task.py 60 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

lintangsutawika's avatar
lintangsutawika committed
54
55
@dataclass
class GroupConfig(dict):
lintangsutawika's avatar
lintangsutawika committed
56
57
58
    group: Optional[str] = None
    group_alias: Optional[str] = None
    task: Optional[Union[str, list]] = None
lintangsutawika's avatar
lintangsutawika committed
59
60
61
    aggregate_metric: Optional[str] = False
    aggregate_fn: Optional[str] = "mean"
    weight_by_size: Optional[str] = False
lintangsutawika's avatar
lintangsutawika committed
62
    metric_alias: Optional[str] = None
63
    version: Optional[str] = 0
lintangsutawika's avatar
lintangsutawika committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

    def __getitem__(self, item):
        return getattr(self, item)

    def __setitem__(self, item, value):
        return setattr(self, item, value)

    def to_dict(self, keep_callable: bool = False) -> dict:
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
        Used for dumping results alongside full task configuration

        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
        return cfg_dict

    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)


lintangsutawika's avatar
lintangsutawika committed
107
108
109
110
111
112
113
114
115
116
class ConfigurableGroup(abc.ABC):
    def __init__(
        self,
        config: Optional[dict] = None,
    ) -> None:
        self._config = GroupConfig(**config)

    @property
    def group(self):
        return self._config.group
117

lintangsutawika's avatar
lintangsutawika committed
118
119
120
    @property
    def group_alias(self):
        return self._config.group_alias
121
122
123
124
125

    @property
    def version(self):
        return self._config.version

lintangsutawika's avatar
lintangsutawika committed
126
127
128
129
130
131
    @property
    def config(self):
        return self._config.to_dict()

    def __repr__(self):
        return (
132
            f"ConfigurableGroup(group={self.group}," f"group_alias={self.group_alias})"
lintangsutawika's avatar
lintangsutawika committed
133
134
        )

135

136
137
@dataclass
class TaskConfig(dict):
138
    # task naming/registry
139
140
    task: Optional[str] = None
    task_alias: Optional[str] = None
lintangsutawika's avatar
lintangsutawika committed
141
    tag: Optional[Union[str, list]] = None
142
143
    group: Optional[Union[str, list]] = None
    group_alias: Optional[Union[str, list]] = None
144
145
146
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
147
148
149
150
151
152
153
154
155
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
    fewshot_split: Optional[
        str
    ] = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
156
157
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
158
159
160
161
162
163
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
164
    description: str = ""
165
166
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
167
    fewshot_config: Optional[dict] = None
168
    # runtime configuration options
169
    num_fewshot: Optional[int] = None
170
    # scoring options
171
172
173
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
174
    repeats: int = 1
175
    filter_list: Optional[Union[str, list]] = None
176
    should_decontaminate: bool = False
177
178
179
180
    doc_to_decontamination_query: Optional[str] = None
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
181

Ethan Smith's avatar
Ethan Smith committed
182
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
183
        if self.generation_kwargs is not None:
184
            if self.output_type != "generate_until":
185
                eval_logger.warning(
186
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
187
188
189
190
191
192
193
194
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
195
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
196
        else:
197
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
198
199
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
200
201
202
203
204
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
205
206
                    "do_sample": False,
                }
207

208
209
210
    def __getitem__(self, item):
        return getattr(self, item)

211
212
213
    def __setitem__(self, item, value):
        return setattr(self, item, value)

214
    def to_dict(self, keep_callable: bool = False) -> dict:
215
216
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
217
        Used for dumping results alongside full task configuration
218

haileyschoelkopf's avatar
haileyschoelkopf committed
219
220
221
222
223
224
225
226
227
228
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
229
230
231
232
233
234
235
236
237
238
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
239
        return cfg_dict
240

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

257
258
259
260
261
262
263
264
265
266
267

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

268
    VERSION: Optional[Union[int, str]] = None
269

270
271
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
272
    DATASET_PATH: Optional[str] = None
273
274

    # The name of a subset within `DATASET_PATH`.
275
    DATASET_NAME: Optional[str] = None
276

277
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
278

279
280
    def __init__(
        self,
281
282
283
284
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
285
    ) -> None:
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
308
309
310
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
311

312
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
313

lintangsutawika's avatar
lintangsutawika committed
314
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
315
316
317
        self.fewshot_rnd: Optional[
            random.Random
        ] = None  # purposely induce errors in case of improper usage
318

319
320
321
322
323
324
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
349
350
351
352
353
354
355
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
356

357
    @property
358
    def config(self) -> TaskConfig:
359
360
361
        """Returns the TaskConfig associated with this class."""
        return self._config

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

377
    def training_docs(self) -> Iterable:
378
379
380
381
382
383
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

384
    def validation_docs(self) -> Iterable:
385
386
387
388
389
390
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

391
    def test_docs(self) -> Iterable:
392
393
394
395
396
397
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

398
    def fewshot_docs(self) -> Iterable:
399
400
401
402
403
404
405
406
407
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
408
            eval_logger.warning(
409
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
410
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
411
            )
412
413
            return self.test_docs()

414
    def _process_doc(self, doc: dict) -> dict:
415
416
417
418
419
420
421
422
423
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
424

425
    @property
426
    def instances(self) -> List[Instance]:
427
428
429
430
431
432
433
434
435
436
437
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

438
439
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
440
441
442
443
444
445
446
447
448
449
450
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

451
452
    def build_all_requests(
        self,
453
        *,
454
455
456
457
458
459
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
    ) -> None:
460
        """Build a set of Instances for a task, and store them in task.instances"""
461
462
463
464

        # used with caching
        og_limit = limit

465
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
481
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
482

483
        instances = []
484
485
486
487
488
489
490
491
492
493

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
494
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
495
496
497
498
499
500
501
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
502
        ):
503
            # sample fewshot context #TODO: need to offset doc_id by rank now!
504
            fewshot_ctx = self.fewshot_context(
505
                doc,
506
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
507
            )
508

509
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
510
511
512
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
513
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
514
            )
515
516
517
518

            if not isinstance(inst, list):
                inst = [inst]

519
520
521
522
523
524
525
526
527
528
529
530
531
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
532

533
534
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
535

536
537
538
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
555
            The number of times each instance in a dataset is inferred on. Defaults to 1,
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

591
592
593
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
594
595
596
597
598
599
600
601
602
603
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

604
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
605
    def fewshot_context(
606
607
608
        self,
        doc,
        num_fewshot,
609
        rnd=None,
610
        description=None,
lintangsutawika's avatar
lintangsutawika committed
611
    ):
612
613
614
615
616
617
618
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
619
620
621
622
623
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
624
625
626
        :returns: str
            The fewshot context.
        """
627
        if rnd is None:
628
629
630
631
632
633
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
634

635
        description = description if description else ""
636
637

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
638
            labeled_examples = ""
639
        else:
lintangsutawika's avatar
lintangsutawika committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
664
            )
665
666

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
667
        return description + labeled_examples + example
668

669
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
670
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
671
672
        if hasattr(self, "_filters"):
            for f in self._filters:
673
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
674
675
676
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
677

baberabb's avatar
baberabb committed
678
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
679
        """Returns the config as a dictionary."""
680
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
681
        # (num_fewshot)
682
        return self.config.to_dict()
683

Baber Abbasi's avatar
Baber Abbasi committed
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

724
725
726
727
728
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

729
730
731
732
733
734
735
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
736
737
738
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
739
740
741
742
743
744
745
746
747
748
749
750
751

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

752
753

class ConfigurableTask(Task):
754
    VERSION = "Yaml"
755
    OUTPUT_TYPE = None
756
    CONFIG = None
757
758

    def __init__(
759
760
761
762
763
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
764
    ) -> None:  # TODO no super() call here
765
        # Get pre-configured attributes
766
        self._config = self.CONFIG
767

768
        # Use new configurations if there was no preconfiguration
769
        if self.config is None:
770
            self._config = TaskConfig(**config)
771
772
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
773
            if config is not None:
774
                self._config.__dict__.update(config)
775

776
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
777
778
779
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
780

781
782
783
784
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

785
        if self.config.output_type is not None:
786
787
788
789
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
790
            self.OUTPUT_TYPE = self.config.output_type
791

792
793
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
794

795
796
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
797

798
799
800
801
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
802

803
        if self.config.metric_list is None:
804
            # TODO: handle this in TaskConfig.__post_init__ ?
805
806
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

807
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
808
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
809
                self._metric_fn_kwargs[metric_name] = {}
810
811
812
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
813
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
814
        else:
815
            for metric_config in self.config.metric_list:
816
817
818
819
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
820
821
822
823
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
824
825
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
826
                }
Chris's avatar
Chris committed
827
828
829
830
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
831

832
                if self.config.process_results is not None:
833
834
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
835
836
837
838
839
840
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
841
842
843
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
844
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
845

846
                if "aggregation" in metric_config:
847
                    agg_name = metric_config["aggregation"]
848
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
849
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
850
                    elif callable(agg_name):  # noqa: E721
851
852
853
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
854
                else:
855
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
856
                    metric_agg = get_metric_aggregation(metric_name)
857
                    eval_logger.warning(
858
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
859
860
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
861
                    )
862
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
863

864
865
866
867
868
869
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
870
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
871
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
872
                        f"higher_is_better={is_higher_better(metric_name)}"
873
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
874
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
875

876
        self.download(self.config.dataset_kwargs)
877
878
879
        self._training_docs = None
        self._fewshot_docs = None

880
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
881
            self._filters = []
882
            for filter_config in self.config.filter_list:
883
884
885
886
887
888
889
890
891
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
892
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
893
        else:
894
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
895

896
897
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
898
            self.prompt = get_prompt(
899
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
900
            )
901
902
903
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
904
        if self.fewshot_docs() is not None:
905
906
907
908
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
909
910
911
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
928

929
        self.task_docs = self.eval_docs
930

931
        # Test One Doc
932
        self.features = list(self.task_docs.features.keys())
933
934
        self.multiple_input = 0
        self.multiple_target = 0
935
        test_doc = self.task_docs[0]
936
        test_text = self.doc_to_text(test_doc)
937
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
938

939
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
940
            test_choice = self.doc_to_choice(test_doc)
941
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
942
                eval_logger.error("doc_to_choice must return list")
943
944
            else:
                num_choice = len(test_choice)
945

946
            if isinstance(test_text, int):
947
                self.multiple_input = num_choice
948
949
        else:
            test_choice = None
950

951
        if isinstance(test_target, list):
952
            self.multiple_target = len(test_target)
953
        else:
954
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
955
                test_target = test_choice[test_target]
956
            else:
lintangsutawika's avatar
lintangsutawika committed
957
                test_target = str(test_target)
958

959
960
961
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
962
            check_choices = [test_target]
963
964
965
966
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
967
968
                    True
                    if self.config.target_delimiter.rstrip()
969
                    != self.config.target_delimiter
970
                    else False
971
                )
972

973
                if delimiter_has_whitespace and choice_has_whitespace:
974
975
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
976
977
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
978
                    eval_logger.debug(
979
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
980
981
                    )

982
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
983
984
985
986
987
988
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
989
    def has_training_docs(self) -> bool:
990
        if self.config.training_split is not None:
991
992
993
994
            return True
        else:
            return False

baberabb's avatar
baberabb committed
995
    def has_validation_docs(self) -> bool:
996
        if self.config.validation_split is not None:
997
998
999
1000
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1001
    def has_test_docs(self) -> bool:
1002
        if self.config.test_split is not None:
1003
1004
1005
1006
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1007
    def training_docs(self) -> datasets.Dataset:
1008
        if self.has_training_docs():
1009
1010
1011
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1012
                )
1013
            return self.dataset[self.config.training_split]
1014

baberabb's avatar
baberabb committed
1015
    def validation_docs(self) -> datasets.Dataset:
1016
        if self.has_validation_docs():
1017
1018
1019
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1020
                )
1021
            return self.dataset[self.config.validation_split]
1022

baberabb's avatar
baberabb committed
1023
    def test_docs(self) -> datasets.Dataset:
1024
        if self.has_test_docs():
1025
1026
1027
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1028

1029
    def fewshot_docs(self):
1030
        if self.config.fewshot_split is not None:
1031
1032
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1033
            return self.dataset[self.config.fewshot_split]
1034
        else:
1035
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1036
                eval_logger.warning(
1037
                    f"Task '{self.config.task}': "
1038
1039
1040
1041
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1042

lintangsutawika's avatar
lintangsutawika committed
1043
    @utils.positional_deprecated
1044
    def fewshot_context(self, doc: str, num_fewshot: int) -> str:
lintangsutawika's avatar
lintangsutawika committed
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """
1055
1056
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1057
1058
1059

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
1060
            labeled_examples = description
lintangsutawika's avatar
lintangsutawika committed
1061
        else:
1062
            labeled_examples = description + self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1063
1064

        example = self.doc_to_text(doc)
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
        if self.multiple_input:
            return labeled_examples
        else:
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1078

1079
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1080
        """Iterates over FilterEnsembles and applies them to instances"""
1081
1082
        if hasattr(self, "_filters"):
            for f in self._filters:
1083
                f.apply(self._instances)
1084
1085
1086
1087
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1088
    def should_decontaminate(self):
1089
        return self.config.should_decontaminate
1090
1091

    def doc_to_decontamination_query(self, doc):
1092
        if self.config.should_decontaminate:
1093
1094
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1095
            else:
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1107

1108
    def _process_doc(self, doc: dict) -> dict:
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1120
1121
        if self.prompt is not None:
            doc_to_text = self.prompt
1122
        else:
1123
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1124

1125
        if isinstance(doc_to_text, int):
1126
            return doc_to_text
1127
        elif isinstance(doc_to_text, str):
1128
            if doc_to_text in self.features:
1129
                # if self.config.doc_to_choice is not None:
1130
1131
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1132
1133
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1134
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1135
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1136
1137
1138
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1139
        elif callable(doc_to_text):
1140
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1141
        # Used when applying a Promptsource template
1142
        elif hasattr(doc_to_text, "apply"):
1143
1144
1145
1146
1147
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1148
                return self.config.fewshot_delimiter
1149
        else:
1150
            print(type(doc_to_text))
1151
            raise TypeError
1152

1153
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1154
1155
        if self.prompt is not None:
            doc_to_target = self.prompt
1156
        else:
1157
            doc_to_target = self.config.doc_to_target
1158

1159
        if isinstance(doc_to_target, int):
1160
            return doc_to_target
1161
        elif isinstance(doc_to_target, str):
1162
            if doc_to_target in self.features:
1163
                # if self.config.doc_to_choice is not None:
1164
1165
1166
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1167
            else:
lintangsutawika's avatar
lintangsutawika committed
1168
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1169
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1170
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1171
1172
1173
1174
1175
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1176
1177
1178
1179
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1180
1181
                else:
                    return target_string
1182
        elif isinstance(doc_to_target, list):
1183
            return doc_to_target
1184
        elif callable(doc_to_target):
1185
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1186
        # Used when applying a Promptsource template
1187
        elif hasattr(doc_to_target, "apply"):
1188
            applied_prompt = doc_to_target.apply(doc)
1189
1190
1191
1192
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1193
                return self.config.fewshot_delimiter
1194
1195
        else:
            raise TypeError
1196

baberabb's avatar
baberabb committed
1197
    def doc_to_choice(self, doc: Any) -> List[str]:
1198
1199
        if self.prompt is not None:
            doc_to_choice = self.prompt
1200
        elif self.config.doc_to_choice is None:
1201
1202
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1203
            doc_to_choice = self.config.doc_to_choice
1204

1205
        if isinstance(doc_to_choice, str):
1206
1207
1208
1209
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1210
        elif isinstance(doc_to_choice, list):
1211
            return doc_to_choice
1212
        elif isinstance(doc_to_choice, dict):
1213
1214
1215
1216
1217
1218
1219
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1220

baberabb's avatar
baberabb committed
1221
1222
1223
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1224
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1225
            arguments = (ctx, self.doc_to_target(doc))
1226
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1227
            arguments = (self.doc_to_target(doc),)
1228
        elif self.OUTPUT_TYPE == "multiple_choice":
1229
            choices = self.doc_to_choice(doc)
1230
            target_delimiter = self.config.target_delimiter
1231
1232
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1233
                cont = self.doc_to_target(doc)
1234
1235
1236
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1237
            else:
1238
                # Otherwise they are placed in the continuation
1239
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1240

1241
            request_list = [
1242
1243
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1244
                    doc=doc,
1245
                    arguments=arg,
1246
                    idx=i,
1247
1248
                    **kwargs,
                )
1249
                for i, arg in enumerate(arguments)
1250
            ]
1251
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1252
            if "acc_mutual_info" in self._metric_fn_list.keys():
1253
1254
1255
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1256
                # here mutual info refers to calculating
1257
1258
1259
1260
1261
1262
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1263
                            doc=doc,
1264
                            arguments=("", "{}".format(choice)),
1265
1266
1267
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1268
                        for i, choice in enumerate(choices)
1269
1270
1271
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1272

1273
        elif self.OUTPUT_TYPE == "generate_until":
1274
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1275
1276

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1277
1278
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1279
1280

    def process_results(self, doc, results):
1281
1282
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1283

1284
        result_dict = {}
1285
        use_metric = list(self._metric_fn_list.keys())
1286
1287
1288
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1289
1290
1291
1292
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1293
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1294
            (loglikelihood,) = results
1295
1296
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1297
            return {
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1313
            }
1314
        elif self.OUTPUT_TYPE == "multiple_choice":
1315
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1316

1317
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1318
            choices = self.doc_to_choice(doc)
1319
1320
            completion_len = np.array([float(len(i)) for i in choices])

1321
1322
            if (
                2 * len(choices) == len(lls)
1323
                and "acc_mutual_info" in self._metric_fn_list.keys()
1324
1325
1326
1327
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1328
1329
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1330
1331
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1332

1333
1334
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1335

1336
1337
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1338
            else:
1339
                gold = self.doc_to_target(doc)
1340
1341

            gold_index_error = False
1342
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1343
1344
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1345
1346
                    gold_index_error = True
            else:
1347
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1348
                    gold = gold if gold < len(choices) else -100
1349
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1350
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1351

Lintang Sutawika's avatar
Lintang Sutawika committed
1352
                if gold == -100:
1353
1354
1355
1356
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1357
                    f"Label index was not in within range of available choices,"
1358
1359
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1360

1361
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1362
1363
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1364
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1365
1366
1367
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1368
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1369
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1370

Lintang Sutawika's avatar
Lintang Sutawika committed
1371
1372
1373
1374
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1375
            result_dict = {
1376
                **({"acc": acc} if "acc" in use_metric else {}),
1377
1378
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1379
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1380
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1381
1382
1383
1384
1385
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1386
1387
            }

1388
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1389
1390
1391
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1392
1393
1394
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1395
        elif self.OUTPUT_TYPE == "generate_until":
1396
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1397
            result = results[0]
1398
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1399
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1400
                # it assumes that doc_to_target returns a number.
1401
1402
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1403
1404
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1405
                gold = list(gold)
Chris's avatar
Chris committed
1406
1407
1408
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1409

lintangsutawika's avatar
lintangsutawika committed
1410
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1411
1412
1413
1414
1415
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1416
1417
1418
1419
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1420
1421
1422
1423
1424
1425
1426
1427
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1428
                    else:
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1450
                else:
1451
                    try:
1452
                        result_score = self._metric_fn_list[metric](
1453
1454
                            references=[gold],
                            predictions=[result],
1455
                            **self._metric_fn_kwargs[metric],
1456
                        )
1457
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1458
                        result_score = self._metric_fn_list[metric]([gold, result])
1459
1460
1461
1462
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1463
        else:
lintangsutawika's avatar
lintangsutawika committed
1464
1465
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1466
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1467
            )
1468
1469
1470

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1471
    def aggregation(self) -> dict:
1472
1473
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1474
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1475
        return self._higher_is_better
1476

Baber Abbasi's avatar
Baber Abbasi committed
1477
1478
1479
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

1480
1481
1482
1483
1484
1485
1486
1487
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1488
1489

class MultipleChoiceTask(Task):
1490
    OUTPUT_TYPE = "loglikelihood"
1491

baberabb's avatar
baberabb committed
1492
    def doc_to_target(self, doc: dict) -> str:
1493
1494
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1495
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1496
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1497
1498
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1499
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1500
                doc=doc,
1501
                arguments=(ctx, " {}".format(choice)),
1502
                idx=i,
1503
1504
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1505
1506
            for i, choice in enumerate(doc["choices"])
        ]
1507

1508
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1509
1510
1511
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1523
    def higher_is_better(self) -> dict:
1524
1525
1526
1527
1528
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1529
    def aggregation(self) -> dict:
1530
1531
1532
1533
1534
1535
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1536
class PerplexityTask(Task):
1537
1538
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1539
    def has_training_docs(self) -> bool:
1540
1541
        return False

baberabb's avatar
baberabb committed
1542
    def fewshot_examples(self, k: int, rnd) -> List:
1543
1544
1545
1546
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1547
1548
        return []

baberabb's avatar
baberabb committed
1549
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1550
1551
1552
1553
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1554
1555
1556

        return ""

baberabb's avatar
baberabb committed
1557
    def higher_is_better(self) -> dict:
1558
1559
1560
1561
1562
1563
1564
1565
1566
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1567
    def doc_to_text(self, doc) -> str:
1568
1569
1570
1571
1572
        return ""

    def doc_to_target(self, doc):
        return doc

1573
1574
1575
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1576

lintangsutawika's avatar
lintangsutawika committed
1577
1578
1579
1580
1581
1582
1583
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1584

1585
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1586
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1587
1588
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1589
1590
1591
1592
1593
1594
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1595
    def aggregation(self) -> dict:
1596
1597
1598
1599
1600
1601
1602
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1603
    def count_bytes(cls, doc) -> int:
1604
1605
1606
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1607
    def count_words(cls, doc) -> int:
1608
1609
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))