task.py 64.7 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
Ashvin Nihalani's avatar
Ashvin Nihalani committed
29
from lm_eval.api.instance import InputType, Instance, OutputType
30
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

Ashvin Nihalani's avatar
Ashvin Nihalani committed
51
52
53
54
55
ALL_INPUT_TYPES = [
    "text",
    "text_image",
]

56
eval_logger = logging.getLogger("lm-eval")
57

lintangsutawika's avatar
lintangsutawika committed
58

59
60
@dataclass
class TaskConfig(dict):
61
    # task naming/registry
62
63
64
65
    task: Optional[str] = None
    task_alias: Optional[str] = None
    group: Optional[Union[str, list]] = None
    group_alias: Optional[Union[str, list]] = None
66
67
68
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
69
70
71
72
73
74
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
75
76
77
    fewshot_split: Optional[str] = (
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
    )
78
79
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
80
81
82
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
Ashvin Nihalani's avatar
Ashvin Nihalani committed
83
    doc_to_visual: Union[Callable, str] = None
84
85
86
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
87
    description: str = ""
88
89
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
90
    fewshot_config: Optional[dict] = None
91
    # runtime configuration options
92
    num_fewshot: Optional[int] = None
93
    # scoring options
94
95
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
Ashvin Nihalani's avatar
Ashvin Nihalani committed
96
    input_type: InputType = "text"
97
    generation_kwargs: Optional[dict] = None
98
    repeats: int = 1
99
    filter_list: Optional[Union[str, list]] = None
100
    should_decontaminate: bool = False
101
    doc_to_decontamination_query: Optional[str] = None
102
103
104
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
105

Ethan Smith's avatar
Ethan Smith committed
106
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
107
        if self.generation_kwargs is not None:
108
            if self.output_type != "generate_until":
109
                eval_logger.warning(
110
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
111
112
113
114
115
116
117
118
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
119
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
120
        else:
121
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
122
123
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
124
125
126
127
128
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
129
130
                    "do_sample": False,
                }
131

132
133
134
    def __getitem__(self, item):
        return getattr(self, item)

135
136
137
    def __setitem__(self, item, value):
        return setattr(self, item, value)

138
    def to_dict(self, keep_callable: bool = False) -> dict:
139
140
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
141
        Used for dumping results alongside full task configuration
142

haileyschoelkopf's avatar
haileyschoelkopf committed
143
144
145
146
147
148
149
150
151
152
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
153
154
155
156
157
158
159
160
161
162
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
163
        return cfg_dict
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

181
182
183
184
185
186
187
188
189
190
191

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

192
    VERSION: Optional[Union[int, str]] = None
193

194
195
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
196
    DATASET_PATH: Optional[str] = None
197
198

    # The name of a subset within `DATASET_PATH`.
199
    DATASET_NAME: Optional[str] = None
200

201
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
202

203
204
    def __init__(
        self,
205
206
207
208
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
209
    ) -> None:
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
232
233
234
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
235

236
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
237

lintangsutawika's avatar
lintangsutawika committed
238
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
239
240
241
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
242

243
244
245
246
247
248
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
273
274
275
276
277
278
279
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
280

281
    @property
282
    def config(self) -> TaskConfig:
283
284
285
        """Returns the TaskConfig associated with this class."""
        return self._config

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

301
    def training_docs(self) -> Iterable:
302
303
304
305
306
307
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

308
    def validation_docs(self) -> Iterable:
309
310
311
312
313
314
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

315
    def test_docs(self) -> Iterable:
316
317
318
319
320
321
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

322
    def fewshot_docs(self) -> Iterable:
323
324
325
326
327
328
329
330
331
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
332
            eval_logger.warning(
333
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
334
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
335
            )
336
337
            return self.test_docs()

338
    def _process_doc(self, doc: dict) -> dict:
339
340
341
342
343
344
345
346
347
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
348

349
    @property
350
    def instances(self) -> List[Instance]:
351
352
353
354
355
356
357
358
359
360
361
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

362
363
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
364
365
366
367
368
369
370
371
372
373
374
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ashvin Nihalani's avatar
Ashvin Nihalani committed
375
376
377
378
    @abc.abstractmethod
    def doc_to_visual(self, doc):
        pass

379
380
    def build_all_requests(
        self,
381
        *,
382
383
384
385
386
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
KonradSzafer's avatar
KonradSzafer committed
387
388
389
390
        system_instruction=None,
        apply_chat_template=False,
        fewshot_as_multiturn=False,
        lm=None,
391
    ) -> None:
392
        """Build a set of Instances for a task, and store them in task.instances"""
393
394
395
396

        # used with caching
        og_limit = limit

397
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
398
399
400
401
402
403
404
405
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
        cache_key += f"-tokenizer{lm.tokenizer_name}" if apply_chat_template else ""
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
421
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
422

423
        instances = []
424
425
426
427
428
429
430
431
432
433

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
434
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
435
436
437
438
439
440
441
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
442
        ):
443
            # sample fewshot context #TODO: need to offset doc_id by rank now!
444
            fewshot_ctx = self.fewshot_context(
445
                doc,
446
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
447
448
449
450
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
                lm,
451
            )
452

453
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
454
455
456
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
457
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
458
            )
459
460
461
462

            if not isinstance(inst, list):
                inst = [inst]

463
464
465
466
467
468
469
470
471
472
473
474
475
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
476

477
478
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
479

480
481
482
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
499
            The number of times each instance in a dataset is inferred on. Defaults to 1,
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

535
536
537
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
538
539
540
541
542
543
544
545
546
547
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

548
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
549
    def fewshot_context(
550
551
552
        self,
        doc,
        num_fewshot,
553
        rnd=None,
554
        description=None,
lintangsutawika's avatar
lintangsutawika committed
555
    ):
556
557
558
559
560
561
562
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
563
564
565
566
567
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
568
569
570
        :returns: str
            The fewshot context.
        """
571
        if rnd is None:
572
573
574
575
576
577
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
578

579
        description = description if description else ""
580
581

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
582
            labeled_examples = ""
583
        else:
lintangsutawika's avatar
lintangsutawika committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
608
            )
609
610

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
611
        return description + labeled_examples + example
612

613
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
614
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
615
616
        if hasattr(self, "_filters"):
            for f in self._filters:
617
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
618
619
620
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
621

baberabb's avatar
baberabb committed
622
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
623
        """Returns the config as a dictionary."""
624
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
625
        # (num_fewshot)
626
        return self.config.to_dict()
627

Baber Abbasi's avatar
Baber Abbasi committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

668
669
670
671
672
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

673
674
675
676
677
678
679
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
680
681
682
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
683
684
685
686
687
688
689
690
691
692
693
694
695

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

696
697

class ConfigurableTask(Task):
698
    VERSION = "Yaml"
699
    OUTPUT_TYPE = None
700
    CONFIG = None
701
702

    def __init__(
703
704
705
706
707
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
708
    ) -> None:  # TODO no super() call here
709
        # Get pre-configured attributes
710
        self._config = self.CONFIG
711

712
        # Use new configurations if there was no preconfiguration
713
        if self.config is None:
714
            self._config = TaskConfig(**config)
715
716
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
717
            if config is not None:
718
                self._config.__dict__.update(config)
719

720
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
721
722
723
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
724

725
726
727
728
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

729
        if self.config.output_type is not None:
730
731
732
733
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
734
            self.OUTPUT_TYPE = self.config.output_type
735

Ashvin Nihalani's avatar
Ashvin Nihalani committed
736
737
738
739
740
741
742
        if self.config.input_type is not None:
            if self.config.input_type not in ALL_INPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.input_type}', must be in '{','.join(ALL_INPUT_TYPES)}'"
                )
            self.INPUT_TYPE = self.config.input_type

743
744
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
745

746
747
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
748

749
750
751
752
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
753

754
        if self.config.metric_list is None:
755
            # TODO: handle this in TaskConfig.__post_init__ ?
756
757
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

758
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
759
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
760
                self._metric_fn_kwargs[metric_name] = {}
761
762
763
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
764
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
765
        else:
766
            for metric_config in self.config.metric_list:
767
768
769
770
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
771
772
773
774
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
775
776
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
777
                }
Chris's avatar
Chris committed
778
779
780
781
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
782

783
                if self.config.process_results is not None:
784
785
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
786
787
788
789
790
791
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
792
793
794
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
795
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
796

797
                if "aggregation" in metric_config:
798
                    agg_name = metric_config["aggregation"]
799
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
800
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
801
                    elif callable(agg_name):  # noqa: E721
802
803
804
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
805
                else:
806
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
807
                    metric_agg = get_metric_aggregation(metric_name)
808
                    eval_logger.warning(
809
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
810
811
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
812
                    )
813
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
814

815
816
817
818
819
820
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
821
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
822
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
823
                        f"higher_is_better={is_higher_better(metric_name)}"
824
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
825
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
826

827
        self.download(self.config.dataset_kwargs)
828
829
830
        self._training_docs = None
        self._fewshot_docs = None

831
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
832
            self._filters = []
833
            for filter_config in self.config.filter_list:
834
835
836
837
838
839
840
841
842
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
843
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
844
        else:
845
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
846

847
848
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
849
            self.prompt = get_prompt(
850
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
851
            )
852
853
854
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
855
        if self.fewshot_docs() is not None:
856
857
858
859
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
860
861
862
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
879

880
        self.task_docs = self.eval_docs
881

882
        # Test One Doc
883
        self.features = list(self.task_docs.features.keys())
884
885
        self.multiple_input = 0
        self.multiple_target = 0
886
        test_doc = self.task_docs[0]
887
        test_text = self.doc_to_text(test_doc)
888
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
889

890
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
891
            test_choice = self.doc_to_choice(test_doc)
892
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
893
                eval_logger.error("doc_to_choice must return list")
894
895
            else:
                num_choice = len(test_choice)
896

897
            if isinstance(test_text, int):
898
                self.multiple_input = num_choice
899
900
        else:
            test_choice = None
901

902
        if isinstance(test_target, list):
903
            self.multiple_target = len(test_target)
904
        else:
905
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
906
                test_target = test_choice[test_target]
907
            else:
lintangsutawika's avatar
lintangsutawika committed
908
                test_target = str(test_target)
909

910
911
912
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
913
            check_choices = [test_target]
914
915
916
917
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
918
919
                    True
                    if self.config.target_delimiter.rstrip()
920
                    != self.config.target_delimiter
921
                    else False
922
                )
923

924
                if delimiter_has_whitespace and choice_has_whitespace:
925
926
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
927
928
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
929
                    eval_logger.debug(
930
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
931
932
                    )

933
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
934
935
936
937
938
939
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
940
    def has_training_docs(self) -> bool:
941
        if self.config.training_split is not None:
942
943
944
945
            return True
        else:
            return False

baberabb's avatar
baberabb committed
946
    def has_validation_docs(self) -> bool:
947
        if self.config.validation_split is not None:
948
949
950
951
            return True
        else:
            return False

baberabb's avatar
baberabb committed
952
    def has_test_docs(self) -> bool:
953
        if self.config.test_split is not None:
954
955
956
957
            return True
        else:
            return False

baberabb's avatar
baberabb committed
958
    def training_docs(self) -> datasets.Dataset:
959
        if self.has_training_docs():
960
961
962
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
963
                )
964
            return self.dataset[self.config.training_split]
965

baberabb's avatar
baberabb committed
966
    def validation_docs(self) -> datasets.Dataset:
967
        if self.has_validation_docs():
968
969
970
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
971
                )
972
            return self.dataset[self.config.validation_split]
973

baberabb's avatar
baberabb committed
974
    def test_docs(self) -> datasets.Dataset:
975
        if self.has_test_docs():
976
977
978
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
979

980
    def fewshot_docs(self):
981
        if self.config.fewshot_split is not None:
982
983
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
984
            return self.dataset[self.config.fewshot_split]
985
986
987
988
989
990
991
992
993
994
995
996
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
997
        else:
998
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
999
                eval_logger.warning(
1000
                    f"Task '{self.config.task}': "
1001
1002
1003
1004
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1005

KonradSzafer's avatar
KonradSzafer committed
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1027
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1028
1029
1030
1031
1032
1033
1034
1035
1036
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        lm=None,
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1037
1038
1039
1040
1041
1042
1043
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1044
1045
1046
1047
1048
1049
1050
1051
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
        :param lm:
            Language model with definition of the tokenizer/function to use for applying the chat template.
lintangsutawika's avatar
lintangsutawika committed
1052
1053
1054
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1055
1056
1057
1058
1059
1060
1061

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1062
1063
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1064

KonradSzafer's avatar
KonradSzafer committed
1065
1066
1067
1068
1069
1070
1071
1072
1073
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1074
        else:
KonradSzafer's avatar
KonradSzafer committed
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1094
1095

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
        if apply_chat_template:
            if self.multiple_input:
                return lm.apply_chat_template(labeled_examples)
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
                    labeled_examples_list.append(lm.apply_chat_template(chat))
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
            return lm.apply_chat_template(labeled_examples)
1125
        else:
KonradSzafer's avatar
KonradSzafer committed
1126
1127
            if self.multiple_input:
                return labeled_examples
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1138

1139
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1140
        """Iterates over FilterEnsembles and applies them to instances"""
1141
1142
        if hasattr(self, "_filters"):
            for f in self._filters:
1143
                f.apply(self._instances)
1144
1145
1146
1147
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1148
    def should_decontaminate(self):
1149
        return self.config.should_decontaminate
1150
1151

    def doc_to_decontamination_query(self, doc):
1152
        if self.config.should_decontaminate:
1153
1154
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1155
            else:
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1167

1168
    def _process_doc(self, doc: dict) -> dict:
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1180
1181
        if self.prompt is not None:
            doc_to_text = self.prompt
1182
        else:
1183
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1184

1185
        if isinstance(doc_to_text, int):
1186
            return doc_to_text
1187
        elif isinstance(doc_to_text, str):
1188
            if doc_to_text in self.features:
1189
                # if self.config.doc_to_choice is not None:
1190
1191
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1192
1193
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1194
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1195
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1196
1197
1198
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1199
        elif callable(doc_to_text):
1200
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1201
        # Used when applying a Promptsource template
1202
        elif hasattr(doc_to_text, "apply"):
1203
1204
1205
1206
1207
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1208
                return self.config.fewshot_delimiter
1209
        else:
1210
            print(type(doc_to_text))
1211
            raise TypeError
1212

1213
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1214
1215
        if self.prompt is not None:
            doc_to_target = self.prompt
1216
        else:
1217
            doc_to_target = self.config.doc_to_target
1218

1219
        if isinstance(doc_to_target, int):
1220
            return doc_to_target
1221
        elif isinstance(doc_to_target, str):
1222
            if doc_to_target in self.features:
1223
                # if self.config.doc_to_choice is not None:
1224
1225
1226
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1227
            else:
lintangsutawika's avatar
lintangsutawika committed
1228
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1229
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1230
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1231
1232
1233
1234
1235
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1236
1237
1238
1239
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1240
1241
                else:
                    return target_string
1242
        elif isinstance(doc_to_target, list):
1243
            return doc_to_target
1244
        elif callable(doc_to_target):
1245
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1246
        # Used when applying a Promptsource template
1247
        elif hasattr(doc_to_target, "apply"):
1248
            applied_prompt = doc_to_target.apply(doc)
1249
1250
1251
1252
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1253
                return self.config.fewshot_delimiter
1254
1255
        else:
            raise TypeError
1256

baberabb's avatar
baberabb committed
1257
    def doc_to_choice(self, doc: Any) -> List[str]:
1258
1259
        if self.prompt is not None:
            doc_to_choice = self.prompt
1260
        elif self.config.doc_to_choice is None:
1261
1262
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1263
            doc_to_choice = self.config.doc_to_choice
1264

1265
        if isinstance(doc_to_choice, str):
1266
1267
1268
1269
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1270
        elif isinstance(doc_to_choice, list):
1271
            return doc_to_choice
1272
        elif isinstance(doc_to_choice, dict):
1273
1274
1275
1276
1277
1278
1279
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1280

Ashvin Nihalani's avatar
Ashvin Nihalani committed
1281
    def doc_to_visual(self, doc: dict) -> Union[int, str, list]:
Ashvin Nihalani's avatar
Ashvin Nihalani committed
1282
        if isinstance(self.config.doc_to_visual, str):
Ashvin Nihalani's avatar
Ashvin Nihalani committed
1283
1284
1285
1286
1287
1288
1289
            assert self.config.doc_to_visual in self.features
            # Single Image. Still return a list for consistency
            return doc[self.config.doc_to_visual]
        else:
            assert callable(self.config.doc_to_visual)
            return self.config.doc_to_visual(doc)

baberabb's avatar
baberabb committed
1290
1291
1292
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1293
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1294
            arguments = (ctx, self.doc_to_target(doc))
1295
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1296
            arguments = (self.doc_to_target(doc),)
1297
        elif self.OUTPUT_TYPE == "multiple_choice":
1298
            choices = self.doc_to_choice(doc)
1299
            target_delimiter = self.config.target_delimiter
1300
1301
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1302
                cont = self.doc_to_target(doc)
1303
1304
1305
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1306
            else:
1307
                # Otherwise they are placed in the continuation
1308
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1309

1310
            request_list = [
1311
1312
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1313
                    doc=doc,
1314
                    arguments=arg,
1315
                    idx=i,
1316
1317
                    **kwargs,
                )
1318
                for i, arg in enumerate(arguments)
1319
            ]
1320
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1321
            if "acc_mutual_info" in self._metric_fn_list.keys():
1322
1323
1324
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1325
                # here mutual info refers to calculating
1326
1327
1328
1329
1330
1331
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1332
                            doc=doc,
1333
                            arguments=("", "{}".format(choice)),
1334
1335
1336
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1337
                        for i, choice in enumerate(choices)
1338
1339
1340
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1341

1342
        elif self.OUTPUT_TYPE == "generate_until":
Ashvin Nihalani's avatar
Ashvin Nihalani committed
1343
            if self.INPUT_TYPE == "text_image":
Ashvin Nihalani's avatar
Ashvin Nihalani committed
1344
1345
1346
1347
1348
1349
1350
                arguments = (
                    ctx,
                    deepcopy(self.config.generation_kwargs),
                    self.doc_to_visual,
                    doc,
                    self.config.task,
                )
Ashvin Nihalani's avatar
Ashvin Nihalani committed
1351
1352
            elif self.INPUT_TYPE == "text":
                arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1353
1354

        return Instance(
Ashvin Nihalani's avatar
Ashvin Nihalani committed
1355
1356
1357
1358
1359
1360
            request_type=self.OUTPUT_TYPE,
            input_type=self.INPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1361
        )
1362
1363

    def process_results(self, doc, results):
1364
1365
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1366

1367
        result_dict = {}
1368
        use_metric = list(self._metric_fn_list.keys())
1369
1370
1371
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1372
1373
1374
1375
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1376
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1377
            (loglikelihood,) = results
1378
1379
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1380
            return {
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1396
            }
1397
        elif self.OUTPUT_TYPE == "multiple_choice":
1398
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1399

1400
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1401
            choices = self.doc_to_choice(doc)
1402
1403
            completion_len = np.array([float(len(i)) for i in choices])

1404
1405
            if (
                2 * len(choices) == len(lls)
1406
                and "acc_mutual_info" in self._metric_fn_list.keys()
1407
1408
1409
1410
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1411
1412
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1413
1414
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1415

1416
1417
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1418

1419
1420
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1421
            else:
1422
                gold = self.doc_to_target(doc)
1423
1424

            gold_index_error = False
1425
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1426
1427
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1428
1429
                    gold_index_error = True
            else:
1430
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1431
                    gold = gold if gold < len(choices) else -100
1432
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1433
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1434

Lintang Sutawika's avatar
Lintang Sutawika committed
1435
                if gold == -100:
1436
1437
1438
1439
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1440
                    f"Label index was not in within range of available choices,"
1441
1442
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1443

1444
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1445
1446
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1447
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1448
1449
1450
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1451
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1452
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1453

Lintang Sutawika's avatar
Lintang Sutawika committed
1454
1455
1456
1457
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1458
            result_dict = {
1459
                **({"acc": acc} if "acc" in use_metric else {}),
1460
1461
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1462
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1463
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1464
1465
1466
1467
1468
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1469
1470
            }

1471
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1472
1473
1474
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1475
1476
1477
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1478
        elif self.OUTPUT_TYPE == "generate_until":
1479
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1480
            result = results[0]
1481
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1482
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1483
                # it assumes that doc_to_target returns a number.
1484
1485
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1486
1487
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1488
                gold = list(gold)
Chris's avatar
Chris committed
1489
1490
1491
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1492

lintangsutawika's avatar
lintangsutawika committed
1493
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1494
1495
1496
1497
1498
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1499
1500
1501
1502
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1503
1504
1505
1506
1507
1508
1509
1510
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1511
                    else:
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1533
                else:
1534
                    try:
1535
                        result_score = self._metric_fn_list[metric](
1536
1537
                            references=[gold],
                            predictions=[result],
1538
                            **self._metric_fn_kwargs[metric],
1539
                        )
1540
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1541
                        result_score = self._metric_fn_list[metric]([gold, result])
1542
1543
1544
1545
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1546
        else:
lintangsutawika's avatar
lintangsutawika committed
1547
1548
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1549
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1550
            )
1551
1552
1553

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1554
    def aggregation(self) -> dict:
1555
1556
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1557
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1558
        return self._higher_is_better
1559

Baber Abbasi's avatar
Baber Abbasi committed
1560
1561
1562
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

1563
1564
1565
1566
1567
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"group_name={getattr(self.config, 'group', None)},"
            f"output_type={self.OUTPUT_TYPE},"
Ashvin Nihalani's avatar
Ashvin Nihalani committed
1568
            f"input_type={self.INPUT_TYPE}",
1569
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Ashvin Nihalani's avatar
Ashvin Nihalani committed
1570
            f"num_samples={len(self.eval_docs)})",
1571
1572
        )

1573
1574

class MultipleChoiceTask(Task):
1575
    OUTPUT_TYPE = "loglikelihood"
1576

baberabb's avatar
baberabb committed
1577
    def doc_to_target(self, doc: dict) -> str:
1578
1579
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1580
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1581
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1582
1583
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1584
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1585
                doc=doc,
1586
                arguments=(ctx, " {}".format(choice)),
1587
                idx=i,
1588
1589
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1590
1591
            for i, choice in enumerate(doc["choices"])
        ]
1592

1593
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1594
1595
1596
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1608
    def higher_is_better(self) -> dict:
1609
1610
1611
1612
1613
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1614
    def aggregation(self) -> dict:
1615
1616
1617
1618
1619
1620
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1621
class PerplexityTask(Task):
1622
1623
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1624
    def has_training_docs(self) -> bool:
1625
1626
        return False

baberabb's avatar
baberabb committed
1627
    def fewshot_examples(self, k: int, rnd) -> List:
1628
1629
1630
1631
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1632
1633
        return []

baberabb's avatar
baberabb committed
1634
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1635
1636
1637
1638
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1639
1640
1641

        return ""

baberabb's avatar
baberabb committed
1642
    def higher_is_better(self) -> dict:
1643
1644
1645
1646
1647
1648
1649
1650
1651
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1652
    def doc_to_text(self, doc) -> str:
1653
1654
1655
1656
1657
        return ""

    def doc_to_target(self, doc):
        return doc

1658
1659
1660
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1661

lintangsutawika's avatar
lintangsutawika committed
1662
1663
1664
1665
1666
1667
1668
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1669

1670
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1671
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1672
1673
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1674
1675
1676
1677
1678
1679
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1680
    def aggregation(self) -> dict:
1681
1682
1683
1684
1685
1686
1687
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1688
    def count_bytes(cls, doc) -> int:
1689
1690
1691
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1692
    def count_words(cls, doc) -> int:
1693
1694
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))