task.py 67.6 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
59
    tag: Optional[Union[str, list]] = None
60
61
62
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
63
64
65
66
67
68
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
69
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
70
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
71
    )
72
73
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
74
75
76
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
77
    doc_to_image: Union[Callable, str] = None
Hojin Lee's avatar
Hojin Lee committed
78
    unsafe_code: bool = False
79
80
81
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
82
    description: str = ""
83
84
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
85
    fewshot_config: Optional[dict] = None
86
    # runtime configuration options
87
    num_fewshot: Optional[int] = None
88
    # scoring options
89
90
91
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
92
    repeats: int = 1
93
    filter_list: Optional[Union[str, list]] = None
94
    should_decontaminate: bool = False
95
    doc_to_decontamination_query: Optional[str] = None
Baber Abbasi's avatar
Baber Abbasi committed
96
    gen_prefix: Optional[str] = None
97
98
99
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
100

Ethan Smith's avatar
Ethan Smith committed
101
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
102
        if self.generation_kwargs is not None:
103
            if self.output_type != "generate_until":
104
                eval_logger.warning(
105
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
106
107
108
109
110
111
112
113
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
114
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
115
        else:
116
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
117
118
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
119
120
121
122
123
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
124
125
                    "do_sample": False,
                }
126

127
128
129
    def __getitem__(self, item):
        return getattr(self, item)

130
131
132
    def __setitem__(self, item, value):
        return setattr(self, item, value)

133
    def to_dict(self, keep_callable: bool = False) -> dict:
134
135
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
136
        Used for dumping results alongside full task configuration
137

haileyschoelkopf's avatar
haileyschoelkopf committed
138
139
140
141
142
143
144
145
146
147
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
148
149
150
151
152
153
154
155
156
157
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
158
        return cfg_dict
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

176
177
178
179
180
181
182
183
184
185
186

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

187
    VERSION: Optional[Union[int, str]] = None
188

189
190
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
191
    DATASET_PATH: Optional[str] = None
192
193

    # The name of a subset within `DATASET_PATH`.
194
    DATASET_NAME: Optional[str] = None
195

196
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
197

198
199
    def __init__(
        self,
200
201
202
203
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
204
    ) -> None:
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
227
228
229
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
230

231
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
232

lintangsutawika's avatar
lintangsutawika committed
233
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
234
235
236
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
237

238
239
240
241
242
243
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
268
269
270
271
272
273
274
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
275

276
    @property
277
    def config(self) -> TaskConfig:
278
279
280
        """Returns the TaskConfig associated with this class."""
        return self._config

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

296
    def training_docs(self) -> Iterable:
297
298
299
300
301
302
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

303
    def validation_docs(self) -> Iterable:
304
305
306
307
308
309
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

310
    def test_docs(self) -> Iterable:
311
312
313
314
315
316
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

317
    def fewshot_docs(self) -> Iterable:
318
319
320
321
322
323
324
325
326
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
327
            eval_logger.warning(
328
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
329
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
330
            )
331
332
            return self.test_docs()

333
    def _process_doc(self, doc: dict) -> dict:
334
335
336
337
338
339
340
341
342
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
343

344
    @property
345
    def instances(self) -> List[Instance]:
346
347
348
349
350
351
352
353
354
355
356
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

357
358
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
359
360
361
362
363
364
365
366
367
368
369
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

370
371
372
373
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

Baber Abbasi's avatar
Baber Abbasi committed
374
375
376
    def doc_to_prefix(self, doc):
        return ""

377
378
    def build_all_requests(
        self,
379
        *,
380
381
382
383
384
385
386
387
388
389
        limit: Union[int, None] = None,
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
390
    ) -> None:
391
        """Build a set of Instances for a task, and store them in task.instances"""
392
393
394
395

        # used with caching
        og_limit = limit

396
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
397
398
399
400
401
402
403
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
404
        cache_key += f"-tokenizer{tokenizer_name}"
405

Baber Abbasi's avatar
Baber Abbasi committed
406
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
407
408
409
410
411
412
413
414
415
416
417
418
419

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
420
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
421

422
        instances = []
423
424
425
426
427
428
429
430
431
432

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
433
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
434
435
436
437
438
439
440
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
441
        ):
442
            # sample fewshot context #TODO: need to offset doc_id by rank now!
443
            fewshot_ctx = self.fewshot_context(
444
                doc,
445
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
446
447
448
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
449
                chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
450
                gen_prefix=self.doc_to_prefix(doc),
451
            )
452

453
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
454
455
456
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
457
                metadata=(self.config["task"], doc_id, self.config.repeats),
458
                apply_chat_template=apply_chat_template,
lintangsutawika's avatar
lintangsutawika committed
459
            )
460
461
462
463

            if not isinstance(inst, list):
                inst = [inst]

464
465
466
467
468
469
470
471
472
473
474
475
476
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
477

478
479
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
480

481
482
483
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
500
            The number of times each instance in a dataset is inferred on. Defaults to 1,
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

536
537
538
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
539
540
541
542
543
544
545
546
547
548
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

549
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
550
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
551
552
553
554
555
556
557
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
558
559
560
561
562
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
563
564
565
        :returns: str
            The fewshot context.
        """
566
        if rnd is None:
567
568
569
570
571
572
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
573

574
        description = description if description else ""
575
576

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
577
            labeled_examples = ""
578
        else:
lintangsutawika's avatar
lintangsutawika committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
603
            )
604
605

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
606
        return description + labeled_examples + example
607

608
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
609
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
610
611
        if hasattr(self, "_filters"):
            for f in self._filters:
612
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
613
614
615
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
616

baberabb's avatar
baberabb committed
617
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
618
        """Returns the config as a dictionary."""
619
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
620
        # (num_fewshot)
621
        return self.config.to_dict()
622

Baber Abbasi's avatar
Baber Abbasi committed
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

663
664
665
666
667
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

668
669
670
671
672
673
674
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
675
676
677
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
678
679
680
681
682
683
684
685
686
687
688
689
690

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

691
692

class ConfigurableTask(Task):
693
    VERSION = "Yaml"
694
    OUTPUT_TYPE = None
695
    CONFIG = None
696
697

    def __init__(
698
699
700
701
702
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
703
    ) -> None:  # TODO no super() call here
704
        # Get pre-configured attributes
705
        self._config = self.CONFIG
706

707
        # Use new configurations if there was no preconfiguration
708
        if self.config is None:
709
            self._config = TaskConfig(**config)
710
711
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
712
            if config is not None:
713
                self._config.__dict__.update(config)
714

715
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
716
717
718
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
719

720
721
722
723
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

724
        if self.config.output_type is not None:
725
726
727
728
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
729
            self.OUTPUT_TYPE = self.config.output_type
730

731
732
733
734
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
735
736
737
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

738
739
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
740

741
742
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
743

744
745
746
747
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
748

749
        if self.config.metric_list is None:
750
            # TODO: handle this in TaskConfig.__post_init__ ?
751
752
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

753
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
754
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
755
                self._metric_fn_kwargs[metric_name] = {}
756
757
758
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
759
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
760
        else:
761
            for metric_config in self.config.metric_list:
762
763
764
765
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
766
767
768
769
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
770
771
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
772
                }
Chris's avatar
Chris committed
773
774
775
776
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
777

778
                if self.config.process_results is not None:
779
780
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
781
782
783
784
785
786
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
787
788
789
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
790
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
791

792
                if "aggregation" in metric_config:
793
                    agg_name = metric_config["aggregation"]
794
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
795
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
796
                    elif callable(agg_name):  # noqa: E721
797
798
799
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
800
                else:
801
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
802
                    metric_agg = get_metric_aggregation(metric_name)
803
                    eval_logger.warning(
804
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
805
806
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
807
                    )
808
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
809

810
811
812
813
814
815
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
816
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
817
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
818
                        f"higher_is_better={is_higher_better(metric_name)}"
819
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
820
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
821

822
        self.download(self.config.dataset_kwargs)
823
824
825
        self._training_docs = None
        self._fewshot_docs = None

826
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
827
            self._filters = []
828
            for filter_config in self.config.filter_list:
829
830
831
832
833
834
835
836
837
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
838
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
839
        else:
840
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
841

842
843
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
844
            self.prompt = get_prompt(
845
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
846
            )
847
848
849
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
850
        if self.fewshot_docs() is not None:
851
852
853
854
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
855
856
857
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
874

875
        self.task_docs = self.eval_docs
876

877
        # Test One Doc
878
        self.features = list(self.task_docs.features.keys())
879
880
        self.multiple_input = 0
        self.multiple_target = 0
881
        test_doc = self.task_docs[0]
882
        test_text = self.doc_to_text(test_doc)
883
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
884

885
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
886
            test_choice = self.doc_to_choice(test_doc)
887
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
888
                eval_logger.error("doc_to_choice must return list")
889
890
            else:
                num_choice = len(test_choice)
891

892
            if isinstance(test_text, int):
893
                self.multiple_input = num_choice
894
895
        else:
            test_choice = None
896

897
        if isinstance(test_target, list):
898
            self.multiple_target = len(test_target)
899
        else:
900
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
901
                test_target = test_choice[test_target]
902
            else:
lintangsutawika's avatar
lintangsutawika committed
903
                test_target = str(test_target)
904

905
906
907
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
908
            check_choices = [test_target]
909
910
911
912
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
913
914
                    True
                    if self.config.target_delimiter.rstrip()
915
                    != self.config.target_delimiter
916
                    else False
917
                )
918

919
                if delimiter_has_whitespace and choice_has_whitespace:
920
921
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
922
923
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
924
                    eval_logger.debug(
925
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
926
927
                    )

928
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
929
930
931
932
933
934
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
935
    def has_training_docs(self) -> bool:
936
        if self.config.training_split is not None:
937
938
939
940
            return True
        else:
            return False

baberabb's avatar
baberabb committed
941
    def has_validation_docs(self) -> bool:
942
        if self.config.validation_split is not None:
943
944
945
946
            return True
        else:
            return False

baberabb's avatar
baberabb committed
947
    def has_test_docs(self) -> bool:
948
        if self.config.test_split is not None:
949
950
951
952
            return True
        else:
            return False

baberabb's avatar
baberabb committed
953
    def training_docs(self) -> datasets.Dataset:
954
        if self.has_training_docs():
955
956
957
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
958
                )
959
            return self.dataset[self.config.training_split]
960

baberabb's avatar
baberabb committed
961
    def validation_docs(self) -> datasets.Dataset:
962
        if self.has_validation_docs():
963
964
965
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
966
                )
967
            return self.dataset[self.config.validation_split]
968

baberabb's avatar
baberabb committed
969
    def test_docs(self) -> datasets.Dataset:
970
        if self.has_test_docs():
971
972
973
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
974

975
    def fewshot_docs(self):
976
        if self.config.fewshot_split is not None:
977
978
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
979
            return self.dataset[self.config.fewshot_split]
980
981
982
983
984
985
986
987
988
989
990
991
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
992
        else:
993
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
994
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
995
                    f"[Task: {self.config.task}] "
996
997
998
999
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1000

KonradSzafer's avatar
KonradSzafer committed
1001
1002
1003
1004
1005
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1006
        gen_prefix: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
1022
1023
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
1024

lintangsutawika's avatar
lintangsutawika committed
1025
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1026
1027
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1028
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
1029
1030
1031
1032
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1033
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1034
        gen_prefix: Optional[str] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1035
    ) -> Union[str, List[str]]:
lintangsutawika's avatar
lintangsutawika committed
1036
1037
1038
1039
1040
1041
1042
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1043
1044
1045
1046
1047
1048
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1049
1050
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
lintangsutawika's avatar
lintangsutawika committed
1051
1052
1053
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1054
1055
1056
1057
1058
1059
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1060
1061
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1062

KonradSzafer's avatar
KonradSzafer committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1072
        else:
KonradSzafer's avatar
KonradSzafer committed
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
1086
1087
1088
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1089
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1090
1091
1092
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1093
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
1094
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
1095
                )
lintangsutawika's avatar
lintangsutawika committed
1096
1097

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1098
1099
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
1100
                # TODO: append prefill?
1101
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1102
1103
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1104
1105
1106
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1107
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1108
1109
1110
1111
1112
1113
1114
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1115
1116
1117
1118
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1119
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
1120
1121
1122
1123
1124
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber Abbasi's avatar
Baber Abbasi committed
1125
                            add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1126
1127
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
1128
1129
1130
1131
1132
1133
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1134
1135
1136
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1137
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1138
1139
1140
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1141
1142
1143
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1144
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1145
1146
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1147
1148
            return chat_template(
                labeled_examples,
Baber Abbasi's avatar
Baber Abbasi committed
1149
                add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1150
            )
1151
        else:
Baber Abbasi's avatar
Baber Abbasi committed
1152
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
1153
1154
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
1155
1156
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
1157
1158
            if self.multiple_input:
                return labeled_examples
1159
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
1160
                return labeled_examples + example + prefix
1161
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
1162
                return [labeled_examples + ex + prefix for ex in example]
1163
1164
1165
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
1166
                    return labeled_examples + choices[example] + prefix
1167
                else:
Baber Abbasi's avatar
Baber Abbasi committed
1168
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
1169

Baber Abbasi's avatar
Baber Abbasi committed
1170
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
1171
        """Iterates over FilterEnsembles and applies them to instances"""
1172
1173
        if hasattr(self, "_filters"):
            for f in self._filters:
1174
                f.apply(self._instances)
1175
1176
1177
1178
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1179
    def should_decontaminate(self):
1180
        return self.config.should_decontaminate
1181

Baber Abbasi's avatar
Baber Abbasi committed
1182
    def doc_to_decontamination_query(self, doc: dict):
1183
        if self.config.should_decontaminate:
1184
1185
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1186
            else:
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1198

1199
    def _process_doc(self, doc: dict) -> dict:
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1210
    def doc_to_text(self, doc, doc_to_text=None):
1211
1212
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1213
1214
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1215
        else:
1216
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1217

1218
        if isinstance(doc_to_text, int):
1219
            return doc_to_text
1220
        elif isinstance(doc_to_text, str):
1221
            if doc_to_text in self.features:
1222
                # if self.config.doc_to_choice is not None:
1223
1224
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1225
1226
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1227
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1228
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1229
1230
1231
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1232
        elif callable(doc_to_text):
1233
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1234
        # Used when applying a Promptsource template
1235
        elif hasattr(doc_to_text, "apply"):
1236
1237
1238
1239
1240
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1241
                return self.config.fewshot_delimiter
1242
        else:
1243
            print(type(doc_to_text))
1244
            raise TypeError
1245

Yu Shi Jie's avatar
Yu Shi Jie committed
1246
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1247
1248
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1249
1250
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1251
        else:
1252
            doc_to_target = self.config.doc_to_target
1253

1254
        if isinstance(doc_to_target, int):
1255
            return doc_to_target
1256
        elif isinstance(doc_to_target, str):
1257
            if doc_to_target in self.features:
1258
                # if self.config.doc_to_choice is not None:
1259
1260
1261
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1262
            else:
lintangsutawika's avatar
lintangsutawika committed
1263
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1264
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1265
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1266
1267
1268
1269
1270
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1271
1272
1273
1274
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1275
1276
                else:
                    return target_string
1277
        elif isinstance(doc_to_target, list):
1278
            return doc_to_target
1279
        elif callable(doc_to_target):
1280
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1281
        # Used when applying a Promptsource template
1282
        elif hasattr(doc_to_target, "apply"):
1283
            applied_prompt = doc_to_target.apply(doc)
1284
1285
1286
1287
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1288
                return self.config.fewshot_delimiter
1289
1290
        else:
            raise TypeError
1291

Yu Shi Jie's avatar
Yu Shi Jie committed
1292
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1293
1294
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1295
1296
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1297
        elif self.config.doc_to_choice is None:
1298
1299
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1300
            doc_to_choice = self.config.doc_to_choice
1301

1302
        if isinstance(doc_to_choice, str):
1303
1304
1305
1306
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1307
        elif isinstance(doc_to_choice, list):
1308
            return doc_to_choice
1309
        elif isinstance(doc_to_choice, dict):
1310
1311
1312
1313
1314
1315
1316
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1317

1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

Baber Abbasi's avatar
Baber Abbasi committed
1341
1342
1343
1344
1345
1346
1347
1348
    def doc_to_prefix(self, doc):
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1349
1350
1351
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1352
1353
        apply_chat_template = kwargs.pop("apply_chat_template", False)

1354
1355
        aux_arguments = None

1356
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1357
            arguments = (ctx, self.doc_to_target(doc))
1358
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1359
            arguments = (self.doc_to_target(doc),)
1360
        elif self.OUTPUT_TYPE == "multiple_choice":
1361
            choices = self.doc_to_choice(doc)
1362
            target_delimiter = self.config.target_delimiter
1363
1364
            if apply_chat_template:
                target_delimiter = ""
1365
1366
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1367
                cont = self.doc_to_target(doc)
1368
1369
1370
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1371
            else:
1372
                # Otherwise they are placed in the continuation
1373
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1374

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                aux_arguments = [("", f"{choice}") for choice in choices]

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1406
            request_list = [
1407
1408
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1409
                    doc=doc,
1410
                    arguments=arg,
1411
                    idx=i,
1412
1413
                    **kwargs,
                )
1414
                for i, arg in enumerate(arguments)
1415
            ]
1416
1417

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1418

lintangsutawika's avatar
lintangsutawika committed
1419
        return Instance(
1420
1421
1422
1423
1424
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1425
        )
1426
1427

    def process_results(self, doc, results):
1428
1429
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1430

1431
        result_dict = {}
1432
        use_metric = list(self._metric_fn_list.keys())
1433
1434
1435
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1436
1437
1438
1439
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1440
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1441
            (loglikelihood,) = results
1442
1443
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1444
            return {
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1460
            }
1461
        elif self.OUTPUT_TYPE == "multiple_choice":
1462
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1463

1464
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1465
            choices = self.doc_to_choice(doc)
1466
1467
            completion_len = np.array([float(len(i)) for i in choices])

1468
1469
            if (
                2 * len(choices) == len(lls)
1470
                and "acc_mutual_info" in self._metric_fn_list.keys()
1471
1472
1473
1474
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1475
1476
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1477
1478
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1479

1480
1481
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1482

1483
1484
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1485
            else:
1486
                gold = self.doc_to_target(doc)
1487
1488

            gold_index_error = False
1489
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1490
1491
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1492
1493
                    gold_index_error = True
            else:
1494
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1495
                    gold = gold if gold < len(choices) else -100
1496
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1497
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1498

Lintang Sutawika's avatar
Lintang Sutawika committed
1499
                if gold == -100:
1500
1501
1502
1503
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1504
                    f"Label index was not in within range of available choices,"
1505
1506
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1507

1508
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1509
1510
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1511
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1512
1513
1514
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1515
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1516
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1517

Lintang Sutawika's avatar
Lintang Sutawika committed
1518
1519
1520
1521
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1522
            result_dict = {
1523
                **({"acc": acc} if "acc" in use_metric else {}),
1524
1525
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1526
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1527
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1528
1529
1530
1531
1532
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1533
1534
            }

1535
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1536
1537
1538
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1539
1540
1541
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1542
        elif self.OUTPUT_TYPE == "generate_until":
1543
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1544
            result = results[0]
1545
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1546
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1547
                # it assumes that doc_to_target returns a number.
1548
1549
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1550
1551
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1552
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1553
1554
1555
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
                "bypass" in self._metric_fn_list.keys() or isinstance(result, list)
1556
            ):
Chris's avatar
Chris committed
1557
1558
                # cast gold to the same type as result
                gold = type(result)(gold)
1559

lintangsutawika's avatar
lintangsutawika committed
1560
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1561
1562
1563
1564
1565
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1566
1567
1568
1569
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1570
1571
1572
1573
1574
1575
1576
1577
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1578
                    else:
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1600
                else:
1601
                    try:
1602
                        result_score = self._metric_fn_list[metric](
1603
1604
                            references=[gold],
                            predictions=[result],
1605
                            **self._metric_fn_kwargs[metric],
1606
                        )
1607
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1608
                        result_score = self._metric_fn_list[metric]([gold, result])
1609
1610
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
Hojin Lee's avatar
Hojin Lee committed
1611
1612
1613
1614
                        # This allows for multiple metrics to be returned from the same function
                        for k, v in result_score.items():
                            result_dict[k] = v
                        return result_dict
1615
                result_dict[metric] = result_score
1616
        else:
lintangsutawika's avatar
lintangsutawika committed
1617
1618
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1619
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1620
            )
1621
1622
1623

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1624
    def aggregation(self) -> dict:
1625
1626
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1627
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1628
        return self._higher_is_better
1629

Baber Abbasi's avatar
Baber Abbasi committed
1630
1631
1632
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1633
1634
1635
1636
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1637
1638
1639
1640
1641
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1642
            f"num_samples={len(self.eval_docs)})"
1643
1644
        )

1645
1646

class MultipleChoiceTask(Task):
1647
    OUTPUT_TYPE = "loglikelihood"
1648

baberabb's avatar
baberabb committed
1649
    def doc_to_target(self, doc: dict) -> str:
1650
1651
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1652
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1653
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1654
1655
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1656
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1657
                doc=doc,
1658
                arguments=(ctx, " {}".format(choice)),
1659
                idx=i,
1660
1661
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1662
1663
            for i, choice in enumerate(doc["choices"])
        ]
1664

1665
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1666
1667
1668
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1680
    def higher_is_better(self) -> dict:
1681
1682
1683
1684
1685
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1686
    def aggregation(self) -> dict:
1687
1688
1689
1690
1691
1692
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1693
class PerplexityTask(Task):
1694
1695
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1696
    def has_training_docs(self) -> bool:
1697
1698
        return False

baberabb's avatar
baberabb committed
1699
    def fewshot_examples(self, k: int, rnd) -> List:
1700
1701
1702
1703
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1704
1705
        return []

baberabb's avatar
baberabb committed
1706
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1707
1708
1709
1710
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1711
1712
1713

        return ""

baberabb's avatar
baberabb committed
1714
    def higher_is_better(self) -> dict:
1715
1716
1717
1718
1719
1720
1721
1722
1723
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1724
    def doc_to_text(self, doc) -> str:
1725
1726
1727
1728
1729
        return ""

    def doc_to_target(self, doc):
        return doc

1730
1731
1732
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1733

lintangsutawika's avatar
lintangsutawika committed
1734
1735
1736
1737
1738
1739
1740
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1741

1742
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1743
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1744
1745
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1746
1747
1748
1749
1750
1751
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1752
    def aggregation(self) -> dict:
1753
1754
1755
1756
1757
1758
1759
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1760
    def count_bytes(cls, doc) -> int:
1761
1762
1763
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1764
    def count_words(cls, doc) -> int:
1765
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1766
        return len(re.split(r"\s+", doc))