task.py 66 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
59
    tag: Optional[Union[str, list]] = None
60
61
62
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
Baber's avatar
Baber committed
63
    download_dataset: Optional[Callable] = None
64
65
66
67
68
69
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
70
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
71
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
72
    )
73
74
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
75
76
77
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
78
    doc_to_image: Union[Callable, str] = None
79
80
81
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
82
    description: str = ""
83
84
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
85
    fewshot_config: Optional[dict] = None
86
    # runtime configuration options
87
    num_fewshot: Optional[int] = None
88
    # scoring options
89
90
91
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
92
    repeats: int = 1
93
    filter_list: Optional[Union[str, list]] = None
94
    should_decontaminate: bool = False
95
    doc_to_decontamination_query: Optional[str] = None
96
97
98
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
99

Ethan Smith's avatar
Ethan Smith committed
100
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
101
        if self.generation_kwargs is not None:
102
            if self.output_type != "generate_until":
103
                eval_logger.warning(
104
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
105
106
107
108
109
110
111
112
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
113
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
114
        else:
115
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
116
117
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
118
119
120
121
122
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
123
124
                    "do_sample": False,
                }
125

126
127
128
    def __getitem__(self, item):
        return getattr(self, item)

129
130
131
    def __setitem__(self, item, value):
        return setattr(self, item, value)

132
    def to_dict(self, keep_callable: bool = False) -> dict:
133
134
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
135
        Used for dumping results alongside full task configuration
136

haileyschoelkopf's avatar
haileyschoelkopf committed
137
138
139
140
141
142
143
144
145
146
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
147
148
149
150
151
152
153
154
155
156
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
157
        return cfg_dict
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

175
176
177
178
179
180
181
182
183
184
185

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

186
    VERSION: Optional[Union[int, str]] = None
187

188
189
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
190
    DATASET_PATH: Optional[str] = None
191
192

    # The name of a subset within `DATASET_PATH`.
193
    DATASET_NAME: Optional[str] = None
194

195
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
196

197
198
    def __init__(
        self,
199
200
201
202
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
203
    ) -> None:
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
226
227
228
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
229

230
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
231

lintangsutawika's avatar
lintangsutawika committed
232
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
233
234
235
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
236

237
238
239
240
241
242
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
267
268
269
270
271
272
273
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
274

275
    @property
276
    def config(self) -> TaskConfig:
277
278
279
        """Returns the TaskConfig associated with this class."""
        return self._config

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

295
    def training_docs(self) -> Iterable:
296
297
298
299
300
301
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

302
    def validation_docs(self) -> Iterable:
303
304
305
306
307
308
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

309
    def test_docs(self) -> Iterable:
310
311
312
313
314
315
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

316
    def fewshot_docs(self) -> Iterable:
317
318
319
320
321
322
323
324
325
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber's avatar
Baber committed
326
327
328
329
330
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
331
332
            return self.test_docs()

333
    def _process_doc(self, doc: dict) -> dict:
334
335
336
337
338
339
340
341
342
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
343

344
    @property
345
    def instances(self) -> List[Instance]:
346
347
348
349
350
351
352
353
354
355
356
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

357
358
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
359
360
361
362
363
364
365
366
367
368
369
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

370
371
372
373
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

374
375
    def build_all_requests(
        self,
376
        *,
377
378
379
380
381
382
383
384
385
386
        limit: Union[int, None] = None,
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
387
    ) -> None:
388
        """Build a set of Instances for a task, and store them in task.instances"""
389
390
391
392

        # used with caching
        og_limit = limit

393
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
394
395
396
397
398
399
400
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
401
        cache_key += f"-tokenizer{tokenizer_name}"
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
417
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
418

419
        instances = []
420
421
422
423
424
425
426
427
428
429

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
430
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
431
432
433
434
435
436
437
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
438
        ):
439
            # sample fewshot context #TODO: need to offset doc_id by rank now!
440
            fewshot_ctx = self.fewshot_context(
441
                doc,
442
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
443
444
445
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
446
                chat_template,
447
            )
448

449
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
450
451
452
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
453
                metadata=(self.config["task"], doc_id, self.config.repeats),
454
                apply_chat_template=apply_chat_template,
lintangsutawika's avatar
lintangsutawika committed
455
            )
456
457
458
459

            if not isinstance(inst, list):
                inst = [inst]

460
461
462
463
464
465
466
467
468
469
470
471
472
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
473

474
475
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
476

477
478
479
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
496
            The number of times each instance in a dataset is inferred on. Defaults to 1,
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

532
533
534
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
535
536
537
538
539
540
541
542
543
544
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

545
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
546
    def fewshot_context(
547
548
549
        self,
        doc,
        num_fewshot,
550
        rnd=None,
551
        description=None,
lintangsutawika's avatar
lintangsutawika committed
552
    ):
553
554
555
556
557
558
559
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
560
561
562
563
564
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
565
566
567
        :returns: str
            The fewshot context.
        """
568
        if rnd is None:
569
570
571
572
573
574
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
575

576
        description = description if description else ""
577
578

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
579
            labeled_examples = ""
580
        else:
lintangsutawika's avatar
lintangsutawika committed
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
605
            )
606
607

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
608
        return description + labeled_examples + example
609

610
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
611
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
612
613
        if hasattr(self, "_filters"):
            for f in self._filters:
614
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
615
616
617
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
618

baberabb's avatar
baberabb committed
619
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
620
        """Returns the config as a dictionary."""
621
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
622
        # (num_fewshot)
623
        return self.config.to_dict()
624

Baber Abbasi's avatar
Baber Abbasi committed
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

665
666
667
668
669
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

670
671
672
673
674
675
676
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
677
678
679
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
680
681
682
683
684
685
686
687
688
689
690
691
692

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

693
694

class ConfigurableTask(Task):
695
    VERSION = "Yaml"
696
    OUTPUT_TYPE = None
697
    CONFIG = None
698
699

    def __init__(
700
701
702
703
704
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
705
    ) -> None:  # TODO no super() call here
706
        # Get pre-configured attributes
707
        self._config = self.CONFIG
708

709
        # Use new configurations if there was no preconfiguration
710
        if self.config is None:
711
            self._config = TaskConfig(**config)
712
713
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
714
            if config is not None:
715
                self._config.__dict__.update(config)
716

717
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
718
719
720
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
721

722
723
724
725
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

726
        if self.config.output_type is not None:
727
728
729
730
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
731
            self.OUTPUT_TYPE = self.config.output_type
732

733
734
735
736
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

737
738
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
739

740
741
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
742

743
744
745
746
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
747

748
        if self.config.metric_list is None:
749
            # TODO: handle this in TaskConfig.__post_init__ ?
750
751
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

752
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
753
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
754
                self._metric_fn_kwargs[metric_name] = {}
755
756
757
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
758
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
759
        else:
760
            for metric_config in self.config.metric_list:
761
762
763
764
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
765
766
767
768
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
769
770
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
771
                }
Chris's avatar
Chris committed
772
773
774
775
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
776

777
                if self.config.process_results is not None:
778
779
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
780
781
782
783
784
785
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
786
787
788
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
789
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
790

791
                if "aggregation" in metric_config:
792
                    agg_name = metric_config["aggregation"]
793
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
794
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
795
                    elif callable(agg_name):  # noqa: E721
796
797
798
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
799
                else:
800
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
801
                    metric_agg = get_metric_aggregation(metric_name)
802
                    eval_logger.warning(
803
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
804
805
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
806
                    )
807
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
808

809
810
811
812
813
814
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
815
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
816
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
817
                        f"higher_is_better={is_higher_better(metric_name)}"
818
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
819
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
820

Baber's avatar
Baber committed
821
822
823
        if self.config.download_dataset is None:
            self.download(self.config.dataset_kwargs)
        else:
Baber's avatar
Baber committed
824
            self.dataset = self.config.download_dataset(
Baber's avatar
Baber committed
825
826
827
828
                metadata=self.config.metadata,
                **self.config.dataset_kwargs
                if self.config.dataset_kwargs is not None
                else {},
Baber's avatar
Baber committed
829
            )
830
831
832
        self._training_docs = None
        self._fewshot_docs = None

833
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
834
            self._filters = []
835
            for filter_config in self.config.filter_list:
836
837
838
839
840
841
842
843
844
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
845
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
846
        else:
847
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
848

849
850
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
851
            self.prompt = get_prompt(
852
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
853
            )
854
855
856
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
857
        if self.fewshot_docs() is not None:
858
859
860
861
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
862
863
864
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
881

882
        self.task_docs = self.eval_docs
883

884
        # Test One Doc
885
        self.features = list(self.task_docs.features.keys())
886
887
        self.multiple_input = 0
        self.multiple_target = 0
888
        test_doc = self.task_docs[0]
889
        test_text = self.doc_to_text(test_doc)
890
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
891

892
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
893
            test_choice = self.doc_to_choice(test_doc)
894
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
895
                eval_logger.error("doc_to_choice must return list")
896
897
            else:
                num_choice = len(test_choice)
898

899
            if isinstance(test_text, int):
900
                self.multiple_input = num_choice
901
902
        else:
            test_choice = None
903

904
        if isinstance(test_target, list):
905
            self.multiple_target = len(test_target)
906
        else:
907
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
908
                test_target = test_choice[test_target]
909
            else:
lintangsutawika's avatar
lintangsutawika committed
910
                test_target = str(test_target)
911

912
913
914
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
915
            check_choices = [test_target]
916
917
918
919
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
920
921
                    True
                    if self.config.target_delimiter.rstrip()
922
                    != self.config.target_delimiter
923
                    else False
924
                )
925

926
                if delimiter_has_whitespace and choice_has_whitespace:
927
928
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
929
930
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
931
                    eval_logger.debug(
932
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
933
934
                    )

Baber's avatar
nit  
Baber committed
935
936
937
    def download(
        self, dataset_kwargs: Optional[Dict[str, Any]] = None, **kwargs
    ) -> None:
938
939
940
941
942
943
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
944
    def has_training_docs(self) -> bool:
945
        if self.config.training_split is not None:
946
947
948
949
            return True
        else:
            return False

baberabb's avatar
baberabb committed
950
    def has_validation_docs(self) -> bool:
951
        if self.config.validation_split is not None:
952
953
954
955
            return True
        else:
            return False

baberabb's avatar
baberabb committed
956
    def has_test_docs(self) -> bool:
957
        if self.config.test_split is not None:
958
959
960
961
            return True
        else:
            return False

baberabb's avatar
baberabb committed
962
    def training_docs(self) -> datasets.Dataset:
963
        if self.has_training_docs():
964
965
966
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
967
                )
968
            return self.dataset[self.config.training_split]
969

baberabb's avatar
baberabb committed
970
    def validation_docs(self) -> datasets.Dataset:
971
        if self.has_validation_docs():
972
973
974
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
975
                )
976
            return self.dataset[self.config.validation_split]
977

baberabb's avatar
baberabb committed
978
    def test_docs(self) -> datasets.Dataset:
979
        if self.has_test_docs():
980
981
982
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
983

984
    def fewshot_docs(self):
985
        if self.config.fewshot_split is not None:
986
987
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
988
            return self.dataset[self.config.fewshot_split]
989
990
991
992
993
994
995
996
997
998
999
1000
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1001
        else:
1002
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1003
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
1004
                    f"[Task: {self.config.task}] "
1005
1006
1007
1008
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1009

KonradSzafer's avatar
KonradSzafer committed
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1031
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1032
1033
1034
1035
1036
1037
1038
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1039
        chat_template: Optional[Callable] = None,
KonradSzafer's avatar
KonradSzafer committed
1040
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1041
1042
1043
1044
1045
1046
1047
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1048
1049
1050
1051
1052
1053
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1054
1055
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
lintangsutawika's avatar
lintangsutawika committed
1056
1057
1058
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1059
1060
1061
1062
1063
1064
1065

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1066
1067
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1068

KonradSzafer's avatar
KonradSzafer committed
1069
1070
1071
1072
1073
1074
1075
1076
1077
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1078
        else:
KonradSzafer's avatar
KonradSzafer committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1098
1099

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1100
1101
        if apply_chat_template:
            if self.multiple_input:
1102
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
1114
                    labeled_examples_list.append(chat_template(chat))
KonradSzafer's avatar
KonradSzafer committed
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
1128
            return chat_template(labeled_examples)
1129
        else:
KonradSzafer's avatar
KonradSzafer committed
1130
1131
            if self.multiple_input:
                return labeled_examples
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1142

1143
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1144
        """Iterates over FilterEnsembles and applies them to instances"""
1145
1146
        if hasattr(self, "_filters"):
            for f in self._filters:
1147
                f.apply(self._instances)
1148
1149
1150
1151
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1152
    def should_decontaminate(self):
1153
        return self.config.should_decontaminate
1154
1155

    def doc_to_decontamination_query(self, doc):
1156
        if self.config.should_decontaminate:
1157
1158
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1159
            else:
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1171

1172
    def _process_doc(self, doc: dict) -> dict:
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1183
    def doc_to_text(self, doc, doc_to_text=None):
1184
1185
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1186
1187
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1188
        else:
1189
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1190

1191
        if isinstance(doc_to_text, int):
1192
            return doc_to_text
1193
        elif isinstance(doc_to_text, str):
1194
            if doc_to_text in self.features:
1195
                # if self.config.doc_to_choice is not None:
1196
1197
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1198
1199
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1200
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1201
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1202
1203
1204
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1205
        elif callable(doc_to_text):
1206
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1207
        # Used when applying a Promptsource template
1208
        elif hasattr(doc_to_text, "apply"):
1209
1210
1211
1212
1213
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1214
                return self.config.fewshot_delimiter
1215
        else:
1216
            print(type(doc_to_text))
1217
            raise TypeError
1218

Yu Shi Jie's avatar
Yu Shi Jie committed
1219
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1220
1221
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1222
1223
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1224
        else:
1225
            doc_to_target = self.config.doc_to_target
1226

1227
        if isinstance(doc_to_target, int):
1228
            return doc_to_target
1229
        elif isinstance(doc_to_target, str):
1230
            if doc_to_target in self.features:
1231
                # if self.config.doc_to_choice is not None:
1232
1233
1234
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1235
            else:
lintangsutawika's avatar
lintangsutawika committed
1236
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1237
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1238
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1239
1240
1241
1242
1243
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1244
1245
1246
1247
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1248
1249
                else:
                    return target_string
1250
        elif isinstance(doc_to_target, list):
1251
            return doc_to_target
1252
        elif callable(doc_to_target):
1253
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1254
        # Used when applying a Promptsource template
1255
        elif hasattr(doc_to_target, "apply"):
1256
            applied_prompt = doc_to_target.apply(doc)
1257
1258
1259
1260
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1261
                return self.config.fewshot_delimiter
1262
1263
        else:
            raise TypeError
1264

Yu Shi Jie's avatar
Yu Shi Jie committed
1265
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1266
1267
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1268
1269
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1270
        elif self.config.doc_to_choice is None:
1271
1272
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1273
            doc_to_choice = self.config.doc_to_choice
1274

1275
        if isinstance(doc_to_choice, str):
1276
1277
1278
1279
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1280
        elif isinstance(doc_to_choice, list):
1281
            return doc_to_choice
1282
        elif isinstance(doc_to_choice, dict):
1283
1284
1285
1286
1287
1288
1289
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1290

1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

baberabb's avatar
baberabb committed
1314
1315
1316
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1317
1318
        apply_chat_template = kwargs.pop("apply_chat_template", False)

1319
1320
        aux_arguments = None

1321
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1322
            arguments = (ctx, self.doc_to_target(doc))
1323
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1324
            arguments = (self.doc_to_target(doc),)
1325
        elif self.OUTPUT_TYPE == "multiple_choice":
1326
            choices = self.doc_to_choice(doc)
1327
            target_delimiter = self.config.target_delimiter
1328
1329
            if apply_chat_template:
                target_delimiter = ""
1330
1331
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1332
                cont = self.doc_to_target(doc)
1333
1334
1335
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1336
            else:
1337
                # Otherwise they are placed in the continuation
1338
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1339

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                aux_arguments = [("", f"{choice}") for choice in choices]

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1371
            request_list = [
1372
1373
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1374
                    doc=doc,
1375
                    arguments=arg,
1376
                    idx=i,
1377
1378
                    **kwargs,
                )
1379
                for i, arg in enumerate(arguments)
1380
            ]
1381
1382

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1383

lintangsutawika's avatar
lintangsutawika committed
1384
        return Instance(
1385
1386
1387
1388
1389
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1390
        )
1391
1392

    def process_results(self, doc, results):
1393
1394
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1395

1396
        result_dict = {}
1397
        use_metric = list(self._metric_fn_list.keys())
1398
1399
1400
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1401
1402
1403
1404
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1405
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1406
            (loglikelihood,) = results
1407
1408
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1409
            return {
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1425
            }
1426
        elif self.OUTPUT_TYPE == "multiple_choice":
1427
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1428

1429
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1430
            choices = self.doc_to_choice(doc)
1431
1432
            completion_len = np.array([float(len(i)) for i in choices])

1433
1434
            if (
                2 * len(choices) == len(lls)
1435
                and "acc_mutual_info" in self._metric_fn_list.keys()
1436
1437
1438
1439
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1440
1441
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1442
1443
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1444

1445
1446
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1447

1448
1449
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1450
            else:
1451
                gold = self.doc_to_target(doc)
1452
1453

            gold_index_error = False
1454
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1455
1456
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1457
1458
                    gold_index_error = True
            else:
1459
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1460
                    gold = gold if gold < len(choices) else -100
1461
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1462
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1463

Lintang Sutawika's avatar
Lintang Sutawika committed
1464
                if gold == -100:
1465
1466
1467
1468
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1469
                    f"Label index was not in within range of available choices,"
1470
1471
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1472

1473
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1474
1475
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1476
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1477
1478
1479
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1480
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1481
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1482

Lintang Sutawika's avatar
Lintang Sutawika committed
1483
1484
1485
1486
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1487
            result_dict = {
1488
                **({"acc": acc} if "acc" in use_metric else {}),
1489
1490
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1491
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1492
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1493
1494
1495
1496
1497
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1498
1499
            }

1500
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1501
1502
1503
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1504
1505
1506
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1507
        elif self.OUTPUT_TYPE == "generate_until":
1508
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1509
            result = results[0]
1510
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1511
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1512
                # it assumes that doc_to_target returns a number.
1513
1514
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1515
1516
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1517
                gold = list(gold)
1518
1519
1520
1521
            elif (
                type(gold) is not type(result)
                and "bypass" not in self._metric_fn_list.keys()
            ):
Chris's avatar
Chris committed
1522
1523
                # cast gold to the same type as result
                gold = type(result)(gold)
1524

lintangsutawika's avatar
lintangsutawika committed
1525
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1526
1527
1528
1529
1530
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1531
1532
1533
1534
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1535
1536
1537
1538
1539
1540
1541
1542
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1543
                    else:
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1565
                else:
1566
                    try:
1567
                        result_score = self._metric_fn_list[metric](
1568
1569
                            references=[gold],
                            predictions=[result],
1570
                            **self._metric_fn_kwargs[metric],
1571
                        )
1572
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1573
                        result_score = self._metric_fn_list[metric]([gold, result])
1574
1575
1576
1577
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1578
        else:
lintangsutawika's avatar
lintangsutawika committed
1579
1580
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1581
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1582
            )
1583
1584
1585

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1586
    def aggregation(self) -> dict:
1587
1588
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1589
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1590
        return self._higher_is_better
1591

Baber Abbasi's avatar
Baber Abbasi committed
1592
1593
1594
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1595
1596
1597
1598
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1599
1600
1601
1602
1603
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1604
            f"num_samples={len(self.eval_docs)})"
1605
1606
        )

1607
1608

class MultipleChoiceTask(Task):
1609
    OUTPUT_TYPE = "loglikelihood"
1610

baberabb's avatar
baberabb committed
1611
    def doc_to_target(self, doc: dict) -> str:
1612
1613
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1614
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1615
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1616
1617
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1618
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1619
                doc=doc,
1620
                arguments=(ctx, " {}".format(choice)),
1621
                idx=i,
1622
1623
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1624
1625
            for i, choice in enumerate(doc["choices"])
        ]
1626

1627
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1628
1629
1630
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1642
    def higher_is_better(self) -> dict:
1643
1644
1645
1646
1647
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1648
    def aggregation(self) -> dict:
1649
1650
1651
1652
1653
1654
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1655
class PerplexityTask(Task):
1656
1657
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1658
    def has_training_docs(self) -> bool:
1659
1660
        return False

baberabb's avatar
baberabb committed
1661
    def fewshot_examples(self, k: int, rnd) -> List:
1662
1663
1664
1665
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1666
1667
        return []

baberabb's avatar
baberabb committed
1668
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1669
1670
1671
1672
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1673
1674
1675

        return ""

baberabb's avatar
baberabb committed
1676
    def higher_is_better(self) -> dict:
1677
1678
1679
1680
1681
1682
1683
1684
1685
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1686
    def doc_to_text(self, doc) -> str:
1687
1688
1689
1690
1691
        return ""

    def doc_to_target(self, doc):
        return doc

1692
1693
1694
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1695

lintangsutawika's avatar
lintangsutawika committed
1696
1697
1698
1699
1700
1701
1702
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1703

1704
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1705
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1706
1707
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1708
1709
1710
1711
1712
1713
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1714
    def aggregation(self) -> dict:
1715
1716
1717
1718
1719
1720
1721
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1722
    def count_bytes(cls, doc) -> int:
1723
1724
1725
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1726
    def count_words(cls, doc) -> int:
1727
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1728
        return len(re.split(r"\s+", doc))