277
278
279
280
281
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
282
        if(contains(attributes, "auto_pad"))
283
284
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
285
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
286
            {
Paul's avatar
Paul committed
287
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
288
289
            }

wsttiger's avatar
fixes  
wsttiger committed
290
            if(s.find("SAME") != std::string::npos)
291
            {
292
                op.padding_mode = op::padding_mode_t::same;
293
294
            }
        }
Khalique's avatar
Khalique committed
295
296
297
298
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
299
300
301
302
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
303
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
304
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
305
        }
306
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
307
    }
Paul's avatar
Paul committed
308

Paul's avatar
Paul committed
309
310
311
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
312
    {
Khalique's avatar
Khalique committed
313
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
314
        auto l0 = args[0];
Khalique's avatar
Khalique committed
315
        if(starts_with(name, "Global"))
316
        {
Khalique's avatar
Khalique committed
317
318
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
319
        }
Paul's avatar
Paul committed
320
321
        if(contains(attributes, "pads"))
        {
322
323
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
324
            if(padding.size() != 4)
325
            {
Paul's avatar
Paul committed
326
                MIGRAPHX_THROW("padding should have 4 values");
327
            }
Scott Thornton's avatar
Scott Thornton committed
328
            if(padding[0] != padding[2] || padding[1] != padding[3])
329
            {
330
331
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
332
                l0      = prog.add_instruction(op::pad{padding}, l0);
333
334
335
336
337
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
338
            }
Paul's avatar
Paul committed
339
340
341
342
343
344
345
346
347
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
348
        if(contains(attributes, "auto_pad"))
349
350
        {
            auto s = attributes["auto_pad"].s();
351
            if(s.find("SAME_UPPER") == std::string::npos)
352
            {
353
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
354
            }
355
            op.padding_mode = op::padding_mode_t::same;
356
357
        }

358
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
359
360
    }

Paul's avatar
Paul committed
361
    instruction_ref
Paul's avatar
Paul committed
362
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
363
    {
364
        op::reshape op;
Paul's avatar
Paul committed
365
366
367
368
369
370
371
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
372
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
373
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
374
        }
Paul's avatar
Paul committed
375
376
377
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
378
    instruction_ref
Paul's avatar
Paul committed
379
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
380
    {
381
        uint64_t axis = 1;
Paul's avatar
Paul committed
382
383
384
385
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
386
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
387
388
    }

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
407
408
409
410
411
412
413
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
414

415
416
417
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
418
        int axis = 0;
419
420
421
422
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
423
        op::gather op{axis};
424
425
426
        return prog.add_instruction(op, std::move(args));
    }

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
447
448
449
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
450
451
452
453
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
454

Paul's avatar
Paul committed
455
    instruction_ref
Paul's avatar
Paul committed
456
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
457
458
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
459
        float beta  = 1.0f;
Paul's avatar
Paul committed
460
461
462
463
464
465
466
467
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
468
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
469
470
471
472
473
474
475
476
477
478
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
479
480
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
481
482
        if(args.size() == 3)
        {
Khalique's avatar
Khalique committed
483
            if(beta != 0.f)
484
            {
Khalique's avatar
Khalique committed
485
                auto l3 = prog.add_instruction(op::dot{alpha}, l1, l2);
Khalique's avatar
Khalique committed
486
                auto l4 = args[2];
Khalique's avatar
Khalique committed
487
                if(l4->get_shape().scalar()) // ignore args[2] (no C value added to alpha*A*B)
Khalique's avatar
Khalique committed
488
                    return l3;
Khalique's avatar
Khalique committed
489
                if(beta != 1.f)
Khalique's avatar
Khalique committed
490
491
                {
                    auto beta_val = prog.add_literal(beta);
Khalique's avatar
Khalique committed
492
493
                    auto l5 = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
                    l4      = prog.add_instruction(op::mul{}, args[2], l5);
Khalique's avatar
Khalique committed
494
495
                }
                return add_broadcastable_binary_op(l3, l4, op::add{});
496
            }
Paul's avatar
Paul committed
497
        }
Shucai Xiao's avatar
Shucai Xiao committed
498
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
499
500
    }

501
    instruction_ref
Paul's avatar
Paul committed
502
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
503
    {
Scott Thornton's avatar
Scott Thornton committed
504
505
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
506
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
507
        bool is_test                                      = false;
508
509
510
511
512
513
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
514
            momentum = parse_value(attributes.at("momentum")).at<float>();
515
516
517
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
518
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
519
520
521
        }
        if(contains(attributes, "spatial"))
        {
522
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
523
524
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
525
        }
Paul's avatar
Paul committed
526
        (void)is_test;
Paul's avatar
Paul committed
527
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
528
        return prog.add_instruction(op, std::move(args));
529
530
    }

531
532
533
534
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
535
        float alpha = 0.01; // default alpha val for leaky relu
536
537
538
539
540
541
542
543
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
544
545
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
546
547
548
549
550
551
552
553
554
555
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
556
557
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
558
559
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
560
561
562
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
563
564
565
566
567
568
569
570
571
572
573
574
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
592

Khalique's avatar
Khalique committed
593
594
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
595
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
596

Paul's avatar
Paul committed
597
598
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
599
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
600
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
601
    }
Khalique's avatar
Khalique committed
602

Khalique's avatar
Khalique committed
603
604
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
605
606
607
608
609
610
611
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
612
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
613
614
    }

Khalique's avatar
Khalique committed
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
637
638
639
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
640
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
641
642
    {
        if(args.size() != 1)
643
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
680
681
        if(contains(attributes, "extra_shape"))
        {
682
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
683
684
        }

685
686
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
687
            if(args.size() != 1)
688
            {
689
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
690
691
            }

Shucai Xiao's avatar
Shucai Xiao committed
692
693
            if(contains(attributes, "shape"))
            {
694
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
695
                               "at the same time");
696
697
            }

698
699
700
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
701
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
702
            }
703

704
705
706
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
707
708
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
709
710
711
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
712
713
            if(!contains(attributes, "shape"))
            {
714
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
715
716
717
            }

            literal ls = parse_value(attributes.at("shape"));
718
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
719
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
720
            migraphx::shape s{type, dims};
721
722
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
723
724
725
        }
        else
        {
726
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
727
728
729
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
730
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
731
732
733
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
734
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
735
736
737

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
738
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
739
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
740
741
742
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
743
744
745
746
747
748
749
750
751
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

752
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
753
754
        if(direction == "bidirectional")
        {
755
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
756
757
758
        }
        else if(direction == "reverse")
        {
759
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
760
761
        }

762
763
764
765
766
        std::vector<std::string> vec_names{"tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
767
            vec_names.resize(names.size());
768
            std::copy(names.begin(), names.end(), vec_names.begin());
769
770
        }

771
772
773
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
774
        if(name_it != vec_names.end())
775
776
777
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
778

Shucai Xiao's avatar
Shucai Xiao committed
779
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
780
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
781
        // if only one actv function is provided, we use it in both
782
        // forward and reverse direction
783
        if(dirct == op::rnn_direction::bidirectional)
784
        {
Shucai Xiao's avatar
Shucai Xiao committed
785
            if(vec_names.size() == 1)
786
787
788
789
790
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
791
792
793
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
794
        });
Shucai Xiao's avatar
Shucai Xiao committed
795

Shucai Xiao's avatar
Shucai Xiao committed
796
797
798
799
800
801
802
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

803
804
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
805
        if(args.size() < 6)
806
807
808
809
810
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
811
812
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
813
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
814

815
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
816
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
817

Shucai Xiao's avatar
Shucai Xiao committed
818
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
819
820
    }

821
    std::vector<instruction_ref>
822
823
824
825
826
827
828
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
829
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
830
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
831
832
833
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
834
835
836
837
838
839
840
841
842
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

843
        op::rnn_direction dirct = op::rnn_direction::forward;
844
845
        if(direction == "bidirectional")
        {
846
            dirct = op::rnn_direction::bidirectional;
847
848
849
        }
        else if(direction == "reverse")
        {
850
            dirct = op::rnn_direction::reverse;
851
852
        }

853
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
854
855
        if(contains(attributes, "activations"))
        {
856
            auto names = attributes.at("activations").strings();
857
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
858
            vec_names.resize(names.size());
859
            std::copy(names.begin(), names.end(), vec_names.begin());
860
861
        }

862
        // need 4 activation functions
863
        if(dirct == op::rnn_direction::bidirectional)
864
        {
Shucai Xiao's avatar
Shucai Xiao committed
865
            // 4 activation functions are used in the bidirectional
866
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
867
868
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
869
870
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
871
872
873
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
874
            if(vec_names.size() == 1)
875
            {
876
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
877
            }
878
            else if(vec_names.size() == 2)
879
            {
880
881
882
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
883
            }
884
            else if(vec_names.size() == 3)
885
            {
886
                vec_names.push_back(vec_names.at(2));
887
888
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
889
        else
890
        {
891
            if(vec_names.size() == 1)
892
            {
893
                vec_names.push_back(vec_names.at(0));
894
895
896
            }
        }

897
898
899
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
900
901
        if(name_it != vec_names.end())
        {
902
903
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
904

Shucai Xiao's avatar
Shucai Xiao committed
905
906
907
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
908
        });
909
910
911
912
913
914
915
916

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
917
        if(contains(attributes, "linear_before_reset"))
918
919
920
921
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
922
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
923
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
924
925
926
927
928
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

929
930
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
931
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
932
            std::move(args));
933
934

        // second output for last gru output
935
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
936

Shucai Xiao's avatar
Shucai Xiao committed
937
        return {hidden_states, last_output};
938
939
    }

Shucai Xiao's avatar
Shucai Xiao committed
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
962
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
963
964
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
965
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
966
967
968
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
969
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
970
        }
Shucai Xiao's avatar
Shucai Xiao committed
971
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
972
        {
Shucai Xiao's avatar
Shucai Xiao committed
973
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
974
975
976
977
978
979
980
981
982
983
984
985
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
986
            std::copy(names.begin(), names.end(), vec_names.begin());
Shucai Xiao's avatar
Shucai Xiao committed
987
988
989
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
990
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
991
992
993
994
995
996
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
997
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
998
999
1000
1001
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1002
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1003
1004
1005
1006
1007
1008
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1009
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1010
1011
1012

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1013
1014
1015
1016
1017
1018
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1019
1020
1021
1022
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1023
1024
1025
1026
1027
1028
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1029
1030
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1031
1032
1033
1034
1035
1036
1037
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1038
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1039

Shucai Xiao's avatar
Shucai Xiao committed
1040
1041
1042
1043
1044
1045
1046
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1047
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1048

Shucai Xiao's avatar
Shucai Xiao committed
1049
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1050
1051
1052
1053
1054
1055
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1056
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1057
1058
1059

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1060
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1061
1062
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1063
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1064
1065
1066
            }
        }

1067
1068
1069
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1070
        if(name_it != vec_names.end())
1071
1072
1073
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1096
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1097
1098
1099
1100
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1101
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1102
1103

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1104
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1105
1106
1107
1108
1109
1110
1111

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }

Paul's avatar
Paul committed
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1124
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1125
1126
1127
1128
1129
1130
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1131
1132
1133
1134
1135
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1136
1137
1138
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1151
1152
1153
        }
        for(auto&& p : nodes)
        {
Paul's avatar
Paul committed
1154
            this->parse_node(p.first);
Paul's avatar
Paul committed
1155
1156
1157
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1158
    void parse_undefined(const std::string& name)
1159
    {
Shucai Xiao's avatar
Shucai Xiao committed
1160
        auto ins           = prog.add_instruction(op::undefined{});
1161
1162
1163
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1164
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1165
    {
Paul's avatar
Paul committed
1166
        if(name.empty())
Paul's avatar
Paul committed
1167
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1168
1169
1170
1171
1172
1173
1174
1175
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1176
1177
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1178
                }
Shucai Xiao's avatar
Shucai Xiao committed
1179
                else if(input.empty())
Paul's avatar
Paul committed
1180
                {
1181
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1182
                }
1183
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1184
            }
Paul's avatar
Paul committed
1185
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1186
1187
            if(ops.count(node.op_type()) == 0)
            {
Paul's avatar
Paul committed
1188
                result.push_back(prog.add_instruction(unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1189
1190
1191
            }
            else
            {
Paul's avatar
Paul committed
1192
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1193
            }
Paul's avatar
Paul committed
1194
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1195
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1196
1197
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1198
1199
1200
            }
            else
            {
Paul's avatar
Paul committed
1201
1202
1203
1204
1205
1206
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1224
        std::size_t n = 0;
Paul's avatar
Paul committed
1225
1226
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1227
            if(node.output().empty())
Paul's avatar
Paul committed
1228
            {
Paul's avatar
Paul committed
1229
                if(node.name().empty())
Paul's avatar
Paul committed
1230
1231
1232
1233
1234
1235
1236
1237
1238
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1264
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1265
1266
1267
1268
1269
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1270
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1271
1272
1273
1274
1275
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
1276
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1277
        if(dims.empty())
Khalique's avatar
Khalique committed
1278
1279
1280
        {
            dims = {1};
        }
1281
1282
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1283
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
1296
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
1297
1298
1299
1300
1301
1302
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1303
            MIGRAPHX_THROW("Invalid tensor type");
1304
        }
Paul's avatar
Paul committed
1305
1306
1307
1308
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
1309
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
1310
1311
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
1312
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1313
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
1314
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1315
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
1316
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1317
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
1318
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1319
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
1320
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
1321
1322
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
1323
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1324
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1325
        {
Khalique's avatar
Khalique committed
1326
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1327
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1328
1329
1330
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1331
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1332
            return literal{{shape::half_type, dims}, data_half.begin(), data_half.end()};
Khalique's avatar
Khalique committed
1333
        }
Paul's avatar
Paul committed
1334
1335
1336
1337
1338
1339
1340
1341
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1342
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1364
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1365
1366
1367
1368
1369
1370
1371
1372
1373
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1374
        auto&& tensor_dims = t.tensor_type().shape().dim();
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1386
1387
        return {shape_type, dims};
    }
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1433
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1434
} // namespace migraphx