task.py 64.5 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
lintangsutawika's avatar
lintangsutawika committed
29
from lm_eval.api.instance import Instance, OutputType
30
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
59
60
    task: Optional[str] = None
    task_alias: Optional[str] = None
    group: Optional[Union[str, list]] = None
    group_alias: Optional[Union[str, list]] = None
61
62
63
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
64
65
66
67
68
69
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
70
71
72
    fewshot_split: Optional[str] = (
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
    )
73
74
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
75
76
77
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
Ashvin Nihalani's avatar
Ashvin Nihalani committed
78
    doc_to_visual: Union[Callable, str] = None
79
80
81
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
82
    description: str = ""
83
84
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
85
    fewshot_config: Optional[dict] = None
86
    # runtime configuration options
87
    num_fewshot: Optional[int] = None
88
    # scoring options
89
90
91
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
92
    repeats: int = 1
93
    filter_list: Optional[Union[str, list]] = None
94
    should_decontaminate: bool = False
95
    doc_to_decontamination_query: Optional[str] = None
96
97
98
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
99

Ethan Smith's avatar
Ethan Smith committed
100
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
101
        if self.generation_kwargs is not None:
102
            if self.output_type != "generate_until":
103
                eval_logger.warning(
104
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
105
106
107
108
109
110
111
112
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
113
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
114
        else:
115
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
116
117
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
118
119
120
121
122
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
123
124
                    "do_sample": False,
                }
125

126
127
128
    def __getitem__(self, item):
        return getattr(self, item)

129
130
131
    def __setitem__(self, item, value):
        return setattr(self, item, value)

132
    def to_dict(self, keep_callable: bool = False) -> dict:
133
134
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
135
        Used for dumping results alongside full task configuration
136

haileyschoelkopf's avatar
haileyschoelkopf committed
137
138
139
140
141
142
143
144
145
146
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
147
148
149
150
151
152
153
154
155
156
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
157
        return cfg_dict
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

175
176
177
178
179
180
181
182
183
184
185

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

186
    VERSION: Optional[Union[int, str]] = None
187

188
189
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
190
    DATASET_PATH: Optional[str] = None
191
192

    # The name of a subset within `DATASET_PATH`.
193
    DATASET_NAME: Optional[str] = None
194

195
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
196

197
198
    def __init__(
        self,
199
200
201
202
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
203
    ) -> None:
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
226
227
228
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
229

230
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
231

lintangsutawika's avatar
lintangsutawika committed
232
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
233
234
235
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
236

237
238
239
240
241
242
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
267
268
269
270
271
272
273
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
274

275
    @property
276
    def config(self) -> TaskConfig:
277
278
279
        """Returns the TaskConfig associated with this class."""
        return self._config

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

295
    def training_docs(self) -> Iterable:
296
297
298
299
300
301
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

302
    def validation_docs(self) -> Iterable:
303
304
305
306
307
308
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

309
    def test_docs(self) -> Iterable:
310
311
312
313
314
315
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

316
    def fewshot_docs(self) -> Iterable:
317
318
319
320
321
322
323
324
325
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
326
            eval_logger.warning(
327
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
328
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
329
            )
330
331
            return self.test_docs()

332
    def _process_doc(self, doc: dict) -> dict:
333
334
335
336
337
338
339
340
341
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
342

343
    @property
344
    def instances(self) -> List[Instance]:
345
346
347
348
349
350
351
352
353
354
355
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

356
357
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
358
359
360
361
362
363
364
365
366
367
368
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ashvin Nihalani's avatar
Ashvin Nihalani committed
369
370
371
372
    @abc.abstractmethod
    def doc_to_visual(self, doc):
        pass

373
374
    def build_all_requests(
        self,
375
        *,
376
377
378
379
380
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
KonradSzafer's avatar
KonradSzafer committed
381
382
383
384
        system_instruction=None,
        apply_chat_template=False,
        fewshot_as_multiturn=False,
        lm=None,
385
    ) -> None:
386
        """Build a set of Instances for a task, and store them in task.instances"""
387
388
389
390

        # used with caching
        og_limit = limit

391
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
392
393
394
395
396
397
398
399
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
        cache_key += f"-tokenizer{lm.tokenizer_name}" if apply_chat_template else ""
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
415
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
416

417
        instances = []
418
419
420
421
422
423
424
425
426
427

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
428
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
429
430
431
432
433
434
435
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
436
        ):
437
            # sample fewshot context #TODO: need to offset doc_id by rank now!
438
            fewshot_ctx = self.fewshot_context(
439
                doc,
440
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
441
442
443
444
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
                lm,
445
            )
446

447
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
448
449
450
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
451
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
452
            )
453
454
455
456

            if not isinstance(inst, list):
                inst = [inst]

457
458
459
460
461
462
463
464
465
466
467
468
469
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
470

471
472
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
473

474
475
476
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
493
            The number of times each instance in a dataset is inferred on. Defaults to 1,
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

529
530
531
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
532
533
534
535
536
537
538
539
540
541
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

542
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
543
    def fewshot_context(
544
545
546
        self,
        doc,
        num_fewshot,
547
        rnd=None,
548
        description=None,
lintangsutawika's avatar
lintangsutawika committed
549
    ):
550
551
552
553
554
555
556
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
557
558
559
560
561
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
562
563
564
        :returns: str
            The fewshot context.
        """
565
        if rnd is None:
566
567
568
569
570
571
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
572

573
        description = description if description else ""
574
575

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
576
            labeled_examples = ""
577
        else:
lintangsutawika's avatar
lintangsutawika committed
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
602
            )
603
604

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
605
        return description + labeled_examples + example
606

607
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
608
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
609
610
        if hasattr(self, "_filters"):
            for f in self._filters:
611
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
612
613
614
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
615

baberabb's avatar
baberabb committed
616
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
617
        """Returns the config as a dictionary."""
618
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
619
        # (num_fewshot)
620
        return self.config.to_dict()
621

Baber Abbasi's avatar
Baber Abbasi committed
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

662
663
664
665
666
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

667
668
669
670
671
672
673
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
674
675
676
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
677
678
679
680
681
682
683
684
685
686
687
688
689

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

690
691

class ConfigurableTask(Task):
692
    VERSION = "Yaml"
693
    OUTPUT_TYPE = None
694
    CONFIG = None
695
696

    def __init__(
697
698
699
700
701
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
702
    ) -> None:  # TODO no super() call here
703
        # Get pre-configured attributes
704
        self._config = self.CONFIG
705

706
        # Use new configurations if there was no preconfiguration
707
        if self.config is None:
708
            self._config = TaskConfig(**config)
709
710
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
711
            if config is not None:
712
                self._config.__dict__.update(config)
713

714
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
715
716
717
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
718

719
720
721
722
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

723
        if self.config.output_type is not None:
724
725
726
727
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
728
            self.OUTPUT_TYPE = self.config.output_type
729

730
731
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
732

733
734
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
735

736
737
738
739
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
740

741
        if self.config.metric_list is None:
742
            # TODO: handle this in TaskConfig.__post_init__ ?
743
744
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

745
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
746
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
747
                self._metric_fn_kwargs[metric_name] = {}
748
749
750
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
751
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
752
        else:
753
            for metric_config in self.config.metric_list:
754
755
756
757
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
758
759
760
761
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
762
763
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
764
                }
Chris's avatar
Chris committed
765
766
767
768
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
769

770
                if self.config.process_results is not None:
771
772
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
773
774
775
776
777
778
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
779
780
781
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
782
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
783

784
                if "aggregation" in metric_config:
785
                    agg_name = metric_config["aggregation"]
786
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
787
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
788
                    elif callable(agg_name):  # noqa: E721
789
790
791
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
792
                else:
793
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
794
                    metric_agg = get_metric_aggregation(metric_name)
795
                    eval_logger.warning(
796
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
797
798
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
799
                    )
800
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
801

802
803
804
805
806
807
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
808
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
809
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
810
                        f"higher_is_better={is_higher_better(metric_name)}"
811
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
812
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
813

814
        self.download(self.config.dataset_kwargs)
815
816
817
        self._training_docs = None
        self._fewshot_docs = None

818
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
819
            self._filters = []
820
            for filter_config in self.config.filter_list:
821
822
823
824
825
826
827
828
829
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
830
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
831
        else:
832
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
833

834
835
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
836
            self.prompt = get_prompt(
837
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
838
            )
839
840
841
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
842
        if self.fewshot_docs() is not None:
843
844
845
846
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
847
848
849
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
866

867
        self.task_docs = self.eval_docs
868

869
        # Test One Doc
870
        self.features = list(self.task_docs.features.keys())
871
872
        self.multiple_input = 0
        self.multiple_target = 0
873
        test_doc = self.task_docs[0]
874
        test_text = self.doc_to_text(test_doc)
875
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
876

877
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
878
            test_choice = self.doc_to_choice(test_doc)
879
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
880
                eval_logger.error("doc_to_choice must return list")
881
882
            else:
                num_choice = len(test_choice)
883

884
            if isinstance(test_text, int):
885
                self.multiple_input = num_choice
886
887
        else:
            test_choice = None
888

889
        if isinstance(test_target, list):
890
            self.multiple_target = len(test_target)
891
        else:
892
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
893
                test_target = test_choice[test_target]
894
            else:
lintangsutawika's avatar
lintangsutawika committed
895
                test_target = str(test_target)
896

897
898
899
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
900
            check_choices = [test_target]
901
902
903
904
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
905
906
                    True
                    if self.config.target_delimiter.rstrip()
907
                    != self.config.target_delimiter
908
                    else False
909
                )
910

911
                if delimiter_has_whitespace and choice_has_whitespace:
912
913
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
914
915
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
916
                    eval_logger.debug(
917
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
918
919
                    )

920
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
921
922
923
924
925
926
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
927
    def has_training_docs(self) -> bool:
928
        if self.config.training_split is not None:
929
930
931
932
            return True
        else:
            return False

baberabb's avatar
baberabb committed
933
    def has_validation_docs(self) -> bool:
934
        if self.config.validation_split is not None:
935
936
937
938
            return True
        else:
            return False

baberabb's avatar
baberabb committed
939
    def has_test_docs(self) -> bool:
940
        if self.config.test_split is not None:
941
942
943
944
            return True
        else:
            return False

baberabb's avatar
baberabb committed
945
    def training_docs(self) -> datasets.Dataset:
946
        if self.has_training_docs():
947
948
949
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
950
                )
951
            return self.dataset[self.config.training_split]
952

baberabb's avatar
baberabb committed
953
    def validation_docs(self) -> datasets.Dataset:
954
        if self.has_validation_docs():
955
956
957
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
958
                )
959
            return self.dataset[self.config.validation_split]
960

baberabb's avatar
baberabb committed
961
    def test_docs(self) -> datasets.Dataset:
962
        if self.has_test_docs():
963
964
965
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
966

967
    def fewshot_docs(self):
968
        if self.config.fewshot_split is not None:
969
970
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
971
            return self.dataset[self.config.fewshot_split]
972
973
974
975
976
977
978
979
980
981
982
983
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
984
        else:
985
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
986
                eval_logger.warning(
987
                    f"Task '{self.config.task}': "
988
989
990
991
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
992

KonradSzafer's avatar
KonradSzafer committed
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1014
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1015
1016
1017
1018
1019
1020
1021
1022
1023
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        lm=None,
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1024
1025
1026
1027
1028
1029
1030
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1031
1032
1033
1034
1035
1036
1037
1038
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
        :param lm:
            Language model with definition of the tokenizer/function to use for applying the chat template.
lintangsutawika's avatar
lintangsutawika committed
1039
1040
1041
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1042
1043
1044
1045
1046
1047
1048

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1049
1050
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1051

KonradSzafer's avatar
KonradSzafer committed
1052
1053
1054
1055
1056
1057
1058
1059
1060
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1061
        else:
KonradSzafer's avatar
KonradSzafer committed
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1081
1082

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
        if apply_chat_template:
            if self.multiple_input:
                return lm.apply_chat_template(labeled_examples)
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
                    labeled_examples_list.append(lm.apply_chat_template(chat))
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
            return lm.apply_chat_template(labeled_examples)
1112
        else:
KonradSzafer's avatar
KonradSzafer committed
1113
1114
            if self.multiple_input:
                return labeled_examples
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1125

1126
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1127
        """Iterates over FilterEnsembles and applies them to instances"""
1128
1129
        if hasattr(self, "_filters"):
            for f in self._filters:
1130
                f.apply(self._instances)
1131
1132
1133
1134
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1135
    def should_decontaminate(self):
1136
        return self.config.should_decontaminate
1137
1138

    def doc_to_decontamination_query(self, doc):
1139
        if self.config.should_decontaminate:
1140
1141
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1142
            else:
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1154

1155
    def _process_doc(self, doc: dict) -> dict:
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1167
1168
        if self.prompt is not None:
            doc_to_text = self.prompt
1169
        else:
1170
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1171

1172
        if isinstance(doc_to_text, int):
1173
            return doc_to_text
1174
        elif isinstance(doc_to_text, str):
1175
            if doc_to_text in self.features:
1176
                # if self.config.doc_to_choice is not None:
1177
1178
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1179
1180
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1181
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1182
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1183
1184
1185
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1186
        elif callable(doc_to_text):
1187
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1188
        # Used when applying a Promptsource template
1189
        elif hasattr(doc_to_text, "apply"):
1190
1191
1192
1193
1194
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1195
                return self.config.fewshot_delimiter
1196
        else:
1197
            print(type(doc_to_text))
1198
            raise TypeError
1199

1200
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1201
1202
        if self.prompt is not None:
            doc_to_target = self.prompt
1203
        else:
1204
            doc_to_target = self.config.doc_to_target
1205

1206
        if isinstance(doc_to_target, int):
1207
            return doc_to_target
1208
        elif isinstance(doc_to_target, str):
1209
            if doc_to_target in self.features:
1210
                # if self.config.doc_to_choice is not None:
1211
1212
1213
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1214
            else:
lintangsutawika's avatar
lintangsutawika committed
1215
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1216
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1217
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1218
1219
1220
1221
1222
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1223
1224
1225
1226
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1227
1228
                else:
                    return target_string
1229
        elif isinstance(doc_to_target, list):
1230
            return doc_to_target
1231
        elif callable(doc_to_target):
1232
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1233
        # Used when applying a Promptsource template
1234
        elif hasattr(doc_to_target, "apply"):
1235
            applied_prompt = doc_to_target.apply(doc)
1236
1237
1238
1239
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1240
                return self.config.fewshot_delimiter
1241
1242
        else:
            raise TypeError
1243

baberabb's avatar
baberabb committed
1244
    def doc_to_choice(self, doc: Any) -> List[str]:
1245
1246
        if self.prompt is not None:
            doc_to_choice = self.prompt
1247
        elif self.config.doc_to_choice is None:
1248
1249
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1250
            doc_to_choice = self.config.doc_to_choice
1251

1252
        if isinstance(doc_to_choice, str):
1253
1254
1255
1256
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1257
        elif isinstance(doc_to_choice, list):
1258
            return doc_to_choice
1259
        elif isinstance(doc_to_choice, dict):
1260
1261
1262
1263
1264
1265
1266
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1267

lintangsutawika's avatar
lintangsutawika committed
1268
1269
1270
1271
1272
1273
    def doc_to_visual(self, doc: Any) -> Union[int, str, list]:
        if self.config.doc_to_visual is None:
            eval_logger.error("doc_to_visual was called but not set in config")
        else:
            doc_to_visual = self.config.doc_to_visual

Ashvin Nihalani's avatar
Ashvin Nihalani committed
1274
        if isinstance(self.config.doc_to_visual, str):
lintangsutawika's avatar
lintangsutawika committed
1275
1276
1277
1278
1279
1280
            if doc_to_visual in self.features:
                return doc[doc_to_visual]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_visual, doc))
        elif callable(doc_to_visual):
            return doc_to_visual(doc)
Ashvin Nihalani's avatar
Ashvin Nihalani committed
1281
        else:
lintangsutawika's avatar
lintangsutawika committed
1282
            return None
Ashvin Nihalani's avatar
Ashvin Nihalani committed
1283

baberabb's avatar
baberabb committed
1284
1285
1286
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
lintangsutawika's avatar
lintangsutawika committed
1287
1288
        aux_arguments = None

1289
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1290
            arguments = (ctx, self.doc_to_target(doc))
1291
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1292
            arguments = (self.doc_to_target(doc),)
1293
        elif self.OUTPUT_TYPE == "multiple_choice":
1294
            choices = self.doc_to_choice(doc)
1295
            target_delimiter = self.config.target_delimiter
1296
1297
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1298
                cont = self.doc_to_target(doc)
1299
1300
1301
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1302
            else:
1303
                # Otherwise they are placed in the continuation
1304
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1305

1306
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1307
            if "acc_mutual_info" in self._metric_fn_list.keys():
1308
1309
1310
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1311
                # here mutual info refers to calculating
1312
1313
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
lintangsutawika's avatar
lintangsutawika committed
1314
                aux_arguments = [("", f"{choice}") for choice in choices]
lintangsutawika's avatar
lintangsutawika committed
1315

1316
        elif self.OUTPUT_TYPE == "generate_until":
lintangsutawika's avatar
lintangsutawika committed
1317
1318
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

lintangsutawika's avatar
lintangsutawika committed
1319
        multimodal_arg = {}
lintangsutawika's avatar
lintangsutawika committed
1320
        if self.doc_to_visual:
lintangsutawika's avatar
lintangsutawika committed
1321
1322
1323
1324
1325
1326
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_visual(doc)},
            }

        if bool(multimodal_arg):
lintangsutawika's avatar
lintangsutawika committed
1327
            if isinstance(arguments, list):
lintangsutawika's avatar
lintangsutawika committed
1328
                arguments = [arg + (multimodal_arg,) for arg in arguments]
lintangsutawika's avatar
lintangsutawika committed
1329
            else:
lintangsutawika's avatar
lintangsutawika committed
1330
                arguments = arguments + (multimodal_arg,)
lintangsutawika's avatar
lintangsutawika committed
1331
1332
1333

        if isinstance(arguments, type):
            if aux_arguments is not None:
lintangsutawika's avatar
lintangsutawika committed
1334
                all_arg_list = [arguments, aux_arguments]
lintangsutawika's avatar
lintangsutawika committed
1335
1336
            else:
                all_arg_list = [arguments]
lintangsutawika's avatar
lintangsutawika committed
1337
            request_list = []
lintangsutawika's avatar
lintangsutawika committed
1338
            for arg_list in all_arg_list:
lintangsutawika's avatar
lintangsutawika committed
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
                            doc=doc,
                            arguments=arg,
                            idx=i,
                            **kwargs,
                        )
                        for i, arg in enumerate(arg_list)
                    ]
                )
lintangsutawika's avatar
lintangsutawika committed
1351
1352

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1353
1354

        return Instance(
Ashvin Nihalani's avatar
Ashvin Nihalani committed
1355
1356
1357
1358
1359
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1360
        )
1361
1362

    def process_results(self, doc, results):
1363
1364
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1365

1366
        result_dict = {}
1367
        use_metric = list(self._metric_fn_list.keys())
1368
1369
1370
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1371
1372
1373
1374
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1375
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1376
            (loglikelihood,) = results
1377
1378
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1379
            return {
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1395
            }
1396
        elif self.OUTPUT_TYPE == "multiple_choice":
1397
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1398

1399
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1400
            choices = self.doc_to_choice(doc)
1401
1402
            completion_len = np.array([float(len(i)) for i in choices])

1403
1404
            if (
                2 * len(choices) == len(lls)
1405
                and "acc_mutual_info" in self._metric_fn_list.keys()
1406
1407
1408
1409
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1410
1411
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1412
1413
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1414

1415
1416
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1417

1418
1419
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1420
            else:
1421
                gold = self.doc_to_target(doc)
1422
1423

            gold_index_error = False
1424
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1425
1426
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1427
1428
                    gold_index_error = True
            else:
1429
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1430
                    gold = gold if gold < len(choices) else -100
1431
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1432
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1433

Lintang Sutawika's avatar
Lintang Sutawika committed
1434
                if gold == -100:
1435
1436
1437
1438
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1439
                    f"Label index was not in within range of available choices,"
1440
1441
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1442

1443
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1444
1445
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1446
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1447
1448
1449
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1450
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1451
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1452

Lintang Sutawika's avatar
Lintang Sutawika committed
1453
1454
1455
1456
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1457
            result_dict = {
1458
                **({"acc": acc} if "acc" in use_metric else {}),
1459
1460
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1461
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1462
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1463
1464
1465
1466
1467
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1468
1469
            }

1470
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1471
1472
1473
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1474
1475
1476
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1477
        elif self.OUTPUT_TYPE == "generate_until":
1478
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1479
            result = results[0]
1480
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1481
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1482
                # it assumes that doc_to_target returns a number.
1483
1484
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1485
1486
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1487
                gold = list(gold)
Chris's avatar
Chris committed
1488
1489
1490
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1491

lintangsutawika's avatar
lintangsutawika committed
1492
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1493
1494
1495
1496
1497
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1498
1499
1500
1501
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1502
1503
1504
1505
1506
1507
1508
1509
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1510
                    else:
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1532
                else:
1533
                    try:
1534
                        result_score = self._metric_fn_list[metric](
1535
1536
                            references=[gold],
                            predictions=[result],
1537
                            **self._metric_fn_kwargs[metric],
1538
                        )
1539
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1540
                        result_score = self._metric_fn_list[metric]([gold, result])
1541
1542
1543
1544
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1545
        else:
lintangsutawika's avatar
lintangsutawika committed
1546
1547
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1548
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1549
            )
1550
1551
1552

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1553
    def aggregation(self) -> dict:
1554
1555
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1556
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1557
        return self._higher_is_better
1558

Baber Abbasi's avatar
Baber Abbasi committed
1559
1560
1561
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

1562
1563
1564
1565
1566
1567
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"group_name={getattr(self.config, 'group', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Ashvin Nihalani's avatar
Ashvin Nihalani committed
1568
            f"num_samples={len(self.eval_docs)})",
1569
1570
        )

1571
1572

class MultipleChoiceTask(Task):
1573
    OUTPUT_TYPE = "loglikelihood"
1574

baberabb's avatar
baberabb committed
1575
    def doc_to_target(self, doc: dict) -> str:
1576
1577
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1578
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1579
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1580
1581
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1582
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1583
                doc=doc,
1584
                arguments=(ctx, " {}".format(choice)),
1585
                idx=i,
1586
1587
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1588
1589
            for i, choice in enumerate(doc["choices"])
        ]
1590

1591
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1592
1593
1594
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1606
    def higher_is_better(self) -> dict:
1607
1608
1609
1610
1611
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1612
    def aggregation(self) -> dict:
1613
1614
1615
1616
1617
1618
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1619
class PerplexityTask(Task):
1620
1621
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1622
    def has_training_docs(self) -> bool:
1623
1624
        return False

baberabb's avatar
baberabb committed
1625
    def fewshot_examples(self, k: int, rnd) -> List:
1626
1627
1628
1629
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1630
1631
        return []

baberabb's avatar
baberabb committed
1632
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1633
1634
1635
1636
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1637
1638
1639

        return ""

baberabb's avatar
baberabb committed
1640
    def higher_is_better(self) -> dict:
1641
1642
1643
1644
1645
1646
1647
1648
1649
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1650
    def doc_to_text(self, doc) -> str:
1651
1652
1653
1654
1655
        return ""

    def doc_to_target(self, doc):
        return doc

1656
1657
1658
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1659

lintangsutawika's avatar
lintangsutawika committed
1660
1661
1662
1663
1664
1665
1666
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1667

1668
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1669
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1670
1671
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1672
1673
1674
1675
1676
1677
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1678
    def aggregation(self) -> dict:
1679
1680
1681
1682
1683
1684
1685
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1686
    def count_bytes(cls, doc) -> int:
1687
1688
1689
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1690
    def count_words(cls, doc) -> int:
1691
1692
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))