task.py 68.2 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

Lintang Sutawika's avatar
Lintang Sutawika committed
51
eval_logger = logging.getLogger(__name__)
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
59
    tag: Optional[Union[str, list]] = None
60
61
62
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
63
64
65
66
67
68
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
69
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
70
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
71
    )
72
73
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
74
75
76
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
77
    doc_to_image: Union[Callable, str] = None
Hojin Lee's avatar
Hojin Lee committed
78
    unsafe_code: bool = False
79
80
81
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
82
    description: str = ""
83
84
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
85
    fewshot_config: Optional[dict] = None
86
    # runtime configuration options
87
    num_fewshot: Optional[int] = None
88
    # scoring options
89
90
91
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
92
    repeats: int = 1
93
    filter_list: Optional[Union[str, list]] = None
94
    should_decontaminate: bool = False
95
    doc_to_decontamination_query: Optional[str] = None
Baber Abbasi's avatar
Baber Abbasi committed
96
    gen_prefix: Optional[str] = None
97
98
99
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
100

Ethan Smith's avatar
Ethan Smith committed
101
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
102
        if self.generation_kwargs is not None:
103
            if self.output_type != "generate_until":
104
                eval_logger.warning(
105
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
106
107
108
109
110
111
112
113
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
114
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
115
        else:
116
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
117
118
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
119
120
121
122
123
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
124
125
                    "do_sample": False,
                }
126

127
128
129
    def __getitem__(self, item):
        return getattr(self, item)

130
131
132
    def __setitem__(self, item, value):
        return setattr(self, item, value)

133
    def to_dict(self, keep_callable: bool = False) -> dict:
134
135
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
136
        Used for dumping results alongside full task configuration
137

haileyschoelkopf's avatar
haileyschoelkopf committed
138
139
140
141
142
143
144
145
146
147
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
148
149
150
151
152
153
154
155
156
157
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
158
        return cfg_dict
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

176
177
178
179
180
181
182
183
184
185
186

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

187
    VERSION: Optional[Union[int, str]] = None
188

189
190
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
191
    DATASET_PATH: Optional[str] = None
192
193

    # The name of a subset within `DATASET_PATH`.
194
    DATASET_NAME: Optional[str] = None
195

196
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
197

198
199
    def __init__(
        self,
200
201
202
203
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
204
    ) -> None:
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
227
228
229
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
230

231
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
232

lintangsutawika's avatar
lintangsutawika committed
233
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
234
235
236
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
237

238
239
240
241
242
243
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
268
269
270
271
272
273
274
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
275

276
    @property
277
    def config(self) -> TaskConfig:
278
279
280
        """Returns the TaskConfig associated with this class."""
        return self._config

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

296
    def training_docs(self) -> Iterable:
297
298
299
300
301
302
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

303
    def validation_docs(self) -> Iterable:
304
305
306
307
308
309
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

310
    def test_docs(self) -> Iterable:
311
312
313
314
315
316
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

317
    def fewshot_docs(self) -> Iterable:
318
319
320
321
322
323
324
325
326
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
327
            eval_logger.warning(
328
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
329
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
330
            )
331
332
            return self.test_docs()

333
    def _process_doc(self, doc: dict) -> dict:
334
335
336
337
338
339
340
341
342
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
343

344
    @property
345
    def instances(self) -> List[Instance]:
346
347
348
349
350
351
352
353
354
355
356
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

357
358
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
359
360
361
362
363
364
365
366
367
368
369
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

370
371
372
373
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

Baber Abbasi's avatar
Baber Abbasi committed
374
375
376
    def doc_to_prefix(self, doc):
        return ""

377
378
    def build_all_requests(
        self,
379
        *,
380
381
382
383
384
385
386
387
388
389
        limit: Union[int, None] = None,
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
390
    ) -> None:
391
        """Build a set of Instances for a task, and store them in task.instances"""
392
393
394
395

        # used with caching
        og_limit = limit

396
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
397
398
399
400
401
402
403
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
404
        cache_key += f"-tokenizer{tokenizer_name}"
405

Baber Abbasi's avatar
Baber Abbasi committed
406
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
407
408
409
410
411
412
413
414
415
416
417
418
419

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
420
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
421

422
        instances = []
423
424
425
426
427
428
429
430
431
432

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
433
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
434
435
436
437
438
439
440
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
441
        ):
442
            # sample fewshot context #TODO: need to offset doc_id by rank now!
443
            fewshot_ctx = self.fewshot_context(
444
                doc,
445
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
446
447
448
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
449
                chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
450
                gen_prefix=self.doc_to_prefix(doc),
451
            )
452

453
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
454
455
456
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
457
                metadata=(self.config["task"], doc_id, self.config.repeats),
458
                apply_chat_template=apply_chat_template,
459
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
460
            )
461
462
463
464

            if not isinstance(inst, list):
                inst = [inst]

465
466
467
468
469
470
471
472
473
474
475
476
477
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
478

479
480
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
481

482
483
484
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
501
            The number of times each instance in a dataset is inferred on. Defaults to 1,
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

537
538
539
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
540
541
542
543
544
545
546
547
548
549
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

550
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
551
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
552
553
554
555
556
557
558
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
559
560
561
562
563
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
564
565
566
        :returns: str
            The fewshot context.
        """
567
        if rnd is None:
568
569
570
571
572
573
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
574

575
        description = description if description else ""
576
577

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
578
            labeled_examples = ""
579
        else:
lintangsutawika's avatar
lintangsutawika committed
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
604
            )
605
606

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
607
        return description + labeled_examples + example
608

609
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
610
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
611
612
        if hasattr(self, "_filters"):
            for f in self._filters:
613
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
614
615
616
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
617

baberabb's avatar
baberabb committed
618
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
619
        """Returns the config as a dictionary."""
620
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
621
        # (num_fewshot)
622
        return self.config.to_dict()
623

Baber Abbasi's avatar
Baber Abbasi committed
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

664
665
666
667
668
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

669
670
671
672
673
674
675
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
676
677
678
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
679
680
681
682
683
684
685
686
687
688
689
690
691

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

692
693

class ConfigurableTask(Task):
694
    VERSION = "Yaml"
695
    OUTPUT_TYPE = None
696
    CONFIG = None
697
698

    def __init__(
699
700
701
702
703
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
704
    ) -> None:  # TODO no super() call here
705
        # Get pre-configured attributes
706
        self._config = self.CONFIG
707

708
        # Use new configurations if there was no preconfiguration
709
        if self.config is None:
710
            self._config = TaskConfig(**config)
711
712
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
713
            if config is not None:
714
                self._config.__dict__.update(config)
715

716
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
717
718
719
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
720

721
722
723
724
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

725
        if self.config.output_type is not None:
726
727
728
729
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
730
            self.OUTPUT_TYPE = self.config.output_type
731

732
733
734
735
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
736
737
738
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

739
740
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
741

742
743
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
744

745
746
747
748
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
749

750
        if self.config.metric_list is None:
751
            # TODO: handle this in TaskConfig.__post_init__ ?
752
753
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

754
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
755
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
756
                self._metric_fn_kwargs[metric_name] = {}
757
758
759
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
760
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
761
        else:
762
            for metric_config in self.config.metric_list:
763
764
765
766
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
767
768
769
770
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
771
772
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
773
                }
Chris's avatar
Chris committed
774
775
776
777
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
778

779
                if self.config.process_results is not None:
780
781
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
782
783
784
785
786
787
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
788
789
790
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
791
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
792

793
                if "aggregation" in metric_config:
794
                    agg_name = metric_config["aggregation"]
795
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
796
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
797
                    elif callable(agg_name):  # noqa: E721
798
799
800
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
801
                else:
802
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
803
                    metric_agg = get_metric_aggregation(metric_name)
804
                    eval_logger.warning(
805
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
806
807
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
808
                    )
809
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
810

811
812
813
814
815
816
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
817
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
818
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
819
                        f"higher_is_better={is_higher_better(metric_name)}"
820
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
821
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
822

823
        self.download(self.config.dataset_kwargs)
824
825
826
        self._training_docs = None
        self._fewshot_docs = None

827
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
828
            self._filters = []
829
            for filter_config in self.config.filter_list:
830
831
832
833
834
835
836
837
838
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
839
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
840
        else:
841
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
842

843
844
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
845
            self.prompt = get_prompt(
846
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
847
            )
848
849
850
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
851
        if self.fewshot_docs() is not None:
852
853
854
855
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
856
857
858
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
875

876
        self.task_docs = self.eval_docs
877

878
        # Test One Doc
879
        self.features = list(self.task_docs.features.keys())
880
881
        self.multiple_input = 0
        self.multiple_target = 0
882
        test_doc = self.task_docs[0]
883
        test_text = self.doc_to_text(test_doc)
884
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
885

886
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
887
            test_choice = self.doc_to_choice(test_doc)
888
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
889
                eval_logger.error("doc_to_choice must return list")
890
891
            else:
                num_choice = len(test_choice)
892

893
            if isinstance(test_text, int):
894
                self.multiple_input = num_choice
895
896
        else:
            test_choice = None
897

898
        if isinstance(test_target, list):
899
            self.multiple_target = len(test_target)
900
        else:
901
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
902
                test_target = test_choice[test_target]
903
            else:
lintangsutawika's avatar
lintangsutawika committed
904
                test_target = str(test_target)
905

906
907
908
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
909
            check_choices = [test_target]
910
911
912
913
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
914
915
                    True
                    if self.config.target_delimiter.rstrip()
916
                    != self.config.target_delimiter
917
                    else False
918
                )
919

920
                if delimiter_has_whitespace and choice_has_whitespace:
921
922
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
923
924
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
925
                    eval_logger.debug(
926
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
927
928
                    )

929
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
930
931
932
933
934
935
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
936
    def has_training_docs(self) -> bool:
937
        if self.config.training_split is not None:
938
939
940
941
            return True
        else:
            return False

baberabb's avatar
baberabb committed
942
    def has_validation_docs(self) -> bool:
943
        if self.config.validation_split is not None:
944
945
946
947
            return True
        else:
            return False

baberabb's avatar
baberabb committed
948
    def has_test_docs(self) -> bool:
949
        if self.config.test_split is not None:
950
951
952
953
            return True
        else:
            return False

baberabb's avatar
baberabb committed
954
    def training_docs(self) -> datasets.Dataset:
955
        if self.has_training_docs():
956
957
958
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
959
                )
960
            return self.dataset[self.config.training_split]
961

baberabb's avatar
baberabb committed
962
    def validation_docs(self) -> datasets.Dataset:
963
        if self.has_validation_docs():
964
965
966
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
967
                )
968
            return self.dataset[self.config.validation_split]
969

baberabb's avatar
baberabb committed
970
    def test_docs(self) -> datasets.Dataset:
971
        if self.has_test_docs():
972
973
974
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
975

976
    def fewshot_docs(self):
977
        if self.config.fewshot_split is not None:
978
979
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
980
            return self.dataset[self.config.fewshot_split]
981
982
983
984
985
986
987
988
989
990
991
992
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
993
        else:
994
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
995
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
996
                    f"[Task: {self.config.task}] "
997
998
999
1000
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1001

KonradSzafer's avatar
KonradSzafer committed
1002
1003
1004
1005
1006
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1007
        gen_prefix: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
1023
1024
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
1025

lintangsutawika's avatar
lintangsutawika committed
1026
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1027
1028
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1029
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
1030
1031
1032
1033
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1034
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1035
        gen_prefix: Optional[str] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1036
    ) -> Union[str, List[str]]:
lintangsutawika's avatar
lintangsutawika committed
1037
1038
1039
1040
1041
1042
1043
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1044
1045
1046
1047
1048
1049
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1050
1051
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
1052
1053
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
1054
1055
1056
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1057
1058
1059
1060
1061
1062
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1063
1064
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1065

KonradSzafer's avatar
KonradSzafer committed
1066
1067
1068
1069
1070
1071
1072
1073
1074
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1075
        else:
KonradSzafer's avatar
KonradSzafer committed
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
1089
1090
1091
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1092
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1093
1094
1095
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1096
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
1097
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
1098
                )
lintangsutawika's avatar
lintangsutawika committed
1099
1100

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1101
1102
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
1103
                # TODO: append prefill?
1104
1105
                if not labeled_examples:
                    return ""
1106
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1107
1108
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1109
1110
1111
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1112
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1113
1114
1115
1116
1117
1118
1119
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1120
1121
1122
1123
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1124
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
1125
1126
1127
1128
1129
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber Abbasi's avatar
Baber Abbasi committed
1130
                            add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1131
1132
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
1133
1134
1135
1136
1137
1138
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1139
1140
1141
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1142
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1143
1144
1145
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1146
1147
1148
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1149
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1150
1151
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1152
1153
            return chat_template(
                labeled_examples,
Baber Abbasi's avatar
Baber Abbasi committed
1154
                add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1155
            )
1156
        else:
Baber Abbasi's avatar
Baber Abbasi committed
1157
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
1158
1159
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
1160
1161
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
1162
1163
            if self.multiple_input:
                return labeled_examples
1164
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
1165
                return labeled_examples + example + prefix
1166
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
1167
                return [labeled_examples + ex + prefix for ex in example]
1168
1169
1170
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
1171
                    return labeled_examples + choices[example] + prefix
1172
                else:
Baber Abbasi's avatar
Baber Abbasi committed
1173
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
1174

Baber Abbasi's avatar
Baber Abbasi committed
1175
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
1176
        """Iterates over FilterEnsembles and applies them to instances"""
1177
1178
        if hasattr(self, "_filters"):
            for f in self._filters:
1179
                f.apply(self._instances)
1180
1181
1182
1183
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1184
    def should_decontaminate(self):
1185
        return self.config.should_decontaminate
1186

Baber Abbasi's avatar
Baber Abbasi committed
1187
    def doc_to_decontamination_query(self, doc: dict):
1188
        if self.config.should_decontaminate:
1189
1190
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1191
            else:
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1203

1204
    def _process_doc(self, doc: dict) -> dict:
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1215
    def doc_to_text(self, doc, doc_to_text=None):
1216
1217
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1218
1219
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1220
        else:
1221
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1222

1223
        if isinstance(doc_to_text, int):
1224
            return doc_to_text
1225
        elif isinstance(doc_to_text, str):
1226
            if doc_to_text in self.features:
1227
                # if self.config.doc_to_choice is not None:
1228
1229
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1230
1231
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1232
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1233
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1234
1235
1236
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1237
        elif callable(doc_to_text):
1238
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1239
        # Used when applying a Promptsource template
1240
        elif hasattr(doc_to_text, "apply"):
1241
1242
1243
1244
1245
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1246
                return self.config.fewshot_delimiter
1247
        else:
1248
            print(type(doc_to_text))
1249
            raise TypeError
1250

Yu Shi Jie's avatar
Yu Shi Jie committed
1251
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1252
1253
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1254
1255
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1256
        else:
1257
            doc_to_target = self.config.doc_to_target
1258

1259
        if isinstance(doc_to_target, int):
1260
            return doc_to_target
1261
        elif isinstance(doc_to_target, str):
1262
            if doc_to_target in self.features:
1263
                # if self.config.doc_to_choice is not None:
1264
1265
1266
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1267
            else:
lintangsutawika's avatar
lintangsutawika committed
1268
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1269
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1270
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1271
1272
1273
1274
1275
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1276
1277
1278
1279
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1280
1281
                else:
                    return target_string
1282
        elif isinstance(doc_to_target, list):
1283
            return doc_to_target
1284
        elif callable(doc_to_target):
1285
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1286
        # Used when applying a Promptsource template
1287
        elif hasattr(doc_to_target, "apply"):
1288
            applied_prompt = doc_to_target.apply(doc)
1289
1290
1291
1292
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1293
                return self.config.fewshot_delimiter
1294
1295
        else:
            raise TypeError
1296

Yu Shi Jie's avatar
Yu Shi Jie committed
1297
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1298
1299
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1300
1301
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1302
        elif self.config.doc_to_choice is None:
1303
1304
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1305
            doc_to_choice = self.config.doc_to_choice
1306

1307
        if isinstance(doc_to_choice, str):
1308
1309
1310
1311
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1312
        elif isinstance(doc_to_choice, list):
1313
            return doc_to_choice
1314
        elif isinstance(doc_to_choice, dict):
1315
1316
1317
1318
1319
1320
1321
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1322

1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

Baber Abbasi's avatar
Baber Abbasi committed
1346
1347
1348
1349
1350
1351
1352
1353
    def doc_to_prefix(self, doc):
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1354
1355
1356
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1357
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1358
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1359

1360
1361
        aux_arguments = None

1362
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1363
            arguments = (ctx, self.doc_to_target(doc))
1364
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1365
            arguments = (self.doc_to_target(doc),)
1366
        elif self.OUTPUT_TYPE == "multiple_choice":
1367
            choices = self.doc_to_choice(doc)
1368
            target_delimiter = self.config.target_delimiter
1369
1370
            if apply_chat_template:
                target_delimiter = ""
1371
1372
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1373
                # apply chat_template to choices if apply_chat_template
1374
                cont = self.doc_to_target(doc)
1375

1376
                arguments = [
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1387
                ]
1388
            else:
1389
                # Otherwise they are placed in the continuation
1390
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1391

1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                aux_arguments = [("", f"{choice}") for choice in choices]

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1423
            request_list = [
1424
1425
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1426
                    doc=doc,
1427
                    arguments=arg,
1428
                    idx=i,
1429
1430
                    **kwargs,
                )
1431
                for i, arg in enumerate(arguments)
1432
            ]
1433
1434

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1435

lintangsutawika's avatar
lintangsutawika committed
1436
        return Instance(
1437
1438
1439
1440
1441
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1442
        )
1443
1444

    def process_results(self, doc, results):
1445
1446
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1447

1448
        result_dict = {}
1449
        use_metric = list(self._metric_fn_list.keys())
1450
1451
1452
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1453
1454
1455
1456
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1457
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1458
            (loglikelihood,) = results
1459
1460
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1461
            return {
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1477
            }
1478
        elif self.OUTPUT_TYPE == "multiple_choice":
1479
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1480

1481
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1482
            choices = self.doc_to_choice(doc)
1483
1484
            completion_len = np.array([float(len(i)) for i in choices])

1485
1486
            if (
                2 * len(choices) == len(lls)
1487
                and "acc_mutual_info" in self._metric_fn_list.keys()
1488
1489
1490
1491
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1492
1493
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1494
1495
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1496

1497
1498
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1499

1500
1501
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1502
            else:
1503
                gold = self.doc_to_target(doc)
1504
1505

            gold_index_error = False
1506
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1507
1508
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1509
1510
                    gold_index_error = True
            else:
1511
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1512
                    gold = gold if gold < len(choices) else -100
1513
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1514
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1515

Lintang Sutawika's avatar
Lintang Sutawika committed
1516
                if gold == -100:
1517
1518
1519
1520
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1521
                    f"Label index was not in within range of available choices,"
1522
1523
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1524

1525
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1526
1527
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1528
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1529
1530
1531
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1532
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1533
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1534

Lintang Sutawika's avatar
Lintang Sutawika committed
1535
1536
1537
1538
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1539
            result_dict = {
1540
                **({"acc": acc} if "acc" in use_metric else {}),
1541
1542
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1543
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1544
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1545
1546
1547
1548
1549
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1550
1551
            }

1552
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1553
1554
1555
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1556
1557
1558
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1559
        elif self.OUTPUT_TYPE == "generate_until":
1560
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1561
            result = results[0]
1562
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1563
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1564
                # it assumes that doc_to_target returns a number.
1565
1566
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1567
1568
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1569
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1570
1571
1572
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
                "bypass" in self._metric_fn_list.keys() or isinstance(result, list)
1573
            ):
Chris's avatar
Chris committed
1574
1575
                # cast gold to the same type as result
                gold = type(result)(gold)
1576

lintangsutawika's avatar
lintangsutawika committed
1577
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1578
1579
1580
1581
1582
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1583
1584
1585
1586
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1587
1588
1589
1590
1591
1592
1593
1594
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1595
                    else:
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1617
                else:
1618
                    try:
1619
                        result_score = self._metric_fn_list[metric](
1620
1621
                            references=[gold],
                            predictions=[result],
1622
                            **self._metric_fn_kwargs[metric],
1623
                        )
1624
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1625
                        result_score = self._metric_fn_list[metric]([gold, result])
1626
1627
1628
1629
1630
1631
1632
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1633
        else:
lintangsutawika's avatar
lintangsutawika committed
1634
1635
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1636
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1637
            )
1638
1639
1640

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1641
    def aggregation(self) -> dict:
1642
1643
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1644
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1645
        return self._higher_is_better
1646

Baber Abbasi's avatar
Baber Abbasi committed
1647
1648
1649
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1650
1651
1652
1653
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1654
1655
1656
1657
1658
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1659
            f"num_samples={len(self.eval_docs)})"
1660
1661
        )

1662
1663

class MultipleChoiceTask(Task):
1664
    OUTPUT_TYPE = "loglikelihood"
1665

baberabb's avatar
baberabb committed
1666
    def doc_to_target(self, doc: dict) -> str:
1667
1668
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1669
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1670
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1671
1672
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1673
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1674
                doc=doc,
1675
                arguments=(ctx, " {}".format(choice)),
1676
                idx=i,
1677
1678
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1679
1680
            for i, choice in enumerate(doc["choices"])
        ]
1681

1682
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1683
1684
1685
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1697
    def higher_is_better(self) -> dict:
1698
1699
1700
1701
1702
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1703
    def aggregation(self) -> dict:
1704
1705
1706
1707
1708
1709
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1710
class PerplexityTask(Task):
1711
1712
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1713
    def has_training_docs(self) -> bool:
1714
1715
        return False

baberabb's avatar
baberabb committed
1716
    def fewshot_examples(self, k: int, rnd) -> List:
1717
1718
1719
1720
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1721
1722
        return []

baberabb's avatar
baberabb committed
1723
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1724
1725
1726
1727
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1728
1729
1730

        return ""

baberabb's avatar
baberabb committed
1731
    def higher_is_better(self) -> dict:
1732
1733
1734
1735
1736
1737
1738
1739
1740
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1741
    def doc_to_text(self, doc) -> str:
1742
1743
1744
1745
1746
        return ""

    def doc_to_target(self, doc):
        return doc

1747
1748
1749
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1750

lintangsutawika's avatar
lintangsutawika committed
1751
1752
1753
1754
1755
1756
1757
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1758

1759
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1760
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1761
1762
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1763
1764
1765
1766
1767
1768
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1769
    def aggregation(self) -> dict:
1770
1771
1772
1773
1774
1775
1776
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1777
    def count_bytes(cls, doc) -> int:
1778
1779
1780
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1781
    def count_words(cls, doc) -> int:
1782
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1783
        return len(re.split(r"\s+", doc))