task.py 68.9 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
59
    tag: Optional[Union[str, list]] = None
60
61
62
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
Baber's avatar
Baber committed
63
    download_dataset: Optional[Callable] = None
64
65
66
67
68
69
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
70
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
71
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
72
    )
73
74
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
75
76
77
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
78
    doc_to_image: Union[Callable, str] = None
Hojin Lee's avatar
Hojin Lee committed
79
    unsafe_code: bool = False
80
81
82
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
83
    description: str = ""
84
85
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
86
    fewshot_config: Optional[dict] = None
87
    # runtime configuration options
88
    num_fewshot: Optional[int] = None
89
    # scoring options
90
91
92
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
93
    repeats: int = 1
94
    filter_list: Optional[Union[str, list]] = None
95
    should_decontaminate: bool = False
96
    doc_to_decontamination_query: Optional[str] = None
Baber Abbasi's avatar
Baber Abbasi committed
97
    gen_prefix: Optional[str] = None
98
99
100
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
101

Ethan Smith's avatar
Ethan Smith committed
102
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
103
        if self.generation_kwargs is not None:
104
            if self.output_type != "generate_until":
105
                eval_logger.warning(
106
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
107
108
109
110
111
112
113
114
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
115
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
116
        else:
117
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
118
119
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
120
121
122
123
124
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
125
126
                    "do_sample": False,
                }
127

128
129
130
    def __getitem__(self, item):
        return getattr(self, item)

131
132
133
    def __setitem__(self, item, value):
        return setattr(self, item, value)

134
    def to_dict(self, keep_callable: bool = False) -> dict:
135
136
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
137
        Used for dumping results alongside full task configuration
138

haileyschoelkopf's avatar
haileyschoelkopf committed
139
140
141
142
143
144
145
146
147
148
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
149
150
151
152
153
154
155
156
157
158
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
159
        return cfg_dict
160

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

177
178
179
180
181
182
183
184
185
186
187

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

188
    VERSION: Optional[Union[int, str]] = None
189

190
191
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
192
    DATASET_PATH: Optional[str] = None
193
194

    # The name of a subset within `DATASET_PATH`.
195
    DATASET_NAME: Optional[str] = None
196

197
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
198

199
200
    def __init__(
        self,
201
202
203
204
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
205
    ) -> None:
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
228
229
230
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
231

232
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
233

lintangsutawika's avatar
lintangsutawika committed
234
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
235
236
237
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
238

239
240
241
242
243
244
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
269
270
271
272
273
274
275
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
276

277
    @property
278
    def config(self) -> TaskConfig:
279
280
281
        """Returns the TaskConfig associated with this class."""
        return self._config

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

297
    def training_docs(self) -> Iterable:
298
299
300
301
302
303
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

304
    def validation_docs(self) -> Iterable:
305
306
307
308
309
310
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

311
    def test_docs(self) -> Iterable:
312
313
314
315
316
317
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

318
    def fewshot_docs(self) -> Iterable:
319
320
321
322
323
324
325
326
327
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber's avatar
Baber committed
328
329
330
331
332
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
333
334
            return self.test_docs()

335
    def _process_doc(self, doc: dict) -> dict:
336
337
338
339
340
341
342
343
344
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
345

346
    @property
347
    def instances(self) -> List[Instance]:
348
349
350
351
352
353
354
355
356
357
358
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

359
360
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
361
362
363
364
365
366
367
368
369
370
371
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

372
373
374
375
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

Baber Abbasi's avatar
Baber Abbasi committed
376
377
378
    def doc_to_prefix(self, doc):
        return ""

379
380
    def build_all_requests(
        self,
381
        *,
382
383
384
385
386
387
388
389
390
391
        limit: Union[int, None] = None,
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
392
    ) -> None:
393
        """Build a set of Instances for a task, and store them in task.instances"""
394
395
396
397

        # used with caching
        og_limit = limit

398
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
399
400
401
402
403
404
405
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
406
        cache_key += f"-tokenizer{tokenizer_name}"
407

Baber Abbasi's avatar
Baber Abbasi committed
408
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
409
410
411
412
413
414
415
416
417
418
419
420
421

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
422
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
423

424
        instances = []
425
426
427
428
429
430
431
432
433
434

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
435
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
436
437
438
439
440
441
442
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
443
        ):
444
            # sample fewshot context #TODO: need to offset doc_id by rank now!
445
            fewshot_ctx = self.fewshot_context(
446
                doc,
447
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
448
449
450
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
451
                chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
452
                gen_prefix=self.doc_to_prefix(doc),
453
            )
454

455
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
456
457
458
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
459
                metadata=(self.config["task"], doc_id, self.config.repeats),
460
                apply_chat_template=apply_chat_template,
461
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
462
            )
463
464
465
466

            if not isinstance(inst, list):
                inst = [inst]

467
468
469
470
471
472
473
474
475
476
477
478
479
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
480

481
482
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
483

484
485
486
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
503
            The number of times each instance in a dataset is inferred on. Defaults to 1,
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

539
540
541
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
542
543
544
545
546
547
548
549
550
551
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

552
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
553
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
554
555
556
557
558
559
560
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
561
562
563
564
565
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
566
567
568
        :returns: str
            The fewshot context.
        """
569
        if rnd is None:
570
571
572
573
574
575
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
576

577
        description = description if description else ""
578
579

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
580
            labeled_examples = ""
581
        else:
lintangsutawika's avatar
lintangsutawika committed
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
606
            )
607
608

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
609
        return description + labeled_examples + example
610

611
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
612
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
613
614
        if hasattr(self, "_filters"):
            for f in self._filters:
615
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
616
617
618
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
619

baberabb's avatar
baberabb committed
620
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
621
        """Returns the config as a dictionary."""
622
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
623
        # (num_fewshot)
624
        return self.config.to_dict()
625

Baber Abbasi's avatar
Baber Abbasi committed
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

666
667
668
669
670
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

671
672
673
674
675
676
677
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
678
679
680
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
681
682
683
684
685
686
687
688
689
690
691
692
693

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

694
695

class ConfigurableTask(Task):
696
    VERSION = "Yaml"
697
    OUTPUT_TYPE = None
698
    CONFIG = None
699
700

    def __init__(
701
702
703
704
705
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
706
    ) -> None:  # TODO no super() call here
707
        # Get pre-configured attributes
708
        self._config = self.CONFIG
709

710
        # Use new configurations if there was no preconfiguration
711
        if self.config is None:
712
            self._config = TaskConfig(**config)
713
714
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
715
            if config is not None:
716
                self._config.__dict__.update(config)
717

718
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
719
720
721
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
722

723
724
725
726
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

727
        if self.config.output_type is not None:
728
729
730
731
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
732
            self.OUTPUT_TYPE = self.config.output_type
733

734
735
736
737
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
738
739
740
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

741
742
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
743

744
745
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
746

747
748
749
750
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
751

752
        if self.config.metric_list is None:
753
            # TODO: handle this in TaskConfig.__post_init__ ?
754
755
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

756
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
757
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
758
                self._metric_fn_kwargs[metric_name] = {}
759
760
761
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
762
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
763
        else:
764
            for metric_config in self.config.metric_list:
765
766
767
768
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
769
770
771
772
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
773
774
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
775
                }
Chris's avatar
Chris committed
776
777
778
779
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
780

781
                if self.config.process_results is not None:
782
783
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
784
785
786
787
788
789
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
790
791
792
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
793
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
794

795
                if "aggregation" in metric_config:
796
                    agg_name = metric_config["aggregation"]
797
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
798
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
799
                    elif callable(agg_name):  # noqa: E721
800
801
802
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
803
                else:
804
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
805
                    metric_agg = get_metric_aggregation(metric_name)
806
                    eval_logger.warning(
807
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
808
809
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
810
                    )
811
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
812

813
814
815
816
817
818
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
819
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
820
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
821
                        f"higher_is_better={is_higher_better(metric_name)}"
822
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
823
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
824

Baber's avatar
Baber committed
825
        self.download(self.config.dataset_kwargs)
826
827
828
        self._training_docs = None
        self._fewshot_docs = None

829
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
830
            self._filters = []
831
            for filter_config in self.config.filter_list:
832
833
834
835
836
837
838
839
840
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
841
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
842
        else:
843
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
844

845
846
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
847
            self.prompt = get_prompt(
848
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
849
            )
850
851
852
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
853
        if self.fewshot_docs() is not None:
854
855
856
857
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
858
859
860
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
877

878
        self.task_docs = self.eval_docs
879

880
        # Test One Doc
881
        self.features = list(self.task_docs.features.keys())
882
883
        self.multiple_input = 0
        self.multiple_target = 0
884
        test_doc = self.task_docs[0]
885
        test_text = self.doc_to_text(test_doc)
886
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
887

888
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
889
            test_choice = self.doc_to_choice(test_doc)
890
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
891
                eval_logger.error("doc_to_choice must return list")
892
893
            else:
                num_choice = len(test_choice)
894

895
            if isinstance(test_text, int):
896
                self.multiple_input = num_choice
897
898
        else:
            test_choice = None
899

900
        if isinstance(test_target, list):
901
            self.multiple_target = len(test_target)
902
        else:
903
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
904
                test_target = test_choice[test_target]
905
            else:
lintangsutawika's avatar
lintangsutawika committed
906
                test_target = str(test_target)
907

908
909
910
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
911
            check_choices = [test_target]
912
913
914
915
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
916
917
                    True
                    if self.config.target_delimiter.rstrip()
918
                    != self.config.target_delimiter
919
                    else False
920
                )
921

922
                if delimiter_has_whitespace and choice_has_whitespace:
923
924
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
925
926
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
927
                    eval_logger.debug(
928
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
929
930
                    )

Baber's avatar
nit  
Baber committed
931
932
933
    def download(
        self, dataset_kwargs: Optional[Dict[str, Any]] = None, **kwargs
    ) -> None:
Baber's avatar
Baber committed
934
        if isinstance(self.config.download_dataset, Callable):
Baber's avatar
Baber committed
935
936
937
            eval_logger.warning(
                f"Custom kwargs used for the {self.config.task} can be passed to `--metadata` in console or to the TaskManager. For example --metadata=max_seq_lengths=4096,8192. For details see task Readme."
            )
Baber's avatar
Baber committed
938
939
940
941
942
943
944
945
946
947
948
949
            self.dataset = self.config.download_dataset(
                **self.config.metadata,
                **self.config.dataset_kwargs
                if self.config.dataset_kwargs is not None
                else {},
            )
        else:
            self.dataset = datasets.load_dataset(
                path=self.DATASET_PATH,
                name=self.DATASET_NAME,
                **dataset_kwargs if dataset_kwargs is not None else {},
            )
950

baberabb's avatar
baberabb committed
951
    def has_training_docs(self) -> bool:
952
        if self.config.training_split is not None:
953
954
955
956
            return True
        else:
            return False

baberabb's avatar
baberabb committed
957
    def has_validation_docs(self) -> bool:
958
        if self.config.validation_split is not None:
959
960
961
962
            return True
        else:
            return False

baberabb's avatar
baberabb committed
963
    def has_test_docs(self) -> bool:
964
        if self.config.test_split is not None:
965
966
967
968
            return True
        else:
            return False

baberabb's avatar
baberabb committed
969
    def training_docs(self) -> datasets.Dataset:
970
        if self.has_training_docs():
971
972
973
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
974
                )
975
            return self.dataset[self.config.training_split]
976

baberabb's avatar
baberabb committed
977
    def validation_docs(self) -> datasets.Dataset:
978
        if self.has_validation_docs():
979
980
981
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
982
                )
983
            return self.dataset[self.config.validation_split]
984

baberabb's avatar
baberabb committed
985
    def test_docs(self) -> datasets.Dataset:
986
        if self.has_test_docs():
987
988
989
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
990

991
    def fewshot_docs(self):
992
        if self.config.fewshot_split is not None:
993
994
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
995
            return self.dataset[self.config.fewshot_split]
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1008
        else:
1009
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1010
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
1011
                    f"[Task: {self.config.task}] "
1012
1013
1014
1015
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1016

KonradSzafer's avatar
KonradSzafer committed
1017
1018
1019
1020
1021
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1022
        gen_prefix: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
1038
1039
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
1040

lintangsutawika's avatar
lintangsutawika committed
1041
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1042
1043
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1044
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
1045
1046
1047
1048
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1049
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1050
        gen_prefix: Optional[str] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1051
    ) -> Union[str, List[str]]:
lintangsutawika's avatar
lintangsutawika committed
1052
1053
1054
1055
1056
1057
1058
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1059
1060
1061
1062
1063
1064
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1065
1066
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
1067
1068
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
1069
1070
1071
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1072
1073
1074
1075
1076
1077
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1078
1079
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1080

KonradSzafer's avatar
KonradSzafer committed
1081
1082
1083
1084
1085
1086
1087
1088
1089
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1090
        else:
KonradSzafer's avatar
KonradSzafer committed
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
1104
1105
1106
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1107
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1108
1109
1110
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1111
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
1112
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
1113
                )
lintangsutawika's avatar
lintangsutawika committed
1114
1115

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1116
1117
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
1118
                # TODO: append prefill?
1119
1120
                if not labeled_examples:
                    return ""
1121
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1122
1123
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1124
1125
1126
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1127
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1128
1129
1130
1131
1132
1133
1134
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1135
1136
1137
1138
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1139
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
1140
1141
1142
1143
1144
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber Abbasi's avatar
Baber Abbasi committed
1145
                            add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1146
1147
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
1148
1149
1150
1151
1152
1153
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1154
1155
1156
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1157
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1158
1159
1160
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1161
1162
1163
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1164
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1165
1166
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1167
1168
            return chat_template(
                labeled_examples,
Baber Abbasi's avatar
Baber Abbasi committed
1169
                add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1170
            )
1171
        else:
Baber Abbasi's avatar
Baber Abbasi committed
1172
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
1173
1174
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
1175
1176
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
1177
1178
            if self.multiple_input:
                return labeled_examples
1179
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
1180
                return labeled_examples + example + prefix
1181
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
1182
                return [labeled_examples + ex + prefix for ex in example]
1183
1184
1185
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
1186
                    return labeled_examples + choices[example] + prefix
1187
                else:
Baber Abbasi's avatar
Baber Abbasi committed
1188
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
1189

Baber Abbasi's avatar
Baber Abbasi committed
1190
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
1191
        """Iterates over FilterEnsembles and applies them to instances"""
1192
1193
        if hasattr(self, "_filters"):
            for f in self._filters:
1194
                f.apply(self._instances)
1195
1196
1197
1198
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1199
    def should_decontaminate(self):
1200
        return self.config.should_decontaminate
1201

Baber Abbasi's avatar
Baber Abbasi committed
1202
    def doc_to_decontamination_query(self, doc: dict):
1203
        if self.config.should_decontaminate:
1204
1205
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1206
            else:
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1218

1219
    def _process_doc(self, doc: dict) -> dict:
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1230
    def doc_to_text(self, doc, doc_to_text=None):
1231
1232
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1233
1234
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1235
        else:
1236
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1237

1238
        if isinstance(doc_to_text, int):
1239
            return doc_to_text
1240
        elif isinstance(doc_to_text, str):
1241
            if doc_to_text in self.features:
1242
                # if self.config.doc_to_choice is not None:
1243
1244
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1245
1246
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1247
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1248
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1249
1250
1251
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1252
        elif callable(doc_to_text):
1253
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1254
        # Used when applying a Promptsource template
1255
        elif hasattr(doc_to_text, "apply"):
1256
1257
1258
1259
1260
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1261
                return self.config.fewshot_delimiter
1262
        else:
1263
            print(type(doc_to_text))
1264
            raise TypeError
1265

Yu Shi Jie's avatar
Yu Shi Jie committed
1266
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1267
1268
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1269
1270
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1271
        else:
1272
            doc_to_target = self.config.doc_to_target
1273

1274
        if isinstance(doc_to_target, int):
1275
            return doc_to_target
1276
        elif isinstance(doc_to_target, str):
1277
            if doc_to_target in self.features:
1278
                # if self.config.doc_to_choice is not None:
1279
1280
1281
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1282
            else:
lintangsutawika's avatar
lintangsutawika committed
1283
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1284
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1285
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1286
1287
1288
1289
1290
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1291
1292
1293
1294
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1295
1296
                else:
                    return target_string
1297
        elif isinstance(doc_to_target, list):
1298
            return doc_to_target
1299
        elif callable(doc_to_target):
1300
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1301
        # Used when applying a Promptsource template
1302
        elif hasattr(doc_to_target, "apply"):
1303
            applied_prompt = doc_to_target.apply(doc)
1304
1305
1306
1307
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1308
                return self.config.fewshot_delimiter
1309
1310
        else:
            raise TypeError
1311

Yu Shi Jie's avatar
Yu Shi Jie committed
1312
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1313
1314
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1315
1316
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1317
        elif self.config.doc_to_choice is None:
1318
1319
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1320
            doc_to_choice = self.config.doc_to_choice
1321

1322
        if isinstance(doc_to_choice, str):
1323
1324
1325
1326
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1327
        elif isinstance(doc_to_choice, list):
1328
            return doc_to_choice
1329
        elif isinstance(doc_to_choice, dict):
1330
1331
1332
1333
1334
1335
1336
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1337

1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

Baber Abbasi's avatar
Baber Abbasi committed
1361
1362
1363
1364
1365
1366
1367
1368
    def doc_to_prefix(self, doc):
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1369
1370
1371
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1372
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1373
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1374

1375
1376
        aux_arguments = None

1377
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1378
            arguments = (ctx, self.doc_to_target(doc))
1379
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1380
            arguments = (self.doc_to_target(doc),)
1381
        elif self.OUTPUT_TYPE == "multiple_choice":
1382
            choices = self.doc_to_choice(doc)
1383
            target_delimiter = self.config.target_delimiter
1384
1385
            if apply_chat_template:
                target_delimiter = ""
1386
1387
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1388
                # apply chat_template to choices if apply_chat_template
1389
                cont = self.doc_to_target(doc)
1390

1391
                arguments = [
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1402
                ]
1403
            else:
1404
                # Otherwise they are placed in the continuation
1405
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1406

1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                aux_arguments = [("", f"{choice}") for choice in choices]

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1438
            request_list = [
1439
1440
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1441
                    doc=doc,
1442
                    arguments=arg,
1443
                    idx=i,
1444
1445
                    **kwargs,
                )
1446
                for i, arg in enumerate(arguments)
1447
            ]
1448
1449

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1450

lintangsutawika's avatar
lintangsutawika committed
1451
        return Instance(
1452
1453
1454
1455
1456
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1457
        )
1458
1459

    def process_results(self, doc, results):
1460
1461
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1462

1463
        result_dict = {}
1464
        use_metric = list(self._metric_fn_list.keys())
1465
1466
1467
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1468
1469
1470
1471
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1472
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1473
            (loglikelihood,) = results
1474
1475
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1476
            return {
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1492
            }
1493
        elif self.OUTPUT_TYPE == "multiple_choice":
1494
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1495

1496
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1497
            choices = self.doc_to_choice(doc)
1498
1499
            completion_len = np.array([float(len(i)) for i in choices])

1500
1501
            if (
                2 * len(choices) == len(lls)
1502
                and "acc_mutual_info" in self._metric_fn_list.keys()
1503
1504
1505
1506
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1507
1508
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1509
1510
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1511

1512
1513
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1514

1515
1516
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1517
            else:
1518
                gold = self.doc_to_target(doc)
1519
1520

            gold_index_error = False
1521
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1522
1523
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1524
1525
                    gold_index_error = True
            else:
1526
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1527
                    gold = gold if gold < len(choices) else -100
1528
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1529
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1530

Lintang Sutawika's avatar
Lintang Sutawika committed
1531
                if gold == -100:
1532
1533
1534
1535
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1536
                    f"Label index was not in within range of available choices,"
1537
1538
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1539

1540
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1541
1542
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1543
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1544
1545
1546
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1547
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1548
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1549

Lintang Sutawika's avatar
Lintang Sutawika committed
1550
1551
1552
1553
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1554
            result_dict = {
1555
                **({"acc": acc} if "acc" in use_metric else {}),
1556
1557
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1558
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1559
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1560
1561
1562
1563
1564
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1565
1566
            }

1567
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1568
1569
1570
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1571
1572
1573
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1574
        elif self.OUTPUT_TYPE == "generate_until":
1575
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1576
            result = results[0]
1577
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1578
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1579
                # it assumes that doc_to_target returns a number.
1580
1581
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1582
1583
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1584
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1585
1586
1587
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
                "bypass" in self._metric_fn_list.keys() or isinstance(result, list)
1588
            ):
Chris's avatar
Chris committed
1589
1590
                # cast gold to the same type as result
                gold = type(result)(gold)
1591

lintangsutawika's avatar
lintangsutawika committed
1592
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1593
1594
1595
1596
1597
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1598
1599
1600
1601
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1602
1603
1604
1605
1606
1607
1608
1609
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1610
                    else:
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1632
                else:
1633
                    try:
1634
                        result_score = self._metric_fn_list[metric](
1635
1636
                            references=[gold],
                            predictions=[result],
1637
                            **self._metric_fn_kwargs[metric],
1638
                        )
1639
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1640
                        result_score = self._metric_fn_list[metric]([gold, result])
1641
1642
1643
1644
1645
1646
1647
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1648
        else:
lintangsutawika's avatar
lintangsutawika committed
1649
1650
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1651
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1652
            )
1653
1654
1655

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1656
    def aggregation(self) -> dict:
1657
1658
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1659
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1660
        return self._higher_is_better
1661

Baber Abbasi's avatar
Baber Abbasi committed
1662
1663
1664
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1665
1666
1667
1668
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1669
1670
1671
1672
1673
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1674
            f"num_samples={len(self.eval_docs)})"
1675
1676
        )

1677
1678

class MultipleChoiceTask(Task):
1679
    OUTPUT_TYPE = "loglikelihood"
1680

baberabb's avatar
baberabb committed
1681
    def doc_to_target(self, doc: dict) -> str:
1682
1683
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1684
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1685
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1686
1687
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1688
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1689
                doc=doc,
1690
                arguments=(ctx, " {}".format(choice)),
1691
                idx=i,
1692
1693
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1694
1695
            for i, choice in enumerate(doc["choices"])
        ]
1696

1697
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1698
1699
1700
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1712
    def higher_is_better(self) -> dict:
1713
1714
1715
1716
1717
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1718
    def aggregation(self) -> dict:
1719
1720
1721
1722
1723
1724
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1725
class PerplexityTask(Task):
1726
1727
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1728
    def has_training_docs(self) -> bool:
1729
1730
        return False

baberabb's avatar
baberabb committed
1731
    def fewshot_examples(self, k: int, rnd) -> List:
1732
1733
1734
1735
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1736
1737
        return []

baberabb's avatar
baberabb committed
1738
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1739
1740
1741
1742
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1743
1744
1745

        return ""

baberabb's avatar
baberabb committed
1746
    def higher_is_better(self) -> dict:
1747
1748
1749
1750
1751
1752
1753
1754
1755
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1756
    def doc_to_text(self, doc) -> str:
1757
1758
1759
1760
1761
        return ""

    def doc_to_target(self, doc):
        return doc

1762
1763
1764
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1765

lintangsutawika's avatar
lintangsutawika committed
1766
1767
1768
1769
1770
1771
1772
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1773

1774
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1775
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1776
1777
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1778
1779
1780
1781
1782
1783
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1784
    def aggregation(self) -> dict:
1785
1786
1787
1788
1789
1790
1791
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1792
    def count_bytes(cls, doc) -> int:
1793
1794
1795
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1796
    def count_words(cls, doc) -> int:
1797
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1798
        return len(re.split(r"\s+", doc))