task.py 61 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from typing import (
Baber's avatar
cleanup  
Baber committed
9
    TYPE_CHECKING,
10
11
12
13
14
15
16
17
18
19
20
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
21
22
23

import datasets
import numpy as np
24
from tqdm import tqdm
Baber's avatar
Baber committed
25
from typing_extensions import deprecated
26
27

from lm_eval import utils
28
29
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
30
from lm_eval.caching.cache import load_from_cache, save_to_cache
Baber's avatar
Baber committed
31
32
from lm_eval.config.metric import MetricConfig
from lm_eval.config.task import TaskConfig
33
34
35
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

36

37
38
39
40
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
41
    "generate_until",
42
43
]

Baber's avatar
cleanup  
Baber committed
44
if TYPE_CHECKING:
Baber's avatar
Baber committed
45
    pass
Baber's avatar
cleanup  
Baber committed
46
47


Lintang Sutawika's avatar
Lintang Sutawika committed
48
eval_logger = logging.getLogger(__name__)
49

lintangsutawika's avatar
lintangsutawika committed
50

51
52
53
54
55
56
57
58
59
60
class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

61
    VERSION: Optional[Union[int, str]] = None
62

63
64
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
65
    DATASET_PATH: Optional[str] = None
66
67

    # The name of a subset within `DATASET_PATH`.
68
    DATASET_NAME: Optional[str] = None
69

70
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
71

72
73
    def __init__(
        self,
74
75
76
77
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
78
    ) -> None:
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
101
102
103
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
104

105
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
106

lintangsutawika's avatar
lintangsutawika committed
107
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
108
109
110
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
111

112
113
114
115
116
117
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
142
143
144
145
146
147
148
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
149

150
    @property
151
    def config(self) -> TaskConfig:
152
153
154
        """Returns the TaskConfig associated with this class."""
        return self._config

155
    @abc.abstractmethod
Baber's avatar
Baber committed
156
    def has_training_docs(self) -> bool:
157
158
159
160
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
Baber's avatar
Baber committed
161
    def has_validation_docs(self) -> bool:
162
163
164
165
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
Baber's avatar
Baber committed
166
    def has_test_docs(self) -> bool:
167
168
169
        """Whether the task has a test set"""
        pass

170
    def training_docs(self) -> Iterable:
171
172
173
174
175
176
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

177
    def validation_docs(self) -> Iterable:
178
179
180
181
182
183
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

184
    def test_docs(self) -> Iterable:
185
186
187
188
189
190
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

191
    def fewshot_docs(self) -> Iterable:
192
193
194
195
196
197
198
199
200
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber Abbasi's avatar
Baber Abbasi committed
201
202
203
204
205
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
206
207
            return self.test_docs()

208
    def _process_doc(self, doc: dict) -> dict:
209
210
211
212
213
214
215
216
217
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
218

219
    @property
Baber's avatar
cleanup  
Baber committed
220
    def instances(self) -> list[Instance]:
221
222
223
224
225
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

Baber's avatar
Baber committed
226
    def fewshot_examples(self, k, rnd) -> Iterable[dict]:
227
228
229
230
231
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Baber's avatar
cleanup  
Baber committed
232
    def doc_to_decontamination_query(self, doc: dict):
233
        raise NotImplementedError(
234
235
236
237
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
Baber's avatar
cleanup  
Baber committed
238
    def doc_to_text(self, doc: dict) -> str:
239
240
241
        pass

    @abc.abstractmethod
Baber's avatar
cleanup  
Baber committed
242
    def doc_to_target(self, doc: dict) -> Union[str, int]:
243
244
        pass

245
    # not an abstractmethod because not every language-only task has to implement this
Baber's avatar
cleanup  
Baber committed
246
    def doc_to_image(self, doc: dict):
247
248
        raise NotImplementedError

Baber's avatar
cleanup  
Baber committed
249
    def doc_to_audio(self, doc: dict):
250
251
        raise NotImplementedError

Baber's avatar
cleanup  
Baber committed
252
    def doc_to_prefix(self, doc: dict) -> str:
Baber Abbasi's avatar
Baber Abbasi committed
253
254
        return ""

255
256
    def build_all_requests(
        self,
257
        *,
258
        limit: Union[int, None] = None,
259
        samples: Optional[List[int]] = None,
260
261
262
263
264
265
266
267
268
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
269
    ) -> None:
270
        """Build a set of Instances for a task, and store them in task.instances"""
271
272
273
274

        # used with caching
        og_limit = limit

275
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
276
277
278
279
280
281
282
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
283
        cache_key += f"-tokenizer{tokenizer_name}"
284

Baber Abbasi's avatar
Baber Abbasi committed
285
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
286
287
288
289
290
291
292
293
294
295
296
297
298

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
299
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
300

301
        instances = []
302
303
304
305
306
307
308
309
310
311

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
312
313
314
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
315
316
317
318
319
320
321
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
322
        ):
323
            # sample fewshot context #TODO: need to offset doc_id by rank now!
324
            fewshot_ctx = self.fewshot_context(
325
                doc,
326
327
328
329
330
331
332
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
333
                gen_prefix=self.doc_to_prefix(doc),
334
            )
335

336
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
337
338
339
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
340
                metadata=(self.config["task"], doc_id, self.config.repeats),
341
                apply_chat_template=apply_chat_template,
342
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
343
            )
344
345
346
347

            if not isinstance(inst, list):
                inst = [inst]

348
349
350
351
352
353
354
355
356
357
358
359
360
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
361

362
363
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
364

365
366
367
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

368
    @abc.abstractmethod
Baber's avatar
cleanup  
Baber committed
369
    def construct_requests(self, doc: dict, ctx: Union[list[dict], str], **kwargs):
370
371
372
373
374
375
376
377
378
379
380
381
382
383
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
384
            The number of times each instance in a dataset is inferred on. Defaults to 1,
385
386
387
388
389
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
Baber's avatar
cleanup  
Baber committed
390
    def process_results(self, doc: dict, results: list):
391
392
393
394
395
396
397
398
399
400
401
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

Baber's avatar
Baber committed
402
    @deprecated("not used anymore")
403
404
405
406
407
408
409
410
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

Baber's avatar
Baber committed
411
    @deprecated("not used anymore")
412
413
414
415
416
417
418
419
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

420
421
422
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
423
    @classmethod
Baber's avatar
Baber committed
424
    def count_bytes(cls, doc) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
425
426
427
428
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
Baber's avatar
Baber committed
429
    def count_words(cls, doc) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
430
431
432
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

433
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
434
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
435
436
437
438
439
440
441
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
442
443
444
445
446
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
447
448
449
        :returns: str
            The fewshot context.
        """
450
        if rnd is None:
451
452
453
454
455
456
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
457

458
        description = description if description else ""
459
460

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
461
            labeled_examples = ""
462
        else:
lintangsutawika's avatar
lintangsutawika committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
487
            )
488
489

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
490
        return description + labeled_examples + example
491

492
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
493
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
494
495
        if hasattr(self, "_filters"):
            for f in self._filters:
496
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
497
498
499
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
500

baberabb's avatar
baberabb committed
501
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
502
        """Returns the config as a dictionary."""
503
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
504
        # (num_fewshot)
505
        return self.config.to_dict()
506

Baber Abbasi's avatar
Baber Abbasi committed
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
Baber's avatar
Baber committed
529
530
531
532
533
534
535
        # if not isinstance(self, ConfigurableTask):
        #     self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
        #     self.aggregation = lambda: {
        #         metric_name: get_metric_aggregation(metric_name)
        #     }
        setattr(self._config, "metric_list", [MetricConfig(name=metric_name)])
        setattr(self._config, "process_results", lambda *args: {"bypass": 0})
Baber Abbasi's avatar
Baber Abbasi committed
536

537
538
539
540
541
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

542
    @property
Baber's avatar
Baber committed
543
    def eval_docs(self) -> Union[datasets.Dataset, Iterable[dict]]:
544
545
546
547
548
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
549
550
551
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
552
553

    def doc_iterator(
554
555
556
557
558
559
        self,
        *,
        rank: int = 0,
        limit: Union[int, None] = None,
        world_size: int = 1,
        samples: Optional[List[int]] = None,
560
    ) -> Iterator[Tuple[int, Any]]:
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
        if samples:
            n = len(self.eval_docs)
            assert all([e < n for e in samples]), (
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
583
584
        return doc_iterator

585
586

class ConfigurableTask(Task):
587
    VERSION = "Yaml"
588
    OUTPUT_TYPE = None
589
    CONFIG = None
590
591

    def __init__(
592
593
594
595
596
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Baber's avatar
Baber committed
597
    ) -> None:
598
        # Get pre-configured attributes
599
        self._config = self.CONFIG
600

601
        # Use new configurations if there was no preconfiguration
602
        if self.config is None:
603
            self._config = TaskConfig(**config)
604
605
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
606
            if config is not None:
607
                self._config.__dict__.update(config)
608

609
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
610
611
612
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
613

614
615
616
617
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

618
        if self.config.output_type is not None:
619
620
621
622
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
623
            self.OUTPUT_TYPE = self.config.output_type
624

625
626
627
628
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

629
630
631
632
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
633
634
635
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

636
637
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
638

639
640
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
641

Baber's avatar
Baber committed
642
        self.metric_list: list[MetricConfig] = self.config.get_metrics
643

644
        self.download(self.config.dataset_kwargs)
645
646
647
        self._training_docs = None
        self._fewshot_docs = None

Baber's avatar
Baber committed
648
        self._filters = self.config.get_filters
Baber's avatar
Baber committed
649

650
651
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
652
            self.prompt = get_prompt(
653
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
654
            )
655
656
657
        else:
            self.prompt = None

Baber's avatar
Baber committed
658
659
660
661
        if self.config.fewshot_cfg.num > 0 and self.fewshot_docs() is not None:
            self.fewshot_rnd = random.Random()
            self.sampler = self.config.fewshot_cfg.init_sampler(
                list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
662
            )
663
        self.task_docs = self.eval_docs
664

665
        # Test One Doc
666
        self.features = list(self.task_docs.features.keys())
667
668
        self.multiple_input = 0
        self.multiple_target = 0
669
        test_doc = self.task_docs[0]
670
        test_text = self.doc_to_text(test_doc)
671
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
672

673
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
674
            test_choice = self.doc_to_choice(test_doc)
675
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
676
                eval_logger.error("doc_to_choice must return list")
677
678
            else:
                num_choice = len(test_choice)
679

680
            if isinstance(test_text, int):
Baber Abbasi's avatar
Baber Abbasi committed
681
682
683
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
684
                self.multiple_input = num_choice
685
686
        else:
            test_choice = None
687

688
        if isinstance(test_target, list):
Baber Abbasi's avatar
Baber Abbasi committed
689
690
691
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
692
            self.multiple_target = len(test_target)
693
        else:
694
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
695
                test_target = test_choice[test_target]
696
            else:
lintangsutawika's avatar
lintangsutawika committed
697
                test_target = str(test_target)
698

699
700
701
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
702
            check_choices = [test_target]
703
704
705
706
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
707
708
                    True
                    if self.config.target_delimiter.rstrip()
709
                    != self.config.target_delimiter
710
                    else False
711
                )
712

713
                if delimiter_has_whitespace and choice_has_whitespace:
714
715
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
716
717
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
718
                    eval_logger.debug(
719
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
720
721
                    )

Baber Abbasi's avatar
Baber Abbasi committed
722
723
724
    def download(
        self, dataset_kwargs: Optional[Dict[str, Any]] = None, **kwargs
    ) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
725
726
727
728
        from packaging.version import parse as vparse

        if dataset_kwargs and vparse(datasets.__version__) >= vparse("4.0.0"):
            dataset_kwargs.pop("trust_remote_code", None)
Baber Abbasi's avatar
Baber Abbasi committed
729
730
731
732
733
734
735
736
737
738
739
740
741
742
        if isinstance(self.config.custom_dataset, Callable):
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
            self.dataset = self.config.custom_dataset(
                **(self.config.metadata or {}), **(self.config.dataset_kwargs or {})
            )
        else:
            self.dataset = datasets.load_dataset(
                path=self.DATASET_PATH,
                name=self.DATASET_NAME,
                **dataset_kwargs if dataset_kwargs is not None else {},
            )
743

baberabb's avatar
baberabb committed
744
    def has_training_docs(self) -> bool:
745
        if self.config.training_split is not None:
746
747
748
749
            return True
        else:
            return False

baberabb's avatar
baberabb committed
750
    def has_validation_docs(self) -> bool:
751
        if self.config.validation_split is not None:
752
753
754
755
            return True
        else:
            return False

baberabb's avatar
baberabb committed
756
    def has_test_docs(self) -> bool:
757
        if self.config.test_split is not None:
758
759
760
761
            return True
        else:
            return False

Baber's avatar
Baber committed
762
    def training_docs(self) -> Optional[datasets.Dataset]:
763
        if self.has_training_docs():
764
765
766
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
767
                )
768
            return self.dataset[self.config.training_split]
769

Baber's avatar
Baber committed
770
    def validation_docs(self) -> Optional[datasets.Dataset]:
771
        if self.has_validation_docs():
772
773
774
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
775
                )
776
            return self.dataset[self.config.validation_split]
777

Baber's avatar
Baber committed
778
    def test_docs(self) -> Optional[datasets.Dataset]:
779
        if self.has_test_docs():
780
781
782
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
783

784
    def fewshot_docs(self):
Baber's avatar
Baber committed
785
786
787
788
789
790
791
792
        docs = self.config.fewshot_cfg.get_docs(self.dataset)

        if docs is not None:
            return docs

        # Fallback to parent implementation
        if _num_fewshot := getattr(self.config, "num_fewshot"):
            if isinstance(_num_fewshot, int) and _num_fewshot > 0:
793
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
794
                    f"[Task: {self.config.task}] "
Baber's avatar
Baber committed
795
796
                    "num_fewshot > 0 but no fewshot source configured. "
                    "Using preconfigured rule."
797
                )
Baber's avatar
Baber committed
798
799

        return super().fewshot_docs()
800

KonradSzafer's avatar
KonradSzafer committed
801
802
803
804
805
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
806
        gen_prefix: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
807
808
809
810
811
812
813
814
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
815
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
816
817
            # if last message is user, append to it to avoid two user messages in a row
            else:
818
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
819
820
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
821
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
822
823
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
824

lintangsutawika's avatar
lintangsutawika committed
825
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
826
827
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
828
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
829
830
831
832
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
833
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
834
        gen_prefix: Optional[str] = None,
Baber's avatar
Baber committed
835
    ) -> Union[str, List[str], None]:
lintangsutawika's avatar
lintangsutawika committed
836
837
838
839
840
841
842
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
843
844
845
846
847
848
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
849
850
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
851
852
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
853
854
855
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
856
857
858
859
860
861
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
862
863
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
864

KonradSzafer's avatar
KonradSzafer committed
865
866
867
868
869
870
871
872
873
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
874
        else:
KonradSzafer's avatar
KonradSzafer committed
875
876
877
878
879
880
881
882
883
884
885
886
887
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
888
889
890
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
891
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
892
893
894
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
895
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
896
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
897
                )
lintangsutawika's avatar
lintangsutawika committed
898
899

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
900
901
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
902
                # TODO: append prefill?
903
904
                if not labeled_examples:
                    return ""
905
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
906
907
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
908
909
910
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
911
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
912
913
914
915
916
917
918
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
919
920
921
922
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
923
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
924
925
926
927
928
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber Abbasi's avatar
Baber Abbasi committed
929
                            add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
930
931
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
932
933
934
935
936
937
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
938
939
940
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
941
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
942
943
944
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
945
946
947
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
948
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
949
950
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
951
952
            return chat_template(
                labeled_examples,
Baber Abbasi's avatar
Baber Abbasi committed
953
                add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
954
            )
955
        else:
Baber Abbasi's avatar
Baber Abbasi committed
956
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
957
958
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
959
960
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
961
962
            if self.multiple_input:
                return labeled_examples
963
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
964
                return labeled_examples + example + prefix
965
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
966
                return [labeled_examples + ex + prefix for ex in example]
967
968
969
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
970
                    return labeled_examples + choices[example] + prefix
971
                else:
Baber Abbasi's avatar
Baber Abbasi committed
972
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
973

Baber Abbasi's avatar
Baber Abbasi committed
974
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
975
        """Iterates over FilterEnsembles and applies them to instances"""
976
977
        if hasattr(self, "_filters"):
            for f in self._filters:
978
                f.apply(self._instances)
979
980
981
982
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

983
    def should_decontaminate(self):
984
        return self.config.should_decontaminate
985

Baber Abbasi's avatar
Baber Abbasi committed
986
    def doc_to_decontamination_query(self, doc: dict):
987
        if self.config.should_decontaminate:
988
989
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
990
            else:
991
992
993
994
995
996
997
998
999
1000
1001
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1002

1003
    def _process_doc(self, doc: dict) -> dict:
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Baber's avatar
Baber committed
1014
    def doc_to_text(self, doc: dict, doc_to_text: Union[int, str, Callable] = None):
1015
1016
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1017
1018
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1019
        else:
1020
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1021

1022
        if isinstance(doc_to_text, int):
1023
            return doc_to_text
1024
        elif isinstance(doc_to_text, str):
1025
            if doc_to_text in self.features:
1026
                # if self.config.doc_to_choice is not None:
1027
1028
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1029
1030
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1031
                text_string = utils.apply_template(doc_to_text, doc)
Baber's avatar
Baber committed
1032
                if text_string.isdigit() and self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1033
1034
1035
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1036
        elif callable(doc_to_text):
1037
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1038
        # Used when applying a Promptsource template
1039
        elif hasattr(doc_to_text, "apply"):
1040
1041
1042
1043
1044
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1045
                return self.config.fewshot_delimiter
1046
        else:
1047
            print(type(doc_to_text))
1048
            raise TypeError
1049

Baber's avatar
cleanup  
Baber committed
1050
    def doc_to_target(self, doc: dict, doc_to_target=None) -> Union[int, str, list]:
1051
1052
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1053
1054
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1055
        else:
1056
            doc_to_target = self.config.doc_to_target
1057

1058
        if isinstance(doc_to_target, int):
1059
            return doc_to_target
1060
        elif isinstance(doc_to_target, str):
1061
            if doc_to_target in self.features:
1062
                # if self.config.doc_to_choice is not None:
1063
1064
1065
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1066
            else:
lintangsutawika's avatar
lintangsutawika committed
1067
                target_string = utils.apply_template(doc_to_target, doc)
Baber's avatar
Baber committed
1068
                if target_string.isdigit() and self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1069
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1070
1071
1072
1073
1074
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1075
1076
1077
1078
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1079
1080
                else:
                    return target_string
1081
        elif isinstance(doc_to_target, list):
1082
            return doc_to_target
1083
        elif callable(doc_to_target):
1084
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1085
        # Used when applying a Promptsource template
1086
        elif hasattr(doc_to_target, "apply"):
1087
            applied_prompt = doc_to_target.apply(doc)
1088
1089
1090
1091
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1092
                return self.config.fewshot_delimiter
1093
1094
        else:
            raise TypeError
1095

Baber's avatar
cleanup  
Baber committed
1096
1097
1098
    def doc_to_choice(
        self, doc: dict, doc_to_choice: Union[str, list, dict] = None
    ) -> List[str]:
1099
1100
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1101
1102
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1103
        elif self.config.doc_to_choice is None:
1104
1105
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1106
            doc_to_choice = self.config.doc_to_choice
1107

1108
        if isinstance(doc_to_choice, str):
1109
1110
1111
1112
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1113
        elif isinstance(doc_to_choice, list):
1114
            return doc_to_choice
1115
        elif isinstance(doc_to_choice, dict):
1116
1117
1118
1119
1120
1121
1122
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1123

Baber's avatar
cleanup  
Baber committed
1124
    def doc_to_image(self, doc: dict, doc_to_image=None) -> Union[int, str, list, None]:
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

Baber's avatar
Baber committed
1147
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> Union[int, str, list, None]:
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber's avatar
cleanup  
Baber committed
1170
    def doc_to_prefix(self, doc: dict) -> Optional[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1171
1172
1173
1174
1175
1176
1177
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1178
1179
1180
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1181
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1182
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1183

1184
1185
        aux_arguments = None

1186
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1187
            arguments = (ctx, self.doc_to_target(doc))
1188
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1189
            arguments = (self.doc_to_target(doc),)
1190
        elif self.OUTPUT_TYPE == "multiple_choice":
1191
            choices = self.doc_to_choice(doc)
1192
            target_delimiter = self.config.target_delimiter
1193
1194
            if apply_chat_template:
                target_delimiter = ""
1195
1196
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1197
                # apply chat_template to choices if apply_chat_template
1198
                cont = self.doc_to_target(doc)
1199

1200
                arguments = [
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1211
                ]
1212
            else:
1213
                # Otherwise they are placed in the continuation
1214
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1215

1216
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
Baber's avatar
Baber committed
1217
            if "acc_mutual_info" in [m.metric_name for m in self.metric_list]:
1218
1219
1220
1221
1222
1223
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1224
1225
1226
1227
                # TODO: should these be strided? will have to modify the processing in process_results if so
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1243
1244
1245
1246
1247
1248
1249
1250
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1251
1252
1253
1254
1255
1256
1257
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1258
            request_list = [
1259
1260
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1261
                    doc=doc,
1262
                    arguments=arg,
1263
                    idx=i,
1264
1265
                    **kwargs,
                )
1266
                for i, arg in enumerate(arguments)
1267
            ]
1268
1269

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1270

lintangsutawika's avatar
lintangsutawika committed
1271
        return Instance(
1272
1273
1274
1275
1276
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1277
        )
1278

Baber's avatar
cleanup  
Baber committed
1279
    def process_results(self, doc: dict, results: list) -> dict:
1280
1281
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1282

1283
        result_dict = {}
Baber's avatar
Baber committed
1284
        use_metric = list(m.metric_name for m in self.metric_list)
1285
1286
1287
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1288
1289
1290
1291
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1292
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1293
            (loglikelihood,) = results
1294
1295
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1296
            return {
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1312
            }
1313
        elif self.OUTPUT_TYPE == "multiple_choice":
1314
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1315

1316
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1317
            choices = self.doc_to_choice(doc)
1318
1319
            completion_len = np.array([float(len(i)) for i in choices])

Baber's avatar
Baber committed
1320
            if 2 * len(choices) == len(lls) and "acc_mutual_info" in use_metric:
1321
1322
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1323
1324
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1325
1326
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1327
                # and this stores our "regular" conditional loglikelihoods
1328
                lls = lls[: len(choices)]
1329

1330
1331
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1332

1333
1334
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1335
            else:
1336
                gold = self.doc_to_target(doc)
1337
1338

            gold_index_error = False
1339
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1340
1341
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1342
1343
                    gold_index_error = True
            else:
1344
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1345
                    gold = gold if gold < len(choices) else -100
1346
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1347
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1348

Lintang Sutawika's avatar
Lintang Sutawika committed
1349
                if gold == -100:
1350
1351
1352
1353
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1354
                    f"Label index was not in within range of available choices,"
1355
1356
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1357

1358
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1359
1360
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1361
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1362
1363
1364
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1365
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1366
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1367

Lintang Sutawika's avatar
Lintang Sutawika committed
1368
1369
1370
1371
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1372
            result_dict = {
1373
                **({"acc": acc} if "acc" in use_metric else {}),
1374
1375
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1376
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1377
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1378
1379
1380
1381
1382
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1383
1384
            }

1385
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1386
1387
1388
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1389
1390
1391
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1392
        elif self.OUTPUT_TYPE == "generate_until":
1393
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1394
            result = results[0]
1395
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1396
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1397
                # it assumes that doc_to_target returns a number.
1398
1399
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1400
1401
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1402
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1403
1404
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
Baber's avatar
Baber committed
1405
                "bypass" in use_metric or isinstance(result, list)
1406
            ):
Chris's avatar
Chris committed
1407
1408
                # cast gold to the same type as result
                gold = type(result)(gold)
1409

Baber's avatar
Baber committed
1410
            for metric in self.metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
1411
1412
1413
1414
1415
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1416
1417
1418
1419
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
Baber's avatar
Baber committed
1420
                    if metric.name == "exact_match":
1421
                        result = [result for _ in range(len(gold))]
Baber's avatar
Baber committed
1422
                        scores = metric.fn(
1423
1424
                            references=gold,
                            predictions=result,
Baber's avatar
Baber committed
1425
                            **metric.kwargs,
1426
1427
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1428
                    else:
1429
1430
                        for gold_option in gold:
                            try:
Baber's avatar
Baber committed
1431
                                result_score = metric.fn(
1432
1433
                                    references=[gold_option],
                                    predictions=[result],
Baber's avatar
Baber committed
1434
                                    **metric.kwargs,
1435
1436
1437
1438
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
Baber's avatar
Baber committed
1439
                                result_score = metric.fn([gold_option, result])
1440
1441
1442
1443
1444
1445
1446
1447
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1448
                else:
1449
                    try:
Baber's avatar
Baber committed
1450
                        result_score = metric.fn(
1451
1452
                            references=[gold],
                            predictions=[result],
Baber's avatar
Baber committed
1453
                            **metric.kwargs,
1454
                        )
1455
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
Baber's avatar
Baber committed
1456
                        result_score = metric.fn([gold, result])
1457
1458
1459
1460
1461
1462
1463
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1464
        else:
lintangsutawika's avatar
lintangsutawika committed
1465
1466
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1467
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1468
            )
1469
1470
1471

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1472
    def aggregation(self) -> dict:
Baber's avatar
Baber committed
1473
        return {k.name: k.aggregation_fn for k in self.metric_list}
1474

Baber Abbasi's avatar
Baber Abbasi committed
1475
    def higher_is_better(self) -> dict:
Baber's avatar
Baber committed
1476
        return {k.name: k.higher_is_better for k in self.metric_list}
1477

Baber Abbasi's avatar
Baber Abbasi committed
1478
1479
1480
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1481
    @property
Baber's avatar
Baber committed
1482
    def task_name(self) -> Optional[str]:
Lintang Sutawika's avatar
Lintang Sutawika committed
1483
1484
        return getattr(self.config, "task", None)

1485
1486
1487
1488
1489
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1490
            f"num_samples={len(self.eval_docs)})"
1491
1492
        )

1493
1494

class MultipleChoiceTask(Task):
1495
    OUTPUT_TYPE = "loglikelihood"
1496

baberabb's avatar
baberabb committed
1497
    def doc_to_target(self, doc: dict) -> str:
1498
1499
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1500
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1501
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1502
1503
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1504
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1505
                doc=doc,
1506
                arguments=(ctx, " {}".format(choice)),
1507
                idx=i,
1508
1509
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1510
1511
            for i, choice in enumerate(doc["choices"])
        ]
1512

1513
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1514
1515
1516
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1528
    def higher_is_better(self) -> dict:
1529
1530
1531
1532
1533
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1534
    def aggregation(self) -> dict:
1535
1536
1537
1538
1539
1540
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1541
class PerplexityTask(Task):
1542
1543
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1544
    def has_training_docs(self) -> bool:
1545
1546
        return False

baberabb's avatar
baberabb committed
1547
    def fewshot_examples(self, k: int, rnd) -> List:
1548
1549
1550
1551
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1552
1553
        return []

baberabb's avatar
baberabb committed
1554
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1555
1556
1557
1558
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1559
1560
1561

        return ""

baberabb's avatar
baberabb committed
1562
    def higher_is_better(self) -> dict:
1563
1564
1565
1566
1567
1568
1569
1570
1571
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1572
    def doc_to_text(self, doc) -> str:
1573
1574
1575
1576
1577
        return ""

    def doc_to_target(self, doc):
        return doc

1578
1579
1580
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1581

lintangsutawika's avatar
lintangsutawika committed
1582
1583
1584
1585
1586
1587
1588
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1589

1590
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1591
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1592
1593
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1594
1595
1596
1597
1598
1599
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1600
    def aggregation(self) -> dict:
1601
1602
1603
1604
1605
1606
1607
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1608
    def count_bytes(cls, doc) -> int:
1609
1610
1611
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1612
    def count_words(cls, doc) -> int:
1613
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1614
        return len(re.split(r"\s+", doc))