"src/include/migraph/builtin.hpp" did not exist on "b1e9363fa7fd67502cb3de08596ff59c6fe10f0c"
task.py 66.3 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
lintangsutawika's avatar
lintangsutawika committed
25
import shortuuid
26
from tqdm import tqdm
27
28

from lm_eval import utils
29
from lm_eval.api import samplers
30
31
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
32
from lm_eval.api.registry import (
33
34
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
35
    get_aggregation,
36
    get_metric,
37
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
38
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
39
)
40
from lm_eval.caching.cache import load_from_cache, save_to_cache
41
42
43
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

44

45
46
47
48
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
49
    "generate_until",
50
51
]

52
eval_logger = logging.getLogger("lm-eval")
53

lintangsutawika's avatar
lintangsutawika committed
54

lintangsutawika's avatar
lintangsutawika committed
55
56
@dataclass
class GroupConfig(dict):
lintangsutawika's avatar
lintangsutawika committed
57
58
59
    group: Optional[str] = None
    group_alias: Optional[str] = None
    task: Optional[Union[str, list]] = None
60
    tag_to_task: Optional[str] = False
lintangsutawika's avatar
lintangsutawika committed
61
62
63
    aggregate_metric: Optional[str] = False
    aggregate_fn: Optional[str] = "mean"
    weight_by_size: Optional[str] = False
lintangsutawika's avatar
lintangsutawika committed
64
65
    metric_alias: Optional[str] = None # Still a placeholder
    version: Optional[int] = 0
lintangsutawika's avatar
lintangsutawika committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

    def __getitem__(self, item):
        return getattr(self, item)

    def __setitem__(self, item, value):
        return setattr(self, item, value)

    def to_dict(self, keep_callable: bool = False) -> dict:
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
        Used for dumping results alongside full task configuration

        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
lintangsutawika's avatar
lintangsutawika committed
86
            if callable(v):
lintangsutawika's avatar
lintangsutawika committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
        return cfg_dict

    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)


lintangsutawika's avatar
lintangsutawika committed
107
108
109
110
111
class ConfigurableGroup(abc.ABC):
    def __init__(
        self,
        config: Optional[dict] = None,
    ) -> None:
lintangsutawika's avatar
lintangsutawika committed
112
        # Create a unique identifier ID
lintangsutawika's avatar
lintangsutawika committed
113
        self._task_id = shortuuid.uuid()[:8]
lintangsutawika's avatar
lintangsutawika committed
114
115
116
117
118
        self._config = GroupConfig(**config)

    @property
    def group(self):
        return self._config.group
119

lintangsutawika's avatar
lintangsutawika committed
120
121
122
    @property
    def group_alias(self):
        return self._config.group_alias
123
124
125
126
127

    @property
    def version(self):
        return self._config.version

lintangsutawika's avatar
lintangsutawika committed
128
129
130
131
    @property
    def config(self):
        return self._config.to_dict()

lintangsutawika's avatar
lintangsutawika committed
132
133
    @property
    def task_id(self) -> Any:
lintangsutawika's avatar
lintangsutawika committed
134
135
136
137
138
        return "-".join((self.group_name, self._task_id))

    @property
    def group_name(self) -> Any:
        return self._config.group
lintangsutawika's avatar
lintangsutawika committed
139

lintangsutawika's avatar
lintangsutawika committed
140
141
    def __repr__(self):
        return (
142
            f"ConfigurableGroup(group={self.group}," f"group_alias={self.group_alias})"
lintangsutawika's avatar
lintangsutawika committed
143
144
        )

145

146
147
@dataclass
class TaskConfig(dict):
148
    # task naming/registry
149
150
    task: Optional[str] = None
    task_alias: Optional[str] = None
lintangsutawika's avatar
lintangsutawika committed
151
    tag: Optional[Union[str, list]] = None
152
153
    group: Optional[Union[str, list]] = None
    group_alias: Optional[Union[str, list]] = None
154
155
156
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
157
158
159
160
161
162
163
164
165
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
    fewshot_split: Optional[
        str
    ] = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
166
167
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
168
169
170
171
172
173
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
174
    description: str = ""
175
176
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
177
    fewshot_config: Optional[dict] = None
178
    # runtime configuration options
179
    num_fewshot: Optional[int] = None
180
    # scoring options
181
182
183
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
184
    repeats: int = 1
185
    filter_list: Optional[Union[str, list]] = None
186
    should_decontaminate: bool = False
187
188
189
190
    doc_to_decontamination_query: Optional[str] = None
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
191

Ethan Smith's avatar
Ethan Smith committed
192
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
193
        if self.generation_kwargs is not None:
194
            if self.output_type != "generate_until":
195
                eval_logger.warning(
196
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
197
198
199
200
201
202
203
204
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
205
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
206
        else:
207
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
208
209
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
210
211
212
213
214
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
215
216
                    "do_sample": False,
                }
217

218
219
220
    def __getitem__(self, item):
        return getattr(self, item)

221
222
223
    def __setitem__(self, item, value):
        return setattr(self, item, value)

224
    def to_dict(self, keep_callable: bool = False) -> dict:
225
226
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
227
        Used for dumping results alongside full task configuration
228

haileyschoelkopf's avatar
haileyschoelkopf committed
229
230
231
232
233
234
235
236
237
238
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
239
240
241
242
243
244
245
246
247
248
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
249
        return cfg_dict
250

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

267
268
269
270
271
272
273
274
275
276
277

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

278
    VERSION: Optional[Union[int, str]] = None
279

280
281
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
282
    DATASET_PATH: Optional[str] = None
283
284

    # The name of a subset within `DATASET_PATH`.
285
    DATASET_NAME: Optional[str] = None
286

287
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
288

289
290
    def __init__(
        self,
291
292
293
294
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
295
    ) -> None:
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
318
319
320
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
321

322
        # Create a unique identifier ID
lintangsutawika's avatar
lintangsutawika committed
323
        self._task_id = shortuuid.uuid()[:8]
324
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
325

lintangsutawika's avatar
lintangsutawika committed
326
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
327
328
329
        self.fewshot_rnd: Optional[
            random.Random
        ] = None  # purposely induce errors in case of improper usage
330

331
332
333
334
335
336
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
361
362
363
364
365
366
367
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
368

369
    @property
370
    def config(self) -> TaskConfig:
371
372
373
        """Returns the TaskConfig associated with this class."""
        return self._config

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

389
    def training_docs(self) -> Iterable:
390
391
392
393
394
395
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

396
    def validation_docs(self) -> Iterable:
397
398
399
400
401
402
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

403
    def test_docs(self) -> Iterable:
404
405
406
407
408
409
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

410
    def fewshot_docs(self) -> Iterable:
411
412
413
414
415
416
417
418
419
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
420
            eval_logger.warning(
421
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
422
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
423
            )
424
425
            return self.test_docs()

426
    def _process_doc(self, doc: dict) -> dict:
427
428
429
430
431
432
433
434
435
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
436

437
    @property
438
    def instances(self) -> List[Instance]:
439
440
441
442
443
444
445
446
447
448
449
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

450
451
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
452
453
454
455
456
457
458
459
460
461
462
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

463
464
    def build_all_requests(
        self,
465
        *,
466
467
468
469
470
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
KonradSzafer's avatar
KonradSzafer committed
471
472
473
474
        system_instruction=None,
        apply_chat_template=False,
        fewshot_as_multiturn=False,
        lm=None,
475
    ) -> None:
476
        """Build a set of Instances for a task, and store them in task.instances"""
477
478
479
480

        # used with caching
        og_limit = limit

481
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
482
483
484
485
486
487
488
489
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
        cache_key += f"-tokenizer{lm.tokenizer_name}" if apply_chat_template else ""
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
505
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
506

507
        instances = []
508
509
510
511
512
513
514
515
516
517

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
518
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
519
520
521
522
523
524
525
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
526
        ):
527
            # sample fewshot context #TODO: need to offset doc_id by rank now!
528
            fewshot_ctx = self.fewshot_context(
529
                doc,
530
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
531
532
533
534
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
                lm,
535
            )
536

537
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
538
539
540
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
541
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
542
            )
543
544
545
546

            if not isinstance(inst, list):
                inst = [inst]

547
548
549
550
551
552
553
554
555
556
557
558
559
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
560

561
562
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
563

564
565
566
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
583
            The number of times each instance in a dataset is inferred on. Defaults to 1,
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

619
620
621
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
622
623
624
625
626
627
628
629
630
631
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

632
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
633
    def fewshot_context(
634
635
636
        self,
        doc,
        num_fewshot,
637
        rnd=None,
638
        description=None,
lintangsutawika's avatar
lintangsutawika committed
639
    ):
640
641
642
643
644
645
646
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
647
648
649
650
651
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
652
653
654
        :returns: str
            The fewshot context.
        """
655
        if rnd is None:
656
657
658
659
660
661
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
662

663
        description = description if description else ""
664
665

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
666
            labeled_examples = ""
667
        else:
lintangsutawika's avatar
lintangsutawika committed
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
692
            )
693
694

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
695
        return description + labeled_examples + example
696

697
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
698
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
699
700
        if hasattr(self, "_filters"):
            for f in self._filters:
701
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
702
703
704
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
705

baberabb's avatar
baberabb committed
706
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
707
        """Returns the config as a dictionary."""
708
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
709
        # (num_fewshot)
710
        return self.config.to_dict()
711

Baber Abbasi's avatar
Baber Abbasi committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

752
753
754
755
756
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

757
758
759
760
761
762
763
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
764
765
766
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
767
768
769
770
771
772
773
774
775
776
777
778
779

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

780
781
782
    @property
    def task_id(self) -> Any:
        return self._task_id
783

784

785
class ConfigurableTask(Task):
786
    VERSION = "Yaml"
787
    OUTPUT_TYPE = None
788
    CONFIG = None
789
790

    def __init__(
791
792
793
794
795
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
796
    ) -> None:  # TODO no super() call here
lintangsutawika's avatar
lintangsutawika committed
797
        # Create a unique identifier ID
lintangsutawika's avatar
lintangsutawika committed
798
        self._task_id = shortuuid.uuid()[:8]
lintangsutawika's avatar
lintangsutawika committed
799

800
        # Get pre-configured attributes
801
        self._config = self.CONFIG
802

803
        # Use new configurations if there was no preconfiguration
804
        if self.config is None:
805
            self._config = TaskConfig(**config)
806
807
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
808
            if config is not None:
809
                self._config.__dict__.update(config)
810

811
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
812
813
814
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
815

816
817
818
819
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

820
        if self.config.output_type is not None:
821
822
823
824
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
825
            self.OUTPUT_TYPE = self.config.output_type
826

827
828
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
829

830
831
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
832

833
834
835
836
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
837

838
        if self.config.metric_list is None:
839
            # TODO: handle this in TaskConfig.__post_init__ ?
840
841
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

842
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
843
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
844
                self._metric_fn_kwargs[metric_name] = {}
845
846
847
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
848
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
849
        else:
850
            for metric_config in self.config.metric_list:
851
852
853
854
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
855
856
857
858
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
859
860
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
861
                }
Chris's avatar
Chris committed
862
863
864
865
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
866

867
                if self.config.process_results is not None:
868
869
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
870
871
872
873
874
875
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
876
877
878
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
879
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
880

881
                if "aggregation" in metric_config:
882
                    agg_name = metric_config["aggregation"]
883
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
884
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
885
                    elif callable(agg_name):  # noqa: E721
886
887
888
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
889
                else:
890
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
891
                    metric_agg = get_metric_aggregation(metric_name)
892
                    eval_logger.warning(
893
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
894
895
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
896
                    )
897
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
898

899
900
901
902
903
904
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
905
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
906
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
907
                        f"higher_is_better={is_higher_better(metric_name)}"
908
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
909
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
910

911
        self.download(self.config.dataset_kwargs)
912
913
914
        self._training_docs = None
        self._fewshot_docs = None

915
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
916
            self._filters = []
917
            for filter_config in self.config.filter_list:
918
919
920
921
922
923
924
925
926
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
927
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
928
        else:
929
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
930

931
932
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
933
            self.prompt = get_prompt(
934
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
935
            )
936
937
938
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
939
        if self.fewshot_docs() is not None:
940
941
942
943
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
944
945
946
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
963

964
        self.task_docs = self.eval_docs
965

966
        # Test One Doc
967
        self.features = list(self.task_docs.features.keys())
968
969
        self.multiple_input = 0
        self.multiple_target = 0
970
        test_doc = self.task_docs[0]
971
        test_text = self.doc_to_text(test_doc)
972
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
973

974
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
975
            test_choice = self.doc_to_choice(test_doc)
976
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
977
                eval_logger.error("doc_to_choice must return list")
978
979
            else:
                num_choice = len(test_choice)
980

981
            if isinstance(test_text, int):
982
                self.multiple_input = num_choice
983
984
        else:
            test_choice = None
985

986
        if isinstance(test_target, list):
987
            self.multiple_target = len(test_target)
988
        else:
989
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
990
                test_target = test_choice[test_target]
991
            else:
lintangsutawika's avatar
lintangsutawika committed
992
                test_target = str(test_target)
993

994
995
996
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
997
            check_choices = [test_target]
998
999
1000
1001
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
1002
1003
                    True
                    if self.config.target_delimiter.rstrip()
1004
                    != self.config.target_delimiter
1005
                    else False
1006
                )
1007

1008
                if delimiter_has_whitespace and choice_has_whitespace:
1009
1010
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
1011
1012
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
1013
                    eval_logger.debug(
1014
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
1015
1016
                    )

1017
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
1018
1019
1020
1021
1022
1023
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
1024
    def has_training_docs(self) -> bool:
1025
        if self.config.training_split is not None:
1026
1027
1028
1029
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1030
    def has_validation_docs(self) -> bool:
1031
        if self.config.validation_split is not None:
1032
1033
1034
1035
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1036
    def has_test_docs(self) -> bool:
1037
        if self.config.test_split is not None:
1038
1039
1040
1041
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1042
    def training_docs(self) -> datasets.Dataset:
1043
        if self.has_training_docs():
1044
1045
1046
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1047
                )
1048
            return self.dataset[self.config.training_split]
1049

baberabb's avatar
baberabb committed
1050
    def validation_docs(self) -> datasets.Dataset:
1051
        if self.has_validation_docs():
1052
1053
1054
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1055
                )
1056
            return self.dataset[self.config.validation_split]
1057

baberabb's avatar
baberabb committed
1058
    def test_docs(self) -> datasets.Dataset:
1059
        if self.has_test_docs():
1060
1061
1062
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1063

1064
    def fewshot_docs(self):
1065
        if self.config.fewshot_split is not None:
1066
1067
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1068
            return self.dataset[self.config.fewshot_split]
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1081
        else:
1082
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1083
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1084
                    f"[Task: {self.config.task}] "
1085
1086
1087
1088
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1089

KonradSzafer's avatar
KonradSzafer committed
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1111
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1112
1113
1114
1115
1116
1117
1118
1119
1120
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        lm=None,
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1121
1122
1123
1124
1125
1126
1127
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1128
1129
1130
1131
1132
1133
1134
1135
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
        :param lm:
            Language model with definition of the tokenizer/function to use for applying the chat template.
lintangsutawika's avatar
lintangsutawika committed
1136
1137
1138
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1139
1140
1141
1142
1143
1144
1145

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1146
1147
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1148

KonradSzafer's avatar
KonradSzafer committed
1149
1150
1151
1152
1153
1154
1155
1156
1157
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1158
        else:
KonradSzafer's avatar
KonradSzafer committed
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1178
1179

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
        if apply_chat_template:
            if self.multiple_input:
                return lm.apply_chat_template(labeled_examples)
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
                    labeled_examples_list.append(lm.apply_chat_template(chat))
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
            return lm.apply_chat_template(labeled_examples)
1209
        else:
KonradSzafer's avatar
KonradSzafer committed
1210
1211
            if self.multiple_input:
                return labeled_examples
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1222

1223
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1224
        """Iterates over FilterEnsembles and applies them to instances"""
1225
1226
        if hasattr(self, "_filters"):
            for f in self._filters:
1227
                f.apply(self._instances)
1228
1229
1230
1231
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1232
    def should_decontaminate(self):
1233
        return self.config.should_decontaminate
1234
1235

    def doc_to_decontamination_query(self, doc):
1236
        if self.config.should_decontaminate:
1237
1238
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1239
            else:
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1251

1252
    def _process_doc(self, doc: dict) -> dict:
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1264
1265
        if self.prompt is not None:
            doc_to_text = self.prompt
1266
        else:
1267
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1268

1269
        if isinstance(doc_to_text, int):
1270
            return doc_to_text
1271
        elif isinstance(doc_to_text, str):
1272
            if doc_to_text in self.features:
1273
                # if self.config.doc_to_choice is not None:
1274
1275
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1276
1277
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1278
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1279
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1280
1281
1282
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1283
        elif callable(doc_to_text):
1284
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1285
        # Used when applying a Promptsource template
1286
        elif hasattr(doc_to_text, "apply"):
1287
1288
1289
1290
1291
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1292
                return self.config.fewshot_delimiter
1293
        else:
1294
            print(type(doc_to_text))
1295
            raise TypeError
1296

1297
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1298
1299
        if self.prompt is not None:
            doc_to_target = self.prompt
1300
        else:
1301
            doc_to_target = self.config.doc_to_target
1302

1303
        if isinstance(doc_to_target, int):
1304
            return doc_to_target
1305
        elif isinstance(doc_to_target, str):
1306
            if doc_to_target in self.features:
1307
                # if self.config.doc_to_choice is not None:
1308
1309
1310
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1311
            else:
lintangsutawika's avatar
lintangsutawika committed
1312
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1313
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1314
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1315
1316
1317
1318
1319
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1320
1321
1322
1323
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1324
1325
                else:
                    return target_string
1326
        elif isinstance(doc_to_target, list):
1327
            return doc_to_target
1328
        elif callable(doc_to_target):
1329
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1330
        # Used when applying a Promptsource template
1331
        elif hasattr(doc_to_target, "apply"):
1332
            applied_prompt = doc_to_target.apply(doc)
1333
1334
1335
1336
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1337
                return self.config.fewshot_delimiter
1338
1339
        else:
            raise TypeError
1340

baberabb's avatar
baberabb committed
1341
    def doc_to_choice(self, doc: Any) -> List[str]:
1342
1343
        if self.prompt is not None:
            doc_to_choice = self.prompt
1344
        elif self.config.doc_to_choice is None:
1345
1346
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1347
            doc_to_choice = self.config.doc_to_choice
1348

1349
        if isinstance(doc_to_choice, str):
1350
1351
1352
1353
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1354
        elif isinstance(doc_to_choice, list):
1355
            return doc_to_choice
1356
        elif isinstance(doc_to_choice, dict):
1357
1358
1359
1360
1361
1362
1363
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1364

baberabb's avatar
baberabb committed
1365
1366
1367
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1368
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1369
            arguments = (ctx, self.doc_to_target(doc))
1370
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1371
            arguments = (self.doc_to_target(doc),)
1372
        elif self.OUTPUT_TYPE == "multiple_choice":
1373
            choices = self.doc_to_choice(doc)
1374
            target_delimiter = self.config.target_delimiter
1375
1376
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1377
                cont = self.doc_to_target(doc)
1378
1379
1380
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1381
            else:
1382
                # Otherwise they are placed in the continuation
1383
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1384

1385
            request_list = [
1386
1387
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1388
                    doc=doc,
1389
                    arguments=arg,
1390
                    idx=i,
1391
1392
                    **kwargs,
                )
1393
                for i, arg in enumerate(arguments)
1394
            ]
1395
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1396
            if "acc_mutual_info" in self._metric_fn_list.keys():
1397
1398
1399
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1400
                # here mutual info refers to calculating
1401
1402
1403
1404
1405
1406
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1407
                            doc=doc,
1408
                            arguments=("", "{}".format(choice)),
1409
1410
1411
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1412
                        for i, choice in enumerate(choices)
1413
1414
1415
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1416

1417
        elif self.OUTPUT_TYPE == "generate_until":
1418
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1419
1420

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1421
1422
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1423
1424

    def process_results(self, doc, results):
1425
1426
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1427

1428
        result_dict = {}
1429
        use_metric = list(self._metric_fn_list.keys())
1430
1431
1432
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1433
1434
1435
1436
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1437
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1438
            (loglikelihood,) = results
1439
1440
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1441
            return {
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1457
            }
1458
        elif self.OUTPUT_TYPE == "multiple_choice":
1459
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1460

1461
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1462
            choices = self.doc_to_choice(doc)
1463
1464
            completion_len = np.array([float(len(i)) for i in choices])

1465
1466
            if (
                2 * len(choices) == len(lls)
1467
                and "acc_mutual_info" in self._metric_fn_list.keys()
1468
1469
1470
1471
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1472
1473
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1474
1475
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1476

1477
1478
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1479

1480
1481
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1482
            else:
1483
                gold = self.doc_to_target(doc)
1484
1485

            gold_index_error = False
1486
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1487
1488
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1489
1490
                    gold_index_error = True
            else:
1491
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1492
                    gold = gold if gold < len(choices) else -100
1493
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1494
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1495

Lintang Sutawika's avatar
Lintang Sutawika committed
1496
                if gold == -100:
1497
1498
1499
1500
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1501
                    f"Label index was not in within range of available choices,"
1502
1503
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1504

1505
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1506
1507
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1508
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1509
1510
1511
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1512
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1513
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1514

Lintang Sutawika's avatar
Lintang Sutawika committed
1515
1516
1517
1518
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1519
            result_dict = {
1520
                **({"acc": acc} if "acc" in use_metric else {}),
1521
1522
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1523
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1524
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1525
1526
1527
1528
1529
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1530
1531
            }

1532
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1533
1534
1535
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1536
1537
1538
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1539
        elif self.OUTPUT_TYPE == "generate_until":
1540
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1541
            result = results[0]
1542
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1543
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1544
                # it assumes that doc_to_target returns a number.
1545
1546
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1547
1548
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1549
                gold = list(gold)
Chris's avatar
Chris committed
1550
1551
1552
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1553

lintangsutawika's avatar
lintangsutawika committed
1554
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1555
1556
1557
1558
1559
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1560
1561
1562
1563
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1564
1565
1566
1567
1568
1569
1570
1571
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1572
                    else:
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1594
                else:
1595
                    try:
1596
                        result_score = self._metric_fn_list[metric](
1597
1598
                            references=[gold],
                            predictions=[result],
1599
                            **self._metric_fn_kwargs[metric],
1600
                        )
1601
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1602
                        result_score = self._metric_fn_list[metric]([gold, result])
1603
1604
1605
1606
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1607
        else:
lintangsutawika's avatar
lintangsutawika committed
1608
1609
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1610
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1611
            )
1612
1613
1614

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1615
    def aggregation(self) -> dict:
1616
1617
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1618
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1619
        return self._higher_is_better
1620

Baber Abbasi's avatar
Baber Abbasi committed
1621
1622
1623
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

lintangsutawika's avatar
lintangsutawika committed
1624
1625
    @property
    def task_id(self) -> Any:
lintangsutawika's avatar
lintangsutawika committed
1626
1627
1628
1629
1630
        return "-".join((self.task_name, self._task_id))

    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)
lintangsutawika's avatar
lintangsutawika committed
1631

1632
1633
1634
1635
1636
1637
1638
1639
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1640
1641

class MultipleChoiceTask(Task):
1642
    OUTPUT_TYPE = "loglikelihood"
1643

baberabb's avatar
baberabb committed
1644
    def doc_to_target(self, doc: dict) -> str:
1645
1646
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1647
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1648
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1649
1650
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1651
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1652
                doc=doc,
1653
                arguments=(ctx, " {}".format(choice)),
1654
                idx=i,
1655
1656
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1657
1658
            for i, choice in enumerate(doc["choices"])
        ]
1659

1660
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1661
1662
1663
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1675
    def higher_is_better(self) -> dict:
1676
1677
1678
1679
1680
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1681
    def aggregation(self) -> dict:
1682
1683
1684
1685
1686
1687
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1688
class PerplexityTask(Task):
1689
1690
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1691
    def has_training_docs(self) -> bool:
1692
1693
        return False

baberabb's avatar
baberabb committed
1694
    def fewshot_examples(self, k: int, rnd) -> List:
1695
1696
1697
1698
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1699
1700
        return []

baberabb's avatar
baberabb committed
1701
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1702
1703
1704
1705
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1706
1707
1708

        return ""

baberabb's avatar
baberabb committed
1709
    def higher_is_better(self) -> dict:
1710
1711
1712
1713
1714
1715
1716
1717
1718
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1719
    def doc_to_text(self, doc) -> str:
1720
1721
1722
1723
1724
        return ""

    def doc_to_target(self, doc):
        return doc

1725
1726
1727
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1728

lintangsutawika's avatar
lintangsutawika committed
1729
1730
1731
1732
1733
1734
1735
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1736

1737
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1738
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1739
1740
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1741
1742
1743
1744
1745
1746
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1747
    def aggregation(self) -> dict:
1748
1749
1750
1751
1752
1753
1754
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1755
    def count_bytes(cls, doc) -> int:
1756
1757
1758
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1759
    def count_words(cls, doc) -> int:
1760
1761
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))