"magic_pdf/pre_proc/ocr_cut_image.py" did not exist on "68e83c124fb66b5aba9b2123f8b8e2489b125bf8"
task.py 64.4 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
Ashvin Nihalani's avatar
Ashvin Nihalani committed
29
from lm_eval.api.instance import InputType, Instance, OutputType
30
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

Ashvin Nihalani's avatar
Ashvin Nihalani committed
51

52
eval_logger = logging.getLogger("lm-eval")
53

lintangsutawika's avatar
lintangsutawika committed
54

55
56
@dataclass
class TaskConfig(dict):
57
    # task naming/registry
58
59
60
61
    task: Optional[str] = None
    task_alias: Optional[str] = None
    group: Optional[Union[str, list]] = None
    group_alias: Optional[Union[str, list]] = None
62
63
64
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
65
66
67
68
69
70
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
71
72
73
    fewshot_split: Optional[str] = (
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
    )
74
75
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
76
77
78
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
Ashvin Nihalani's avatar
Ashvin Nihalani committed
79
    doc_to_visual: Union[Callable, str] = None
80
81
82
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
83
    description: str = ""
84
85
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
86
    fewshot_config: Optional[dict] = None
87
    # runtime configuration options
88
    num_fewshot: Optional[int] = None
89
    # scoring options
90
91
92
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
93
    repeats: int = 1
94
    filter_list: Optional[Union[str, list]] = None
95
    should_decontaminate: bool = False
96
    doc_to_decontamination_query: Optional[str] = None
97
98
99
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
100

Ethan Smith's avatar
Ethan Smith committed
101
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
102
        if self.generation_kwargs is not None:
103
            if self.output_type != "generate_until":
104
                eval_logger.warning(
105
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
106
107
108
109
110
111
112
113
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
114
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
115
        else:
116
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
117
118
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
119
120
121
122
123
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
124
125
                    "do_sample": False,
                }
126

127
128
129
    def __getitem__(self, item):
        return getattr(self, item)

130
131
132
    def __setitem__(self, item, value):
        return setattr(self, item, value)

133
    def to_dict(self, keep_callable: bool = False) -> dict:
134
135
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
136
        Used for dumping results alongside full task configuration
137

haileyschoelkopf's avatar
haileyschoelkopf committed
138
139
140
141
142
143
144
145
146
147
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
148
149
150
151
152
153
154
155
156
157
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
158
        return cfg_dict
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

176
177
178
179
180
181
182
183
184
185
186

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

187
    VERSION: Optional[Union[int, str]] = None
188

189
190
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
191
    DATASET_PATH: Optional[str] = None
192
193

    # The name of a subset within `DATASET_PATH`.
194
    DATASET_NAME: Optional[str] = None
195

196
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
197

198
199
    def __init__(
        self,
200
201
202
203
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
204
    ) -> None:
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
227
228
229
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
230

231
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
232

lintangsutawika's avatar
lintangsutawika committed
233
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
234
235
236
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
237

238
239
240
241
242
243
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
268
269
270
271
272
273
274
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
275

276
    @property
277
    def config(self) -> TaskConfig:
278
279
280
        """Returns the TaskConfig associated with this class."""
        return self._config

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

296
    def training_docs(self) -> Iterable:
297
298
299
300
301
302
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

303
    def validation_docs(self) -> Iterable:
304
305
306
307
308
309
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

310
    def test_docs(self) -> Iterable:
311
312
313
314
315
316
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

317
    def fewshot_docs(self) -> Iterable:
318
319
320
321
322
323
324
325
326
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
327
            eval_logger.warning(
328
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
329
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
330
            )
331
332
            return self.test_docs()

333
    def _process_doc(self, doc: dict) -> dict:
334
335
336
337
338
339
340
341
342
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
343

344
    @property
345
    def instances(self) -> List[Instance]:
346
347
348
349
350
351
352
353
354
355
356
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

357
358
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
359
360
361
362
363
364
365
366
367
368
369
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ashvin Nihalani's avatar
Ashvin Nihalani committed
370
371
372
373
    @abc.abstractmethod
    def doc_to_visual(self, doc):
        pass

374
375
    def build_all_requests(
        self,
376
        *,
377
378
379
380
381
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
KonradSzafer's avatar
KonradSzafer committed
382
383
384
385
        system_instruction=None,
        apply_chat_template=False,
        fewshot_as_multiturn=False,
        lm=None,
386
    ) -> None:
387
        """Build a set of Instances for a task, and store them in task.instances"""
388
389
390
391

        # used with caching
        og_limit = limit

392
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
393
394
395
396
397
398
399
400
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
        cache_key += f"-tokenizer{lm.tokenizer_name}" if apply_chat_template else ""
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
416
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
417

418
        instances = []
419
420
421
422
423
424
425
426
427
428

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
429
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
430
431
432
433
434
435
436
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
437
        ):
438
            # sample fewshot context #TODO: need to offset doc_id by rank now!
439
            fewshot_ctx = self.fewshot_context(
440
                doc,
441
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
442
443
444
445
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
                lm,
446
            )
447

448
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
449
450
451
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
452
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
453
            )
454
455
456
457

            if not isinstance(inst, list):
                inst = [inst]

458
459
460
461
462
463
464
465
466
467
468
469
470
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
471

472
473
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
474

475
476
477
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
494
            The number of times each instance in a dataset is inferred on. Defaults to 1,
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

530
531
532
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
533
534
535
536
537
538
539
540
541
542
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

543
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
544
    def fewshot_context(
545
546
547
        self,
        doc,
        num_fewshot,
548
        rnd=None,
549
        description=None,
lintangsutawika's avatar
lintangsutawika committed
550
    ):
551
552
553
554
555
556
557
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
558
559
560
561
562
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
563
564
565
        :returns: str
            The fewshot context.
        """
566
        if rnd is None:
567
568
569
570
571
572
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
573

574
        description = description if description else ""
575
576

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
577
            labeled_examples = ""
578
        else:
lintangsutawika's avatar
lintangsutawika committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
603
            )
604
605

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
606
        return description + labeled_examples + example
607

608
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
609
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
610
611
        if hasattr(self, "_filters"):
            for f in self._filters:
612
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
613
614
615
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
616

baberabb's avatar
baberabb committed
617
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
618
        """Returns the config as a dictionary."""
619
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
620
        # (num_fewshot)
621
        return self.config.to_dict()
622

Baber Abbasi's avatar
Baber Abbasi committed
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

663
664
665
666
667
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

668
669
670
671
672
673
674
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
675
676
677
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
678
679
680
681
682
683
684
685
686
687
688
689
690

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

691
692

class ConfigurableTask(Task):
693
    VERSION = "Yaml"
694
    OUTPUT_TYPE = None
695
    CONFIG = None
696
697

    def __init__(
698
699
700
701
702
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
703
    ) -> None:  # TODO no super() call here
704
        # Get pre-configured attributes
705
        self._config = self.CONFIG
706

707
        # Use new configurations if there was no preconfiguration
708
        if self.config is None:
709
            self._config = TaskConfig(**config)
710
711
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
712
            if config is not None:
713
                self._config.__dict__.update(config)
714

715
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
716
717
718
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
719

720
721
722
723
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

724
        if self.config.output_type is not None:
725
726
727
728
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
729
            self.OUTPUT_TYPE = self.config.output_type
730

731
732
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
733

734
735
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
736

737
738
739
740
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
741

742
        if self.config.metric_list is None:
743
            # TODO: handle this in TaskConfig.__post_init__ ?
744
745
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

746
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
747
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
748
                self._metric_fn_kwargs[metric_name] = {}
749
750
751
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
752
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
753
        else:
754
            for metric_config in self.config.metric_list:
755
756
757
758
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
759
760
761
762
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
763
764
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
765
                }
Chris's avatar
Chris committed
766
767
768
769
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
770

771
                if self.config.process_results is not None:
772
773
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
774
775
776
777
778
779
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
780
781
782
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
783
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
784

785
                if "aggregation" in metric_config:
786
                    agg_name = metric_config["aggregation"]
787
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
788
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
789
                    elif callable(agg_name):  # noqa: E721
790
791
792
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
793
                else:
794
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
795
                    metric_agg = get_metric_aggregation(metric_name)
796
                    eval_logger.warning(
797
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
798
799
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
800
                    )
801
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
802

803
804
805
806
807
808
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
809
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
810
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
811
                        f"higher_is_better={is_higher_better(metric_name)}"
812
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
813
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
814

815
        self.download(self.config.dataset_kwargs)
816
817
818
        self._training_docs = None
        self._fewshot_docs = None

819
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
820
            self._filters = []
821
            for filter_config in self.config.filter_list:
822
823
824
825
826
827
828
829
830
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
831
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
832
        else:
833
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
834

835
836
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
837
            self.prompt = get_prompt(
838
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
839
            )
840
841
842
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
843
        if self.fewshot_docs() is not None:
844
845
846
847
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
848
849
850
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
867

868
        self.task_docs = self.eval_docs
869

870
        # Test One Doc
871
        self.features = list(self.task_docs.features.keys())
872
873
        self.multiple_input = 0
        self.multiple_target = 0
874
        test_doc = self.task_docs[0]
875
        test_text = self.doc_to_text(test_doc)
876
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
877

878
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
879
            test_choice = self.doc_to_choice(test_doc)
880
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
881
                eval_logger.error("doc_to_choice must return list")
882
883
            else:
                num_choice = len(test_choice)
884

885
            if isinstance(test_text, int):
886
                self.multiple_input = num_choice
887
888
        else:
            test_choice = None
889

890
        if isinstance(test_target, list):
891
            self.multiple_target = len(test_target)
892
        else:
893
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
894
                test_target = test_choice[test_target]
895
            else:
lintangsutawika's avatar
lintangsutawika committed
896
                test_target = str(test_target)
897

898
899
900
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
901
            check_choices = [test_target]
902
903
904
905
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
906
907
                    True
                    if self.config.target_delimiter.rstrip()
908
                    != self.config.target_delimiter
909
                    else False
910
                )
911

912
                if delimiter_has_whitespace and choice_has_whitespace:
913
914
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
915
916
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
917
                    eval_logger.debug(
918
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
919
920
                    )

921
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
922
923
924
925
926
927
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
928
    def has_training_docs(self) -> bool:
929
        if self.config.training_split is not None:
930
931
932
933
            return True
        else:
            return False

baberabb's avatar
baberabb committed
934
    def has_validation_docs(self) -> bool:
935
        if self.config.validation_split is not None:
936
937
938
939
            return True
        else:
            return False

baberabb's avatar
baberabb committed
940
    def has_test_docs(self) -> bool:
941
        if self.config.test_split is not None:
942
943
944
945
            return True
        else:
            return False

baberabb's avatar
baberabb committed
946
    def training_docs(self) -> datasets.Dataset:
947
        if self.has_training_docs():
948
949
950
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
951
                )
952
            return self.dataset[self.config.training_split]
953

baberabb's avatar
baberabb committed
954
    def validation_docs(self) -> datasets.Dataset:
955
        if self.has_validation_docs():
956
957
958
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
959
                )
960
            return self.dataset[self.config.validation_split]
961

baberabb's avatar
baberabb committed
962
    def test_docs(self) -> datasets.Dataset:
963
        if self.has_test_docs():
964
965
966
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
967

968
    def fewshot_docs(self):
969
        if self.config.fewshot_split is not None:
970
971
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
972
            return self.dataset[self.config.fewshot_split]
973
974
975
976
977
978
979
980
981
982
983
984
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
985
        else:
986
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
987
                eval_logger.warning(
988
                    f"Task '{self.config.task}': "
989
990
991
992
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
993

KonradSzafer's avatar
KonradSzafer committed
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1015
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1016
1017
1018
1019
1020
1021
1022
1023
1024
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        lm=None,
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1025
1026
1027
1028
1029
1030
1031
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1032
1033
1034
1035
1036
1037
1038
1039
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
        :param lm:
            Language model with definition of the tokenizer/function to use for applying the chat template.
lintangsutawika's avatar
lintangsutawika committed
1040
1041
1042
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1043
1044
1045
1046
1047
1048
1049

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1050
1051
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1052

KonradSzafer's avatar
KonradSzafer committed
1053
1054
1055
1056
1057
1058
1059
1060
1061
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1062
        else:
KonradSzafer's avatar
KonradSzafer committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1082
1083

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
        if apply_chat_template:
            if self.multiple_input:
                return lm.apply_chat_template(labeled_examples)
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
                    labeled_examples_list.append(lm.apply_chat_template(chat))
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
            return lm.apply_chat_template(labeled_examples)
1113
        else:
KonradSzafer's avatar
KonradSzafer committed
1114
1115
            if self.multiple_input:
                return labeled_examples
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1126

1127
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1128
        """Iterates over FilterEnsembles and applies them to instances"""
1129
1130
        if hasattr(self, "_filters"):
            for f in self._filters:
1131
                f.apply(self._instances)
1132
1133
1134
1135
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1136
    def should_decontaminate(self):
1137
        return self.config.should_decontaminate
1138
1139

    def doc_to_decontamination_query(self, doc):
1140
        if self.config.should_decontaminate:
1141
1142
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1143
            else:
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1155

1156
    def _process_doc(self, doc: dict) -> dict:
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1168
1169
        if self.prompt is not None:
            doc_to_text = self.prompt
1170
        else:
1171
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1172

1173
        if isinstance(doc_to_text, int):
1174
            return doc_to_text
1175
        elif isinstance(doc_to_text, str):
1176
            if doc_to_text in self.features:
1177
                # if self.config.doc_to_choice is not None:
1178
1179
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1180
1181
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1182
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1183
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1184
1185
1186
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1187
        elif callable(doc_to_text):
1188
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1189
        # Used when applying a Promptsource template
1190
        elif hasattr(doc_to_text, "apply"):
1191
1192
1193
1194
1195
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1196
                return self.config.fewshot_delimiter
1197
        else:
1198
            print(type(doc_to_text))
1199
            raise TypeError
1200

1201
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1202
1203
        if self.prompt is not None:
            doc_to_target = self.prompt
1204
        else:
1205
            doc_to_target = self.config.doc_to_target
1206

1207
        if isinstance(doc_to_target, int):
1208
            return doc_to_target
1209
        elif isinstance(doc_to_target, str):
1210
            if doc_to_target in self.features:
1211
                # if self.config.doc_to_choice is not None:
1212
1213
1214
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1215
            else:
lintangsutawika's avatar
lintangsutawika committed
1216
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1217
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1218
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1219
1220
1221
1222
1223
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1224
1225
1226
1227
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1228
1229
                else:
                    return target_string
1230
        elif isinstance(doc_to_target, list):
1231
            return doc_to_target
1232
        elif callable(doc_to_target):
1233
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1234
        # Used when applying a Promptsource template
1235
        elif hasattr(doc_to_target, "apply"):
1236
            applied_prompt = doc_to_target.apply(doc)
1237
1238
1239
1240
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1241
                return self.config.fewshot_delimiter
1242
1243
        else:
            raise TypeError
1244

baberabb's avatar
baberabb committed
1245
    def doc_to_choice(self, doc: Any) -> List[str]:
1246
1247
        if self.prompt is not None:
            doc_to_choice = self.prompt
1248
        elif self.config.doc_to_choice is None:
1249
1250
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1251
            doc_to_choice = self.config.doc_to_choice
1252

1253
        if isinstance(doc_to_choice, str):
1254
1255
1256
1257
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1258
        elif isinstance(doc_to_choice, list):
1259
            return doc_to_choice
1260
        elif isinstance(doc_to_choice, dict):
1261
1262
1263
1264
1265
1266
1267
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1268

lintangsutawika's avatar
lintangsutawika committed
1269
1270
1271
1272
1273
1274
    def doc_to_visual(self, doc: Any) -> Union[int, str, list]:
        if self.config.doc_to_visual is None:
            eval_logger.error("doc_to_visual was called but not set in config")
        else:
            doc_to_visual = self.config.doc_to_visual

Ashvin Nihalani's avatar
Ashvin Nihalani committed
1275
        if isinstance(self.config.doc_to_visual, str):
lintangsutawika's avatar
lintangsutawika committed
1276
1277
1278
1279
1280
1281
            if doc_to_visual in self.features:
                return doc[doc_to_visual]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_visual, doc))
        elif callable(doc_to_visual):
            return doc_to_visual(doc)
Ashvin Nihalani's avatar
Ashvin Nihalani committed
1282
        else:
lintangsutawika's avatar
lintangsutawika committed
1283
            return None
Ashvin Nihalani's avatar
Ashvin Nihalani committed
1284

baberabb's avatar
baberabb committed
1285
1286
1287
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
lintangsutawika's avatar
lintangsutawika committed
1288
1289
        aux_arguments = None

1290
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1291
            arguments = (ctx, self.doc_to_target(doc))
1292
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1293
            arguments = (self.doc_to_target(doc),)
1294
        elif self.OUTPUT_TYPE == "multiple_choice":
1295
            choices = self.doc_to_choice(doc)
1296
            target_delimiter = self.config.target_delimiter
1297
1298
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1299
                cont = self.doc_to_target(doc)
1300
1301
1302
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1303
            else:
1304
                # Otherwise they are placed in the continuation
1305
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1306

1307
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1308
            if "acc_mutual_info" in self._metric_fn_list.keys():
1309
1310
1311
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1312
                # here mutual info refers to calculating
1313
1314
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
lintangsutawika's avatar
lintangsutawika committed
1315
                aux_arguments = [("", f"{choice}") for choice in choices]
lintangsutawika's avatar
lintangsutawika committed
1316

1317
        elif self.OUTPUT_TYPE == "generate_until":
lintangsutawika's avatar
lintangsutawika committed
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        if self.doc_to_visual:
            if isinstance(arguments, list):
                arguments = [arg + (self.doc_to_visual(doc),) for arg in arguments]
            else:
                arguments = arguments + (self.doc_to_visual(doc),)

        if isinstance(arguments, type):
            if aux_arguments is not None:
lintangsutawika's avatar
lintangsutawika committed
1328
                all_arg_list = [arguments, aux_arguments]
lintangsutawika's avatar
lintangsutawika committed
1329
1330
            else:
                all_arg_list = [arguments]
lintangsutawika's avatar
lintangsutawika committed
1331
            request_list = []
lintangsutawika's avatar
lintangsutawika committed
1332
            for arg_list in all_arg_list:
lintangsutawika's avatar
lintangsutawika committed
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
                            doc=doc,
                            arguments=arg,
                            idx=i,
                            **kwargs,
                        )
                        for i, arg in enumerate(arg_list)
                    ]
                )
lintangsutawika's avatar
lintangsutawika committed
1345
1346

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1347
1348

        return Instance(
Ashvin Nihalani's avatar
Ashvin Nihalani committed
1349
1350
1351
1352
1353
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1354
        )
1355
1356

    def process_results(self, doc, results):
1357
1358
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1359

1360
        result_dict = {}
1361
        use_metric = list(self._metric_fn_list.keys())
1362
1363
1364
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1365
1366
1367
1368
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1369
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1370
            (loglikelihood,) = results
1371
1372
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1373
            return {
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1389
            }
1390
        elif self.OUTPUT_TYPE == "multiple_choice":
1391
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1392

1393
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1394
            choices = self.doc_to_choice(doc)
1395
1396
            completion_len = np.array([float(len(i)) for i in choices])

1397
1398
            if (
                2 * len(choices) == len(lls)
1399
                and "acc_mutual_info" in self._metric_fn_list.keys()
1400
1401
1402
1403
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1404
1405
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1406
1407
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1408

1409
1410
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1411

1412
1413
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1414
            else:
1415
                gold = self.doc_to_target(doc)
1416
1417

            gold_index_error = False
1418
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1419
1420
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1421
1422
                    gold_index_error = True
            else:
1423
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1424
                    gold = gold if gold < len(choices) else -100
1425
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1426
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1427

Lintang Sutawika's avatar
Lintang Sutawika committed
1428
                if gold == -100:
1429
1430
1431
1432
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1433
                    f"Label index was not in within range of available choices,"
1434
1435
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1436

1437
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1438
1439
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1440
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1441
1442
1443
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1444
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1445
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1446

Lintang Sutawika's avatar
Lintang Sutawika committed
1447
1448
1449
1450
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1451
            result_dict = {
1452
                **({"acc": acc} if "acc" in use_metric else {}),
1453
1454
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1455
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1456
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1457
1458
1459
1460
1461
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1462
1463
            }

1464
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1465
1466
1467
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1468
1469
1470
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1471
        elif self.OUTPUT_TYPE == "generate_until":
1472
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1473
            result = results[0]
1474
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1475
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1476
                # it assumes that doc_to_target returns a number.
1477
1478
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1479
1480
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1481
                gold = list(gold)
Chris's avatar
Chris committed
1482
1483
1484
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1485

lintangsutawika's avatar
lintangsutawika committed
1486
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1487
1488
1489
1490
1491
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1492
1493
1494
1495
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1496
1497
1498
1499
1500
1501
1502
1503
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1504
                    else:
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1526
                else:
1527
                    try:
1528
                        result_score = self._metric_fn_list[metric](
1529
1530
                            references=[gold],
                            predictions=[result],
1531
                            **self._metric_fn_kwargs[metric],
1532
                        )
1533
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1534
                        result_score = self._metric_fn_list[metric]([gold, result])
1535
1536
1537
1538
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1539
        else:
lintangsutawika's avatar
lintangsutawika committed
1540
1541
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1542
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1543
            )
1544
1545
1546

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1547
    def aggregation(self) -> dict:
1548
1549
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1550
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1551
        return self._higher_is_better
1552

Baber Abbasi's avatar
Baber Abbasi committed
1553
1554
1555
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

1556
1557
1558
1559
1560
1561
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"group_name={getattr(self.config, 'group', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Ashvin Nihalani's avatar
Ashvin Nihalani committed
1562
            f"num_samples={len(self.eval_docs)})",
1563
1564
        )

1565
1566

class MultipleChoiceTask(Task):
1567
    OUTPUT_TYPE = "loglikelihood"
1568

baberabb's avatar
baberabb committed
1569
    def doc_to_target(self, doc: dict) -> str:
1570
1571
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1572
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1573
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1574
1575
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1576
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1577
                doc=doc,
1578
                arguments=(ctx, " {}".format(choice)),
1579
                idx=i,
1580
1581
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1582
1583
            for i, choice in enumerate(doc["choices"])
        ]
1584

1585
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1586
1587
1588
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1600
    def higher_is_better(self) -> dict:
1601
1602
1603
1604
1605
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1606
    def aggregation(self) -> dict:
1607
1608
1609
1610
1611
1612
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1613
class PerplexityTask(Task):
1614
1615
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1616
    def has_training_docs(self) -> bool:
1617
1618
        return False

baberabb's avatar
baberabb committed
1619
    def fewshot_examples(self, k: int, rnd) -> List:
1620
1621
1622
1623
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1624
1625
        return []

baberabb's avatar
baberabb committed
1626
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1627
1628
1629
1630
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1631
1632
1633

        return ""

baberabb's avatar
baberabb committed
1634
    def higher_is_better(self) -> dict:
1635
1636
1637
1638
1639
1640
1641
1642
1643
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1644
    def doc_to_text(self, doc) -> str:
1645
1646
1647
1648
1649
        return ""

    def doc_to_target(self, doc):
        return doc

1650
1651
1652
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1653

lintangsutawika's avatar
lintangsutawika committed
1654
1655
1656
1657
1658
1659
1660
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1661

1662
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1663
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1664
1665
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1666
1667
1668
1669
1670
1671
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1672
    def aggregation(self) -> dict:
1673
1674
1675
1676
1677
1678
1679
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1680
    def count_bytes(cls, doc) -> int:
1681
1682
1683
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1684
    def count_words(cls, doc) -> int:
1685
1686
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))