test_modeling_common.py 222 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
import collections
16
import copy
17
import gc
18
import inspect
Naman Garg's avatar
Naman Garg committed
19
import math
20
import os
21
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
23
import re
24
import tempfile
25
import time
26
import warnings
27
from collections import defaultdict
NielsRogge's avatar
NielsRogge committed
28
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
29

30
import numpy as np
31
from packaging import version
32
from parameterized import parameterized
33
from pytest import mark
34
35

import transformers
36
37
from transformers import (
    AutoModel,
38
    AutoModelForCausalLM,
39
    AutoModelForSequenceClassification,
40
    AutoTokenizer,
41
    GenerationConfig,
42
    PretrainedConfig,
43
    PreTrainedModel,
44
45
    is_torch_available,
    logging,
46
    set_seed,
47
)
48
from transformers.models.auto import get_values
49
50
51
52
53
54
55
56
57
58
59
60
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
    MODEL_FOR_BACKBONE_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
Naman Garg's avatar
Naman Garg committed
61
    MODEL_FOR_PRETRAINING_MAPPING_NAMES,
62
63
64
65
66
67
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
amyeroberts's avatar
amyeroberts committed
68
    MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES,
69
70
    MODEL_MAPPING_NAMES,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
71
72
from transformers.testing_utils import (
    CaptureLogger,
73
    is_flaky,
74
75
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
76
    require_accelerate,
77
    require_bitsandbytes,
78
    require_flash_attn,
79
    require_read_token,
80
    require_safetensors,
Sylvain Gugger's avatar
Sylvain Gugger committed
81
    require_torch,
82
    require_torch_gpu,
83
    require_torch_multi_accelerator,
Sylvain Gugger's avatar
Sylvain Gugger committed
84
    require_torch_multi_gpu,
85
    require_torch_sdpa,
Sylvain Gugger's avatar
Sylvain Gugger committed
86
87
88
    slow,
    torch_device,
)
89
from transformers.utils import (
90
91
    CONFIG_NAME,
    GENERATION_CONFIG_NAME,
92
    SAFE_WEIGHTS_NAME,
93
    is_accelerate_available,
94
95
    is_flax_available,
    is_tf_available,
fxmarty's avatar
fxmarty committed
96
97
    is_torch_bf16_available_on_device,
    is_torch_fp16_available_on_device,
98
    is_torch_fx_available,
99
    is_torch_sdpa_available,
100
)
101
from transformers.utils.generic import ContextManagers, ModelOutput
102

Aymeric Augustin's avatar
Aymeric Augustin committed
103

104
105
106
107
if is_accelerate_available():
    from accelerate.utils import compute_module_sizes


108
if is_torch_available():
109
    import torch
110
    import torch.nn.functional as F
111
    from safetensors.torch import load_file as safe_load_file
112
    from safetensors.torch import save_file as safe_save_file
113
    from torch import nn
thomwolf's avatar
thomwolf committed
114

115
    from transformers import MODEL_MAPPING, AdaptiveEmbedding
116
    from transformers.modeling_utils import load_state_dict, no_init_weights
Sylvain Gugger's avatar
Sylvain Gugger committed
117
    from transformers.pytorch_utils import id_tensor_storage
thomwolf's avatar
thomwolf committed
118

Sylvain Gugger's avatar
Sylvain Gugger committed
119

120
121
122
if is_tf_available():
    import tensorflow as tf

123
124
if is_flax_available():
    import jax.numpy as jnp
125

126
    from tests.utils.test_modeling_flax_utils import check_models_equal
127
128
129
130
131
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

132
if is_torch_fx_available():
133
    from transformers.utils.fx import _FX_SUPPORTED_MODELS_WITH_KV_CACHE, symbolic_trace
134

135

136
137
138
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
139
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
140
            setattr(configs_no_init, key, 1e-10)
141
142
143
        if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
            no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
            setattr(configs_no_init, key, no_init_subconfig)
144
145
    return configs_no_init

thomwolf's avatar
thomwolf committed
146

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
def _mock_init_weights(self, module):
    for name, param in module.named_parameters(recurse=False):
        # Use the first letter of the name to get a value and go from a <> -13 to z <> 12
        value = ord(name[0].lower()) - 110
        param.data.fill_(value)


def _mock_all_init_weights(self):
    # Prune heads if needed
    if self.config.pruned_heads:
        self.prune_heads(self.config.pruned_heads)

    import transformers.modeling_utils

    if transformers.modeling_utils._init_weights:
        for module in self.modules():
            module._is_hf_initialized = False
        # Initialize weights
        self.apply(self._initialize_weights)

        # Tie weights should be skipped when not initializing all weights
        # since from_pretrained(...) calls tie weights anyways
        self.tie_weights()


172
173
174
175
@require_torch
class ModelTesterMixin:
    model_tester = None
    all_model_classes = ()
176
    all_generative_model_classes = ()
177
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
178
179
180
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
181
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
182
    test_head_masking = True
183
    test_mismatched_shapes = True
184
    test_missing_keys = True
185
    test_model_parallel = False
186
    is_encoder_decoder = False
187
    has_attentions = True
188
    model_split_percents = [0.5, 0.7, 0.9]
189

190
191
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
192
        if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
193
            inputs_dict = {
194
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
195
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
196
                else v
197
198
                for k, v in inputs_dict.items()
            }
199
        elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES):
200
            inputs_dict.pop("attention_mask")
Naman Garg's avatar
Naman Garg committed
201
202
203
204
205
206
207
208
        elif model_class.__name__ == MODEL_FOR_PRETRAINING_MAPPING_NAMES["hiera"]:
            config = self.model_tester.get_config()
            mask_spatial_shape = [
                i // s // ms for i, s, ms in zip(config.image_size, config.patch_stride, config.masked_unit_size)
            ]
            num_windows = math.prod(mask_spatial_shape)
            torch.manual_seed(0)
            inputs_dict["noise"] = torch.rand(self.model_tester.batch_size, num_windows)
209
210

        if return_labels:
211
            if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
212
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
213
214
215
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
216
            ]:
217
218
219
220
221
222
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
223
224
225
226
227
228
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
229
            ]:
230
231
232
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
233
234
235
236
237
238
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
amyeroberts's avatar
amyeroberts committed
239
                *get_values(MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES),
240
241
242
243
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
244
            elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
245
246
247
248
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
249
            elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
250
251
252
253
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
254

255
256
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
257
    def test_save_load(self):
258
259
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

260
261
262
263
        def check_save_load(out1, out2):
            # make sure we don't have nans
            out_2 = out2.cpu().numpy()
            out_2[np.isnan(out_2)] = 0
264
            out_2 = out_2[~np.isneginf(out_2)]
265
266
267

            out_1 = out1.cpu().numpy()
            out_1[np.isnan(out_1)] = 0
268
            out_1 = out_1[~np.isneginf(out_1)]
269
270
271
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

272
273
274
275
276
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
277
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
278

279
            with tempfile.TemporaryDirectory() as tmpdirname:
280
                model.save_pretrained(tmpdirname)
281
282
283
284
285
286
287

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

288
                model = model_class.from_pretrained(tmpdirname)
289
                model.to(torch_device)
290
                with torch.no_grad():
291
                    second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
thomwolf's avatar
thomwolf committed
292

293
294
295
296
297
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_save_load(tensor1, tensor2)
            else:
                check_save_load(first, second)
298

299
300
301
302
303
304
305
306
307
308
309
310
    def test_from_pretrained_no_checkpoint(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            state_dict = model.state_dict()

            new_model = model_class.from_pretrained(
                pretrained_model_name_or_path=None, config=config, state_dict=state_dict
            )
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

311
312
313
314
    def test_keep_in_fp32_modules(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            if model_class._keep_in_fp32_modules is None:
amyeroberts's avatar
amyeroberts committed
315
                self.skipTest(reason="Model class has no _keep_in_fp32_modules attribute defined")
316
317
318
319
320
321
322
323
324
325
326
327
328

            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16)

                for name, param in model.named_parameters():
                    if any(n in model_class._keep_in_fp32_modules for n in name.split(".")):
                        self.assertTrue(param.dtype == torch.float32)
                    else:
                        self.assertTrue(param.dtype == torch.float16, name)

329
    def test_save_load_keys_to_ignore_on_save(self):
330
331
332
333
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
334
335
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
336
337
338
                continue

            # check the keys are in the original state_dict
339
            for k in _keys_to_ignore_on_save:
340
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
341
342
343
344

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
345
346
347
                output_model_file = os.path.join(tmpdirname, SAFE_WEIGHTS_NAME)
                state_dict_saved = safe_load_file(output_model_file)

348
                for k in _keys_to_ignore_on_save:
349
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
350

Sylvain Gugger's avatar
Sylvain Gugger committed
351
352
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
353
354
355
356
357
358
                keys_to_ignore = set(model._keys_to_ignore_on_save)

                if hasattr(model, "_tied_weights_keys"):
                    keys_to_ignore.update(set(model._tied_weights_keys))

                self.assertTrue(len(load_result.missing_keys) == 0 or set(load_result.missing_keys) == keys_to_ignore)
Sylvain Gugger's avatar
Sylvain Gugger committed
359
360
                self.assertTrue(len(load_result.unexpected_keys) == 0)

361
362
363
364
365
366
367
368
369
370
371
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

387
388
389
390
391
392
393
            # Loop over all modules and check that relevant modules have gradient_checkpointing set to True
            for n, m in model.named_modules():
                if hasattr(m, "gradient_checkpointing"):
                    self.assertTrue(
                        m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to True"
                    )

394
395
396
397
            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

398
399
400
401
402
403
404
            # Loop over all modules and check that relevant modules have gradient_checkpointing set to False
            for n, m in model.named_modules():
                if hasattr(m, "gradient_checkpointing"):
                    self.assertFalse(
                        m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to False"
                    )

405
    @is_flaky(description="low likelihood of failure, reason not yet discovered")
406
407
    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
408
        if config.__class__ not in MODEL_MAPPING:
amyeroberts's avatar
amyeroberts committed
409
410
            self.skipTest(reason="Model class not in MODEL_MAPPING")

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
432
433
            model_class_copy._init_weights = _mock_init_weights
            model_class_copy.init_weights = _mock_all_init_weights
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)
450
                # Before we test anything
451
452

                for key in model_fast_init.state_dict().keys():
453
454
455
456
457
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item()
                    else:
                        max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
458

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    @slow
    @require_accelerate
    @mark.accelerate_tests
    def test_save_load_low_cpu_mem_usage(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        with tempfile.TemporaryDirectory() as saved_model_path:
            for model_class in self.all_model_classes:
                model_to_save = model_class(config)
                model_to_save.save_pretrained(saved_model_path)

                self._check_save_load_low_cpu_mem_usage(model_class, saved_model_path)

    @slow
    @require_accelerate
    @mark.accelerate_tests
    def test_save_load_low_cpu_mem_usage_checkpoints(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        with tempfile.TemporaryDirectory() as saved_model_path:
            for model_class in self.all_model_classes:
                model_to_save = model_class(config)
                model_to_save.config.save_pretrained(saved_model_path)
                torch.save(model_to_save.state_dict(), os.path.join(saved_model_path, "pytorch_model.bin"))

                self._check_save_load_low_cpu_mem_usage(model_class, saved_model_path)

    @slow
    @require_accelerate
    @mark.accelerate_tests
    def test_save_load_low_cpu_mem_usage_no_safetensors(self):
        with tempfile.TemporaryDirectory() as saved_model_path:
            for model_class in self.all_model_classes:
                config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
                model_to_save = model_class(config)

                model_to_save.save_pretrained(saved_model_path, safe_serialization=False)
                self._check_save_load_low_cpu_mem_usage(model_class, saved_model_path)

    def _check_save_load_low_cpu_mem_usage(self, model_class, saved_model_path):
497
498
        from accelerate.utils.modeling import named_module_tensors

499
500
501
502
503
504
505
506
507
508
509
510
511
512
        # Load the low usage and the normal models.
        model_low_usage, loading_info = model_class.from_pretrained(
            saved_model_path,
            low_cpu_mem_usage=True,
            output_loading_info=True,
        )
        model_non_low_usage = model_class.from_pretrained(saved_model_path)

        # Check that there were no missing keys.
        self.assertEqual(loading_info["missing_keys"], [])

        # The low_cpu_mem_usage=True causes the model params to be initialized with device=meta, and then
        # subsequently loaded with the correct values and onto the correct device. We check if there are any
        # remaining params that were not properly loaded.
513
        for name, tensor in named_module_tensors(model_low_usage, recurse=True):
514
            self.assertNotEqual(
515
                tensor.device,
516
                torch.device("meta"),
517
                "Tensor '" + name + "' has not been properly loaded and has device=meta.",
518
519
520
521
            )

        # Check that the parameters are equal.
        for p1, p2 in zip(model_low_usage.parameters(), model_non_low_usage.parameters()):
Arthur's avatar
Arthur committed
522
            self.assertEqual(p1.data.ne(p2.data).sum(), 0)
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

        # Check that the state dict keys are equal.
        self.assertEqual(set(model_low_usage.state_dict().keys()), set(model_non_low_usage.state_dict().keys()))

        # Check that the shared tensors are equal.
        tensor_ptrs1 = collections.defaultdict(list)
        for name, tensor in model_low_usage.state_dict().items():
            tensor_ptrs1[id_tensor_storage(tensor)].append(name)
        tied_params1 = [names for _, names in tensor_ptrs1.items() if len(names) > 1]

        tensor_ptrs2 = collections.defaultdict(list)
        for name, tensor in model_non_low_usage.state_dict().items():
            tensor_ptrs2[id_tensor_storage(tensor)].append(name)
        tied_params2 = [names for _, names in tensor_ptrs2.items() if len(names) > 1]

        self.assertEqual(tied_params1, tied_params2)

540
541
    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
542
        if config.__class__ not in MODEL_MAPPING:
amyeroberts's avatar
amyeroberts committed
543
544
            self.skipTest(reason="Model class not in MODEL_MAPPING")

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
566
567
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
586
587
588
589
590
591
592
593
594
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = torch.max(
                            model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]
                        ).item()
                    else:
                        max_diff = torch.max(
                            torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])
                        ).item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
595

596
597
598
    def test_torch_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if config.__class__ not in MODEL_MAPPING:
amyeroberts's avatar
amyeroberts committed
599
600
            self.skipTest(reason="Model class not in MODEL_MAPPING")

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            def check_equal(loaded):
                for key in state_dict.keys():
                    max_diff = torch.max(
                        state_dict()[key] ^ loaded[key]
                        if isinstance(state_dict[key], torch.BoolTensor)
                        else torch.abs(state_dict[key] - loaded[key])
                    ).item()
                    self.assertLessEqual(max_diff, 1e-6, msg=f"{key} not identical")

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pytorch_model.bin")
                torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=True)
                check_equal(load_state_dict(pt_checkpoint_path))
                torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=False)
                check_equal(load_state_dict(pt_checkpoint_path))

Patrick von Platen's avatar
Patrick von Platen committed
645
    def test_initialization(self):
646
647
648
649
650
651
652
653
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
654
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
655
                        [0.0, 1.0],
656
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
657
                    )
thomwolf's avatar
thomwolf committed
658

Patrick von Platen's avatar
Patrick von Platen committed
659
    def test_determinism(self):
660
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
661
662
663
664
665
666

        def check_determinism(first, second):
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
667
668
            out_1 = out_1[~np.isneginf(out_1)]
            out_2 = out_2[~np.isneginf(out_2)]
669
670
671
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

672
673
674
675
676
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
677
678
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
679

680
681
682
683
684
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_determinism(tensor1, tensor2)
            else:
                check_determinism(first, second)
685

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
    def test_batching_equivalence(self):
        """
        Tests that the model supports batching and that the output is the nearly the same for the same input in
        different batch sizes.
        (Why "nearly the same" not "exactly the same"? Batching uses different matmul shapes, which often leads to
        different results: https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535)
        """

        def get_tensor_equivalence_function(batched_input):
            # models operating on continuous spaces have higher abs difference than LMs
            # instead, we can rely on cos distance for image/speech models, similar to `diffusers`
            if "input_ids" not in batched_input:
                return lambda tensor1, tensor2: (
                    1.0 - F.cosine_similarity(tensor1.float().flatten(), tensor2.float().flatten(), dim=0, eps=1e-38)
                )
            return lambda tensor1, tensor2: torch.max(torch.abs(tensor1 - tensor2))

        def recursive_check(batched_object, single_row_object, model_name, key):
            if isinstance(batched_object, (list, tuple)):
                for batched_object_value, single_row_object_value in zip(batched_object, single_row_object):
                    recursive_check(batched_object_value, single_row_object_value, model_name, key)
            elif isinstance(batched_object, dict):
                for batched_object_value, single_row_object_value in zip(
                    batched_object.values(), single_row_object.values()
                ):
                    recursive_check(batched_object_value, single_row_object_value, model_name, key)
712
713
            # do not compare returned loss (0-dim tensor) / codebook ids (int) / caching objects
            elif batched_object is None or not isinstance(batched_object, torch.Tensor):
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
                return
            elif batched_object.dim() == 0:
                return
            else:
                # indexing the first element does not always work
                # e.g. models that output similarity scores of size (N, M) would need to index [0, 0]
                slice_ids = [slice(0, index) for index in single_row_object.shape]
                batched_row = batched_object[slice_ids]
                self.assertFalse(
                    torch.isnan(batched_row).any(), f"Batched output has `nan` in {model_name} for key={key}"
                )
                self.assertFalse(
                    torch.isinf(batched_row).any(), f"Batched output has `inf` in {model_name} for key={key}"
                )
                self.assertFalse(
                    torch.isnan(single_row_object).any(), f"Single row output has `nan` in {model_name} for key={key}"
                )
                self.assertFalse(
                    torch.isinf(single_row_object).any(), f"Single row output has `inf` in {model_name} for key={key}"
                )
                self.assertTrue(
                    (equivalence(batched_row, single_row_object)) <= 1e-03,
                    msg=(
                        f"Batched and Single row outputs are not equal in {model_name} for key={key}. "
                        f"Difference={equivalence(batched_row, single_row_object)}."
                    ),
                )

        config, batched_input = self.model_tester.prepare_config_and_inputs_for_common()
        equivalence = get_tensor_equivalence_function(batched_input)

        for model_class in self.all_model_classes:
            config.output_hidden_states = True

            model_name = model_class.__name__
            if hasattr(self.model_tester, "prepare_config_and_inputs_for_model_class"):
                config, batched_input = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
            batched_input_prepared = self._prepare_for_class(batched_input, model_class)
            model = model_class(config).to(torch_device).eval()

            batch_size = self.model_tester.batch_size
            single_row_input = {}
            for key, value in batched_input_prepared.items():
                if isinstance(value, torch.Tensor) and value.shape[0] % batch_size == 0:
                    # e.g. musicgen has inputs of size (bs*codebooks). in most cases value.shape[0] == batch_size
                    single_batch_shape = value.shape[0] // batch_size
                    single_row_input[key] = value[:single_batch_shape]
                else:
                    single_row_input[key] = value

            with torch.no_grad():
                model_batched_output = model(**batched_input_prepared)
                model_row_output = model(**single_row_input)

            if isinstance(model_batched_output, torch.Tensor):
                model_batched_output = {"model_output": model_batched_output}
                model_row_output = {"model_output": model_row_output}

            for key in model_batched_output:
                # DETR starts from zero-init queries to decoder, leading to cos_similarity = `nan`
                if hasattr(self, "zero_init_hidden_state") and "decoder_hidden_states" in key:
                    model_batched_output[key] = model_batched_output[key][1:]
                    model_row_output[key] = model_row_output[key][1:]
                recursive_check(model_batched_output[key], model_row_output[key], model_name, key)

779
    def check_training_gradient_checkpointing(self, gradient_checkpointing_kwargs=None):
780
        if not self.model_tester.is_training:
amyeroberts's avatar
amyeroberts committed
781
            self.skipTest(reason="ModelTester is not configured to run training tests")
782
783

        for model_class in self.all_model_classes:
784
785
            if (
                model_class.__name__
786
787
788
789
                in [
                    *get_values(MODEL_MAPPING_NAMES),
                    *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
                ]
790
791
                or not model_class.supports_gradient_checkpointing
            ):
792
                continue
793

794
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
795
796
            config.use_cache = False
            config.return_dict = True
797
            model = model_class(config)
798

799
            model.to(torch_device)
800
            model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)
801
            model.train()
802
803
804
805
806
807
808

            # unfreeze additional layers
            for p in model.parameters():
                p.requires_grad_(True)

            optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

809
810
811
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()
812
            optimizer.step()
813

814
815
816
817
818
            for k, v in model.named_parameters():
                if v.requires_grad:
                    self.assertTrue(v.grad is not None, f"{k} in {model_class.__name__} has no gradient!")

    def test_training(self):
819
        if not self.model_tester.is_training:
amyeroberts's avatar
amyeroberts committed
820
            self.skipTest(reason="ModelTester is not configured to run training tests")
821
822

        for model_class in self.all_model_classes:
823
824
825
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

826
827
828
829
            if model_class.__name__ in [
                *get_values(MODEL_MAPPING_NAMES),
                *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
            ]:
830
                continue
831

832
833
834
835
836
837
838
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

839
840
841
842
843
844
845
846
847
848
849
850
851
    def test_training_gradient_checkpointing(self):
        # Scenario - 1 default behaviour
        self.check_training_gradient_checkpointing()

    def test_training_gradient_checkpointing_use_reentrant(self):
        # Scenario - 2 with `use_reentrant=True` - this is the default value that is used in pytorch's
        # torch.utils.checkpoint.checkpoint
        self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": True})

    def test_training_gradient_checkpointing_use_reentrant_false(self):
        # Scenario - 3 with `use_reentrant=False` pytorch suggests users to use this value for
        # future releases: https://pytorch.org/docs/stable/checkpoint.html
        self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": False})
852

Patrick von Platen's avatar
Patrick von Platen committed
853
    def test_attention_outputs(self):
854
855
856
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

857
858
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
859

860
861
862
863
864
865
866
867
868
869
870
871
        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
872
            config.return_dict = True
873
874
875
876
877
878
879
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
880

881
882
883
884
885
886
887
888
889
890
            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
891

892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
            out_len = len(outputs)

            if self.is_encoder_decoder:
                correct_outlen = 5

                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
911
912
913
                if model_class.__name__ in [
                    *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                    *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
914
                ]:
915
916
917
918
919
920
921
922
923
924
925
926
927
928
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )
929

930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
973

974
    @slow
975
    def test_torchscript_simple(self):
976
977
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
978

979
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
980
    def test_torchscript_output_attentions(self):
981
982
983
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
984

985
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
986
    def test_torchscript_output_hidden_state(self):
987
988
989
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
990

991
992
993
994
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):
        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
995
996
997
        # torch 1.8 has no `_clear_class_state` in `torch.jit._state`
        if hasattr(torch.jit._state, "_clear_class_state"):
            torch.jit._state._clear_class_state()
998

999
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
1000
        if not self.test_torchscript:
amyeroberts's avatar
amyeroberts committed
1001
            self.skipTest(reason="test_torchscript is set to `False`")
1002

1003
1004
1005
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
1006
            for attn_implementation in ["eager", "sdpa"]:
1007
                if attn_implementation == "sdpa" and (not model_class._supports_sdpa or not is_torch_sdpa_available()):
1008
                    continue
1009

1010
1011
1012
1013
1014
                configs_no_init._attn_implementation = attn_implementation
                model = model_class(config=configs_no_init)
                model.to(torch_device)
                model.eval()
                inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
1015

1016
                main_input_name = model_class.main_input_name
thomwolf's avatar
thomwolf committed
1017

1018
                try:
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
                    if model.config.is_encoder_decoder:
                        model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                        main_input = inputs[main_input_name]
                        attention_mask = inputs["attention_mask"]
                        decoder_input_ids = inputs["decoder_input_ids"]
                        decoder_attention_mask = inputs["decoder_attention_mask"]
                        model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
                        traced_model = torch.jit.trace(
                            model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
                        )
                    elif "bbox" in inputs and "image" in inputs:  # LayoutLMv2 requires additional inputs
                        input_ids = inputs["input_ids"]
                        bbox = inputs["bbox"]
                        image = inputs["image"].tensor
                        model(input_ids, bbox, image)
                        traced_model = torch.jit.trace(
                            model, (input_ids, bbox, image), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
                    elif "bbox" in inputs:  # Bros requires additional inputs (bbox)
                        input_ids = inputs["input_ids"]
                        bbox = inputs["bbox"]
                        model(input_ids, bbox)
                        traced_model = torch.jit.trace(
                            model, (input_ids, bbox), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
Eduardo Pacheco's avatar
Eduardo Pacheco committed
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
                    elif (
                        "pixel_values" in inputs and "prompt_pixel_values" in inputs and "prompt_masks" in inputs
                    ):  # SegGpt requires additional inputs
                        pixel_values = inputs["pixel_values"]
                        prompt_pixel_values = inputs["prompt_pixel_values"]
                        prompt_masks = inputs["prompt_masks"]
                        model(pixel_values, prompt_pixel_values, prompt_masks)
                        traced_model = torch.jit.trace(
                            model, (pixel_values, prompt_pixel_values, prompt_masks), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
1054
1055
1056
1057
1058
1059
1060
1061
1062
                    else:
                        main_input = inputs[main_input_name]

                        if model.config._attn_implementation == "sdpa":
                            trace_input = {main_input_name: main_input}

                            if "attention_mask" in inputs:
                                trace_input["attention_mask"] = inputs["attention_mask"]
                            else:
amyeroberts's avatar
amyeroberts committed
1063
                                self.skipTest(reason="testing SDPA without attention_mask is not supported")
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085

                            model(main_input, attention_mask=inputs["attention_mask"])
                            # example_kwarg_inputs was introduced in torch==2.0, but it is fine here since SDPA has a requirement on torch>=2.1.
                            traced_model = torch.jit.trace(model, example_kwarg_inputs=trace_input)
                        else:
                            model(main_input)
                            traced_model = torch.jit.trace(model, (main_input,))
                except RuntimeError:
                    self.fail("Couldn't trace module.")

                with tempfile.TemporaryDirectory() as tmp_dir_name:
                    pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                    try:
                        torch.jit.save(traced_model, pt_file_name)
                    except Exception:
                        self.fail("Couldn't save module.")

                    try:
                        loaded_model = torch.jit.load(pt_file_name)
                    except Exception:
                        self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
1086

1087
1088
                model.to(torch_device)
                model.eval()
thomwolf's avatar
thomwolf committed
1089

1090
1091
                loaded_model.to(torch_device)
                loaded_model.eval()
thomwolf's avatar
thomwolf committed
1092

1093
1094
                model_state_dict = model.state_dict()
                loaded_model_state_dict = loaded_model.state_dict()
1095

1096
1097
1098
1099
                non_persistent_buffers = {}
                for key in loaded_model_state_dict.keys():
                    if key not in model_state_dict.keys():
                        non_persistent_buffers[key] = loaded_model_state_dict[key]
1100

1101
1102
1103
                loaded_model_state_dict = {
                    key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
                }
1104

1105
                self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
1106

1107
1108
1109
1110
1111
1112
1113
                model_buffers = list(model.buffers())
                for non_persistent_buffer in non_persistent_buffers.values():
                    found_buffer = False
                    for i, model_buffer in enumerate(model_buffers):
                        if torch.equal(non_persistent_buffer, model_buffer):
                            found_buffer = True
                            break
1114

1115
1116
                    self.assertTrue(found_buffer)
                    model_buffers.pop(i)
1117

1118
1119
1120
1121
1122
1123
                models_equal = True
                for layer_name, p1 in model_state_dict.items():
                    if layer_name in loaded_model_state_dict:
                        p2 = loaded_model_state_dict[layer_name]
                        if p1.data.ne(p2.data).sum() > 0:
                            models_equal = False
thomwolf's avatar
thomwolf committed
1124

1125
                self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
1126

1127
1128
1129
                # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
                # (Even with this call, there are still memory leak by ~0.04MB)
                self.clear_torch_jit_class_registry()
1130

1131
1132
1133
1134
1135
1136
1137
1138
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

1139
1140
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
1141
1142
1143
            self.skipTest(
                f"Either torch.fx is not available, or the model type {config.model_type} is not compatible with torch.fx"
            )
1144
1145
1146
1147

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

1148
        for model_class in self.all_model_classes:
1149
1150
1151
1152
1153
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

1154
1155
            # We may want to test several inputs (various shapes, etc.).
            inputs_to_test = [inputs]
1156

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
            if model.config.is_encoder_decoder:
                model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                labels = inputs.get("labels", None)
                input_names = [
                    "attention_mask",
                    "decoder_attention_mask",
                    "decoder_input_ids",
                    "input_features",
                    "input_ids",
                    "input_values",
                ]
                if labels is not None:
                    input_names.append("labels")
            else:
                input_names = [
                    "attention_mask",
                    "bbox",
                    "input_features",
                    "input_ids",
                    "input_values",
1177
                    "inputs_embeds",
1178
1179
1180
1181
                    "pixel_values",
                    "token_type_ids",
                    "visual_feats",
                    "visual_pos",
Naman Garg's avatar
Naman Garg committed
1182
                    "noise",
1183
                ]
1184

1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
                labels = inputs.get("labels", None)
                start_positions = inputs.get("start_positions", None)
                end_positions = inputs.get("end_positions", None)
                if labels is not None:
                    input_names.append("labels")
                if start_positions is not None:
                    input_names.append("start_positions")
                if end_positions is not None:
                    input_names.append("end_positions")

                if model.config.model_type in _FX_SUPPORTED_MODELS_WITH_KV_CACHE:
                    input_names.append("past_key_values")

                    # Generally model_tester.prepare_config_and_inputs_for_common seem not to generate past key values inputs.
                    if "past_key_values" not in inputs:
                        batch_size = inputs[next(iter(inputs))].shape[0]
                        num_heads = model.config.num_attention_heads
                        head_dim = model.config.hidden_size // model.config.num_attention_heads

                        cache_shape = (batch_size, num_heads, 0, head_dim)
                        empty_pkv = tuple(
                            (
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
1209
                            )
1210
1211
                            for i in range(model.config.num_hidden_layers)
                        )
1212

1213
1214
1215
1216
1217
1218
1219
1220
1221
                        cache_length = 9
                        cache_shape = (batch_size, num_heads, cache_length, head_dim)
                        non_empty_pkv = tuple(
                            (
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                            )
                            for i in range(model.config.num_hidden_layers)
                        )
1222

1223
                        inps = copy.deepcopy(inputs_to_test[0])
1224

1225
                        inputs_to_test[0]["past_key_values"] = empty_pkv
1226

1227
1228
                        inps["past_key_values"] = non_empty_pkv
                        inputs_to_test.append(inps)
1229

1230
1231
1232
1233
                        past_mask = torch.ones(batch_size, cache_length, device=torch_device, dtype=torch.float)
                        inputs_to_test[1]["attention_mask"] = torch.cat(
                            (past_mask, inputs_to_test[1]["attention_mask"]), dim=1
                        )
1234

1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
                forward_parameters = inspect.signature(model.forward).parameters
                if "input_ids" in forward_parameters and "inputs_embeds" in forward_parameters:
                    inps = copy.deepcopy(inputs_to_test[0])

                    embedding_size = (
                        model.config.embedding_size
                        if getattr(model.config, "embedding_size", None) is not None
                        and model.config.model_type != "megatron-bert"
                        else model.config.hidden_size
                    )

                    if (
                        model.config.model_type in MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
                        and model.__class__.__name__
                        == MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES[model.config.model_type]
                    ):
                        batch_size, num_choices, sequence_length = inputs["input_ids"].shape
                        shape = (batch_size, num_choices, sequence_length, embedding_size)
                    elif inps["input_ids"].ndim == 2:
                        batch_size, sequence_length = inputs["input_ids"].shape
                        shape = (batch_size, sequence_length, embedding_size)
                    else:
                        self.skipTest("Unknown case")

                    del inps["input_ids"]
                    inps["inputs_embeds"] = torch.rand(shape, dtype=torch.float, device=torch_device)
                    inputs_to_test.append(inps)
1262

1263
1264
            for inps in inputs_to_test:
                filtered_inputs = {k: v for (k, v) in inps.items() if k in input_names}
1265
                input_names_to_trace = list(filtered_inputs.keys())
1266

1267
1268
1269
1270
                if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
                    not hasattr(model.config, "problem_type") or model.config.problem_type is None
                ):
                    model.config.problem_type = "single_label_classification"
1271

1272
1273
1274
                model.config.use_cache = "past_key_values" in input_names_to_trace

                traced_model = symbolic_trace(model, input_names_to_trace)
1275

1276
1277
1278
                with torch.no_grad():
                    traced_output = traced_model(**filtered_inputs)
                    model_output = model(**filtered_inputs)
1279

1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
                def flatten_output(output):
                    flatten = []
                    for x in output:
                        if isinstance(x, (tuple, list)):
                            flatten += flatten_output(x)
                        elif not isinstance(x, torch.Tensor):
                            continue
                        else:
                            flatten.append(x)
                    return flatten
1290

1291
1292
1293
                model_output = flatten_output(model_output)
                traced_output = flatten_output(traced_output)
                num_outputs = len(model_output)
1294
1295
1296

                for i in range(num_outputs):
                    self.assertTrue(
1297
1298
                        torch.allclose(model_output[i], traced_output[i]),
                        f"traced {i}th output doesn't match model {i}th output for {model_class}",
1299
1300
                    )

1301
1302
1303
                # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
                # (Even with this call, there are still memory leak by ~0.04MB)
                self.clear_torch_jit_class_registry()
1304

Patrick von Platen's avatar
Patrick von Platen committed
1305
1306
    def test_headmasking(self):
        if not self.test_head_masking:
amyeroberts's avatar
amyeroberts committed
1307
            self.skipTest(reason="Model does not support head masking")
1308

1309
1310
1311
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
1312

1313
        inputs_dict["output_attentions"] = True
1314
1315
1316
1317
1318
1319
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
1320

1321
1322
1323
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
1324
1325
1326
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
1327
1328
1329
1330
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
1331
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
1332
            inputs["head_mask"] = head_mask
1333
1334
1335
1336
1337
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
1338
1339
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
1340
            outputs = model(**inputs, return_dict=True)
1341
1342
1343
1344
1345
1346
1347
1348
1349

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
1371
                check_attentions_validity(outputs.cross_attentions)
1372
1373
            else:
                check_attentions_validity(outputs.attentions)
1374

Patrick von Platen's avatar
Patrick von Platen committed
1375
1376
    def test_head_pruning(self):
        if not self.test_pruning:
amyeroberts's avatar
amyeroberts committed
1377
            self.skipTest(reason="Pruning is not activated")
1378
1379

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1380
1381
1382
1383
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1384

1385
1386
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1387

1388
            inputs_dict["output_attentions"] = True
1389
1390
1391
1392
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1393
1394
1395
1396
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1397
1398
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
1399
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1400

1401
            attentions = outputs[-1]
1402

1403
            self.assertEqual(attentions[0].shape[-3], 1)
1404
1405
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1406
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
1407

Patrick von Platen's avatar
Patrick von Platen committed
1408
1409
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
amyeroberts's avatar
amyeroberts committed
1410
            self.skipTest(reason="Pruning is not activated")
LysandreJik's avatar
LysandreJik committed
1411

1412
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1413
1414
1415
1416
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1417
1418
1419

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1420

1421
            inputs_dict["output_attentions"] = True
1422
1423
1424
1425
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1426
1427
1428
1429
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1430
            model.prune_heads(heads_to_prune)
1431

1432
            with tempfile.TemporaryDirectory() as temp_dir_name:
1433
1434
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1435
                model.to(torch_device)
1436

1437
            with torch.no_grad():
1438
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1439
1440
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
1441
1442
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1443
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1444

Patrick von Platen's avatar
Patrick von Platen committed
1445
1446
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
amyeroberts's avatar
amyeroberts committed
1447
            self.skipTest(reason="Pruning is not activated")
1448

1449
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1450
1451
1452
1453
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1454

1455
1456
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1457

1458
            inputs_dict["output_attentions"] = True
1459
            config.output_hidden_states = False
1460

1461
1462
1463
1464
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1465
            config.pruned_heads = heads_to_prune
1466

1467
1468
1469
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1470

1471
            with torch.no_grad():
1472
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1473
            attentions = outputs[-1]
1474

1475
            self.assertEqual(attentions[0].shape[-3], 1)
1476
1477
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1478
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1479

Patrick von Platen's avatar
Patrick von Platen committed
1480
1481
    def test_head_pruning_integration(self):
        if not self.test_pruning:
amyeroberts's avatar
amyeroberts committed
1482
            self.skipTest(reason="Pruning is not activated")
1483

1484
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1485
1486
1487
1488
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1489

1490
1491
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1492

1493
            inputs_dict["output_attentions"] = True
1494
            config.output_hidden_states = False
1495

1496
            heads_to_prune = {1: [1, 2]}
1497
            config.pruned_heads = heads_to_prune
1498

1499
1500
1501
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1502

1503
            with torch.no_grad():
1504
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1505
            attentions = outputs[-1]
1506

1507
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1508
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1509

1510
            with tempfile.TemporaryDirectory() as temp_dir_name:
1511
1512
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1513
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
1514

1515
            with torch.no_grad():
1516
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1517
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
1518

1519
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1520
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1521

1522
            heads_to_prune = {0: [0], 1: [1, 2]}
1523
            model.prune_heads(heads_to_prune)
1524

1525
            with torch.no_grad():
1526
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1527
            attentions = outputs[-1]
1528

1529
1530
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
1531

1532
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2]})
thomwolf's avatar
thomwolf committed
1533

Patrick von Platen's avatar
Patrick von Platen committed
1534
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1535
        def check_hidden_states_output(inputs_dict, config, model_class):
1536
            model = model_class(config)
1537
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1538
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1539

thomwolf's avatar
thomwolf committed
1540
            with torch.no_grad():
1541
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1542
1543

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1544

Sylvain Gugger's avatar
Sylvain Gugger committed
1545
1546
1547
1548
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1549

Patrick von Platen's avatar
Patrick von Platen committed
1550
1551
1552
1553
1554
1555
1556
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1557
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1558
1559
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1560
            )
thomwolf's avatar
thomwolf committed
1561

1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1587
1588
1589
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1590
        config.output_attentions = self.has_attentions
1591
1592
1593
1594
1595
1596
1597
1598
1599

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1600

1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1611
1612
1613
1614
1615
1616
1617
1618
1619
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1620
1621
1622
1623
1624

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1625
1626
1627
1628
1629

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1630
1631
1632
1633
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1634
1635
1636
1637

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1638
1639
1640
1641

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1642
1643
1644

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1645

Pradhy729's avatar
Pradhy729 committed
1646
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1647
1648
1649
1650
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1669
1670
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
amyeroberts's avatar
amyeroberts committed
1671
            self.skipTest(reason="Model does not have position embeddings")
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1748
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1749
1750
1751
1752
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1753
        if not self.test_resize_embeddings:
amyeroberts's avatar
amyeroberts committed
1754
            self.skipTest(reason="test_resize_embeddings is set to `False`")
1755
1756
1757
1758

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1759
            model.to(torch_device)
1760
1761
            model_embed_pre_resize = model.get_input_embeddings()
            type_model_embed_pre_resize = type(model_embed_pre_resize)
1762

Patrick von Platen's avatar
Patrick von Platen committed
1763
1764
1765
            if self.model_tester.is_training is False:
                model.eval()

1766
            model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
1767
1768
1769
1770
1771
1772
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
1773
1774
1775
1776
1777
1778
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size + 10)
1779
1780
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1781
1782
1783
            # Check to make sure the type of embeddings returned post resizing is same as type of input
            type_model_embed_post_resize = type(model_embed)
            self.assertEqual(type_model_embed_pre_resize, type_model_embed_post_resize)
1784
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1785
            model(**self._prepare_for_class(inputs_dict, model_class))
1786
1787
1788

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
1789
1790
1791
1792
1793
1794
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size - 15)
1795
1796
1797
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1798
1799
1800
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1801
1802
1803
1804

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1805
            model(**self._prepare_for_class(inputs_dict, model_class))
1806

1807
1808
1809
1810
1811
1812
1813
1814
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1815
1816
1817
1818
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

1819
            model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
1820
            model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
1821
1822
1823
1824
1825
1826
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertTrue(new_model_vocab_size + 10, model_vocab_size)
1827
1828

            model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
1829
1830
1831
1832
1833
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
1834
1835
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

1836
1837
            self.assertTrue(model_embed.weight.shape[0], new_model_vocab_size)
            self.assertTrue(new_model_vocab_size, model.vocab_size)
Arthur's avatar
Arthur committed
1838

1839
1840
1841
            model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

1842
1843
1844
1845
1846
            # Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
            target_dimension = 128
            model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0], target_dimension)

1847
1848
1849
1850
1851
1852
            with self.assertRaisesRegex(
                ValueError,
                "Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
            ):
                model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)

1853
1854
1855
1856
1857
1858
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
amyeroberts's avatar
amyeroberts committed
1859
            self.skipTest(reason="test_resize_embeddings is set to `False`")
1860
1861
1862
1863
1864

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
amyeroberts's avatar
amyeroberts committed
1865
            self.skipTest(reason="Model cannot untied embeddings")
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
1876
            model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
1877
            model.resize_token_embeddings(model_vocab_size + 10)
1878
1879
1880
1881
1882
1883
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size + 10)
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
1894
1895
1896
1897
1898
1899
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size - 15)
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

1914
    def test_model_get_set_embeddings(self):
1915
1916
1917
1918
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1919
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
1920
1921
1922
1923
1924

            new_input_embedding_layer = nn.Embedding(10, 10)
            model.set_input_embeddings(new_input_embedding_layer)
            self.assertEqual(model.get_input_embeddings(), new_input_embedding_layer)

1925
            x = model.get_output_embeddings()
1926
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1927

1928
1929
1930
1931
1932
1933
1934
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1935
    def test_correct_missing_keys(self):
1936
        if not self.test_missing_keys:
amyeroberts's avatar
amyeroberts committed
1937
            self.skipTest(reason="test_missing_keys is set to `False`")
1938
1939
1940
1941
1942
1943
1944
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
                extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
                extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
                # Some models define this as None
                if model._keys_to_ignore_on_load_missing:
                    for key in model._keys_to_ignore_on_load_missing:
                        extra_params.pop(key, None)

                if not extra_params:
                    # In that case, we *are* on a head model, but every
                    # single key is not actual parameters and this is
                    # tested in `test_tied_model_weights_key_ignore` test.
                    continue

1958
1959
1960
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1961
                    self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
1962

1963
1964
    def test_tie_model_weights(self):
        if not self.test_torchscript:
amyeroberts's avatar
amyeroberts committed
1965
            self.skipTest(reason="test_torchscript is set to `False`")
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
1990
1991
            vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
            model_tied.resize_token_embeddings(vocab_size + 10)
1992
1993
1994
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

1995
1996
    @require_safetensors
    def test_can_use_safetensors(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
1997
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
        for model_class in self.all_model_classes:
            model_tied = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                try:
                    model_tied.save_pretrained(d, safe_serialization=True)
                except Exception as e:
                    raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}")

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model_tied.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
2014
2015
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031

                # Checking the tensor sharing are correct
                ptrs = defaultdict(list)
                for k, v in model_tied.state_dict().items():
                    ptrs[v.data_ptr()].append(k)

                shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1}

                for _, shared_names in shared_ptrs.items():
                    reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names}
                    self.assertEqual(
                        len(reloaded_ptrs),
                        1,
                        f"The shared pointers are incorrect, found different pointers for keys {shared_names}",
                    )

Sylvain Gugger's avatar
Sylvain Gugger committed
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
    def test_load_save_without_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = False
        for model_class in self.all_model_classes:
            model = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                model.save_pretrained(d)

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])

Sylvain Gugger's avatar
Sylvain Gugger committed
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
    def test_tied_weights_keys(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = True
        for model_class in self.all_model_classes:
            model_tied = model_class(config)

            ptrs = collections.defaultdict(list)
            for name, tensor in model_tied.state_dict().items():
                ptrs[id_tensor_storage(tensor)].append(name)

            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]

            tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else []
            # Detect we get a hit for each key
            for key in tied_weight_keys:
2067
2068
                is_tied_key = any(re.search(key, p) for group in tied_params for p in group)
                self.assertTrue(is_tied_key, f"{key} is not a tied weight key for {model_class}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
2069
2070
2071
2072
2073
2074
2075

            # Removed tied weights found from tied params -> there should only be one left after
            for key in tied_weight_keys:
                for i in range(len(tied_params)):
                    tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None]

            tied_params = [group for group in tied_params if len(group) > 1]
Sylvain Gugger's avatar
Sylvain Gugger committed
2076
2077
2078
2079
2080
            self.assertListEqual(
                tied_params,
                [],
                f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.",
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
2081

Sylvain Gugger's avatar
Sylvain Gugger committed
2082
2083
    def test_model_weights_reload_no_missing_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
2084
        for model_class in self.all_model_classes:
Sylvain Gugger's avatar
Sylvain Gugger committed
2085
2086
2087
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.save_pretrained(tmp_dir)
2088
2089
2090

                # We are nuking ALL weights on file, so every parameter should
                # yell on load. We're going to detect if we yell too much, or too little.
2091
2092
                placeholder_dict = {"tensor": torch.tensor([1, 2])}
                safe_save_file(placeholder_dict, os.path.join(tmp_dir, "model.safetensors"), metadata={"format": "pt"})
Sylvain Gugger's avatar
Sylvain Gugger committed
2093
                model_reloaded, infos = model_class.from_pretrained(tmp_dir, output_loading_info=True)
2094
2095
2096
2097

                prefix = f"{model_reloaded.base_model_prefix}."
                params = dict(model_reloaded.named_parameters())
                params.update(dict(model_reloaded.named_buffers()))
2098
                param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()}
2099
2100
2101
2102

                missing_keys = set(infos["missing_keys"])

                extra_missing = missing_keys - param_names
Sylvain Gugger's avatar
Sylvain Gugger committed
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
                # Remove tied weights from extra missing: they are normally not warned as missing if their tied
                # counterpart is present but here there are no weights at all so we do get the warning.
                ptrs = collections.defaultdict(list)
                for name, tensor in model_reloaded.state_dict().items():
                    ptrs[id_tensor_storage(tensor)].append(name)
                tied_params = [names for _, names in ptrs.items() if len(names) > 1]
                for group in tied_params:
                    group = {k[len(prefix) :] if k.startswith(prefix) else k for k in group}
                    # We remove the group from extra_missing if not all weights from group are in it
                    if len(group - extra_missing) > 0:
                        extra_missing = extra_missing - set(group)
2114
2115
2116
2117

                self.assertEqual(
                    extra_missing,
                    set(),
Sylvain Gugger's avatar
Sylvain Gugger committed
2118
2119
                    f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}. "
                    f"For debugging, tied parameters are {tied_params}",
2120
2121
                )

Sylvain Gugger's avatar
Sylvain Gugger committed
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
                missed_missing = param_names - missing_keys
                # Remove nonpersistent buffers from missed_missing
                buffers = [n for n, _ in model_reloaded.named_buffers()]
                nonpersistent_buffers = {n for n in buffers if n not in model_reloaded.state_dict()}
                nonpersistent_buffers = {
                    k[len(prefix) :] if k.startswith(prefix) else k for k in nonpersistent_buffers
                }
                missed_missing = missed_missing - nonpersistent_buffers

                if model_reloaded._keys_to_ignore_on_load_missing is None:
                    expected_missing = set()
                else:
                    expected_missing = set(model_reloaded._keys_to_ignore_on_load_missing)
                self.assertEqual(
                    missed_missing,
                    expected_missing,
                    f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
                    " parameters. If they are non persistent buffers make sure to instantiate them with"
                    " `persistent=False`",
                )
2142

2143
2144
2145
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
2146
2147
2148
2149
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

2150
2151
2152
2153
2154
2155
2156
2157
2158
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
2159
2160
2161
2162
2163
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
2164
2165
2166
2167
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
2168
2169
2170
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
Sylvain Gugger's avatar
Sylvain Gugger committed
2171
2172
2173
2174
2175
2176
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

2202
2203
2204
2205
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
2206

2207
2208
2209
2210
2211
2212
2213
2214
2215
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
2216

2217
2218
2219
2220
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
2221

2222
2223
2224
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
2225

2226
2227
2228
2229
2230
2231
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = torch.cat(
                    [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
                )
2232

2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = torch.cat(
                #     [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
                #     dim=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

2250
2251
        tf_keys = {k for k, v in tf_outputs.items() if v is not None}
        pt_keys = {k for k, v in pt_outputs.items() if v is not None}
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "FlaubertWithLMHeadModel",
            "FunnelForPreTraining",
            "ElectraForPreTraining",
            "XLMWithLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("GPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2278
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
2279

2280
2281
2282
2283
2284
2285
2286
2287
        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """
2288

2289
2290
2291
        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
2292

2293
2294
2295
2296
2297
2298
        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
2299

2300
2301
2302
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
2303

2304
2305
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
2306

2307
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
2308

2309
            # convert to the case of `tuple`
2310
            # appending each key to the current (string) `name`
2311
2312
2313
2314
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
2315

2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
2326
                    f"{name}: The tuple `attributes` should have the same length as `tf_outputs`",
2327
                )
2328
            else:
2329
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
2330
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
2331

2332
2333
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
2334

2335
2336
2337
2338
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
2339

2340
2341
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
2342

2343
2344
2345
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
2346

2347
2348
2349
2350
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])
2351

2352
2353
            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
2354

2355
2356
2357
2358
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
2359

2360
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
2361
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).")
2362
2363
        else:
            raise ValueError(
2364
                "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got"
Sylvain Gugger's avatar
Sylvain Gugger committed
2365
                f" {type(tf_outputs)} instead."
2366
2367
            )

2368
2369
2370
2371
    def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):
        tf_inputs_dict = {}
        for key, tensor in pt_inputs_dict.items():
            # skip key that does not exist in tf
2372
            if isinstance(tensor, bool):
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
                tf_inputs_dict[key] = tensor
            elif key == "input_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "pixel_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "input_features":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            # other general float inputs
            elif tensor.is_floating_point():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            else:
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
2385

2386
        return tf_inputs_dict
2387

2388
2389
    def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
        tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
2390

2391
2392
2393
2394
        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }
2395

2396
2397
        # send pytorch model to the correct device
        pt_model.to(torch_device)
2398

2399
2400
        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()
2401

2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))

    @is_pt_tf_cross_test
Matt's avatar
Matt committed
2416
    def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
2417
        import transformers
2418
2419

        for model_class in self.all_model_classes:
2420
2421
2422
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
2423
            if not hasattr(transformers, tf_model_class_name):
amyeroberts's avatar
amyeroberts committed
2424
                self.skipTest(reason="transformers does not have TF version of this model yet")
2425

2426
2427
2428
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
2429

2430
2431
2432
2433
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
2434
2435

            tf_model_class = getattr(transformers, tf_model_class_name)
2436
2437

            pt_model = model_class(config)
2438
2439
2440
2441
2442
2443
2444
2445
2446
            tf_model = tf_model_class(config)

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_with_labels = self._prepare_for_class(
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
            )
2447
2448
2449
2450
2451
2452
2453
2454
2455

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

2456
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
2457
2458
2459
2460
            pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}

            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
2461
            if not set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
2462
                pt_inputs_dict_with_labels = None
2463
2464

            # Check we can load pt model in tf and vice-versa with model => model functions
2465
2466
            # Here requires `tf_inputs_dict` to build `tf_model`
            tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
Matt's avatar
Matt committed
2467
2468
2469
2470
2471
2472
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
            )
            pt_model = transformers.load_tf2_model_in_pytorch_model(
                pt_model, tf_model, allow_missing_keys=allow_missing_keys
            )
2473

2474
2475
2476
2477
2478
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2479
2480
2481
2482
2483

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
Matt's avatar
Matt committed
2484
2485
2486
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
                    tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2487
2488
2489

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
Matt's avatar
Matt committed
2490
2491
2492
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
                    pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2493

2494
2495
2496
2497
2498
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2499
2500
2501
2502
2503

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

2504
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2505
2506
2507
2508
2509
2510
2511
2512
2513
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(fx_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
            )

            fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")

            # convert to the case of `tuple`
            # appending each key to the current (string) `name`
            attributes = tuple([f"{name}.{k}" for k in fx_keys])
            self.check_pt_flax_outputs(
                fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )

        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(fx_outputs) in [tuple, list]:
            self.assertEqual(
                type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
            )
            self.assertEqual(
                len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
            )

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(fx_outputs),
                    f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
                )
2554
            else:
2555
2556
2557
2558
2559
2560
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])

            for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
                self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)

2561
        elif isinstance(fx_outputs, jnp.ndarray):
2562
2563
2564
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
            )
2565
2566
2567
2568
2569

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

2570
2571
2572
2573
2574
2575
2576
2577
2578
            self.assertEqual(
                fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
            )

            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(fx_outputs):
                fx_outputs = np.array([fx_outputs])
                pt_outputs = np.array([pt_outputs])

2579
2580
2581
2582
2583
2584
2585
2586
            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

2587
2588
2589
2590
            max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
            self.assertLessEqual(
                max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
            )
2591
2592
        else:
            raise ValueError(
2593
2594
                "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
                f" {type(fx_outputs)} instead."
2595
2596
            )

2597
2598
2599
2600
2601
2602
2603
2604
2605
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
amyeroberts's avatar
amyeroberts committed
2606
                    self.skipTest(reason="No Flax model exists for this class")
2607

2608
2609
2610
2611
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2612
2613
                fx_model_class = getattr(transformers, fx_model_class_name)

2614
2615
2616
2617
2618
2619
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2620
2621
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2622

2623
2624
2625
2626
2627
2628
2629
2630
2631
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2632
2633
2634
2635
2636
2637
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
2638
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2639

2640
2641
2642
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

2643
2644
2645
                # send pytorch model to the correct device
                pt_model.to(torch_device)

2646
                with torch.no_grad():
2647
2648
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
2649

2650
2651
2652
2653
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2654
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2655
2656
2657
2658
2659

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

2660
2661
2662
2663
2664
2665
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2666
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
amyeroberts's avatar
amyeroberts committed
2677
                    self.skipTest(reason="No Flax model exists for this class")
2678

2679
2680
2681
2682
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2683
2684
                fx_model_class = getattr(transformers, fx_model_class_name)

2685
2686
2687
2688
2689
2690
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2691
2692
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2693

2694
2695
2696
2697
2698
2699
2700
2701
2702
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2703
2704
2705
2706
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
2707

2708
                # convert inputs to Flax
2709
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2710

2711
2712
2713
2714
2715
2716
2717
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
2718

2719
2720
2721
2722
2723
2724
2725
2726
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2727
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2728
2729
2730

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
2731
2732
2733
                    pt_model_loaded = model_class.from_pretrained(
                        tmpdirname, from_flax=True, attn_implementation=fx_model.config._attn_implementation
                    )
2734

2735
2736
2737
2738
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

2739
                with torch.no_grad():
2740
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
2741

2742
2743
2744
2745
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2746
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
2747

Patrick von Platen's avatar
Patrick von Platen committed
2748
    def test_inputs_embeds(self):
2749
2750
2751
2752
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
2753
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
2754
            model.eval()
2755

2756
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
2757

2758
2759
2760
2761
2762
2763
2764
2765
2766
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

2767
2768
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
2769
                inputs["inputs_embeds"] = wte(input_ids)
2770
            else:
2771
2772
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
2773

thomwolf's avatar
thomwolf committed
2774
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
2775
                model(**inputs)[0]
2776

2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
    def test_inputs_embeds_matches_input_ids(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class.__name__ not in get_values(MODEL_MAPPING_NAMES):
                continue
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            model_forward_args = inspect.signature(model.forward).parameters
            if "inputs_embeds" not in model_forward_args:
amyeroberts's avatar
amyeroberts committed
2789
                self.skipTest(reason="This model doesn't use `inputs_embeds`")
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            pad_token_id = config.pad_token_id if config.pad_token_id is not None else 1

            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                # some models infer position ids/attn mask differently when input ids
                # by check if pad_token let's make sure no padding is in input ids
                not_pad_token_id = pad_token_id + 1 if max(0, pad_token_id - 1) == 0 else pad_token_id - 1
                input_ids[input_ids == pad_token_id] = not_pad_token_id
                del inputs["input_ids"]
                inputs_embeds = wte(input_ids)
                with torch.no_grad():
                    out_ids = model(input_ids=input_ids, **inputs)[0]
                    out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                encoder_input_ids[encoder_input_ids == pad_token_id] = max(0, pad_token_id + 1)
                decoder_input_ids[decoder_input_ids == pad_token_id] = max(0, pad_token_id + 1)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)
                inputs_embeds = wte(encoder_input_ids)
                decoder_inputs_embeds = wte(decoder_input_ids)
                with torch.no_grad():
                    out_ids = model(input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids, **inputs)[0]
                    out_embeds = model(
                        inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, **inputs
                    )[0]
            self.assertTrue(torch.allclose(out_embeds, out_ids))

2822
2823
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
2824
2825
2826
2827
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
2828
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
2843
            model = nn.DataParallel(model)
2844
            with torch.no_grad():
2845
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
2846

2847
2848
2849
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
amyeroberts's avatar
amyeroberts committed
2850
            self.skipTest(reason="test_model_parallel is set to False")
2851

2852
        # a candidate for testing_utils
2853
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2854
            """returns a list of cuda memory allocations per GPU in MBs"""
2855
2856
2857
2858
2859

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2860
2861
2862
2863
2864
2865
2866
2867
2868

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2869
2870
2871
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2872

2873
2874
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2875
2876
2877
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2878
2879
2880
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2881
            del model
2882
            gc.collect()
2883
2884
            torch.cuda.empty_cache()

2885
2886
2887
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2888
2889

            # Spread model layers over multiple devices
2890
            model = model_class(config)
2891
2892
2893
2894
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
2895
            for n in range(len(model.device_map.keys())):
2896
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2897

2898
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2899
2900
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2901
2902
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2903
2904
2905
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2906
            gc.collect()
2907
2908
2909
2910
2911
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
amyeroberts's avatar
amyeroberts committed
2912
            self.skipTest(reason="test_model_parallel is set to False")
2913
2914
2915
2916
2917
2918

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2919
            def cast_to_device(dictionary, device):
2920
2921
2922
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2923
                        output[k] = v.to(device)
2924
2925
2926
2927
2928
                    else:
                        output[k] = v

                return output

2929
2930
2931
2932
2933
2934
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2935
2936
2937
2938
2939
2940
2941
2942

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
2954
2955
            elif param_device in ["mps"]:
                self.assertEqual(param.device, torch.device("mps"))
2956
            else:
2957
2958
                # when loaded with device_map, `param_device` are integer values for cuda/xpu/npu/mlu
                self.assertEqual(param.device, torch.device(f"{torch_device}:{param_device}"))
2959

Sylvain Gugger's avatar
Sylvain Gugger committed
2960
    @require_accelerate
2961
    @mark.accelerate_tests
Sylvain Gugger's avatar
Sylvain Gugger committed
2962
    @require_torch_gpu
2963
    def test_disk_offload_bin(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
2964
2965
2966
2967
2968
2969
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2970
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2971
2972
            model = model_class(config).eval()
            model = model.to(torch_device)
2973
            torch.manual_seed(0)
2974
            base_output = model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2975
2976
2977

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
2978
                model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
Sylvain Gugger's avatar
Sylvain Gugger committed
2979
2980

                with self.assertRaises(ValueError):
Yih-Dar's avatar
Yih-Dar committed
2981
2982
                    max_size = int(self.model_split_percents[0] * model_size)
                    max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
2983
2984
2985
                    # This errors out cause it's missing an offload folder
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

Yih-Dar's avatar
Yih-Dar committed
2986
2987
                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
2988
2989
2990
2991
2992
                new_model = model_class.from_pretrained(
                    tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
                )

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2993
                torch.manual_seed(0)
2994
                new_output = new_model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2995

2996
2997
2998
2999
                if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                    self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                else:
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
Sylvain Gugger's avatar
Sylvain Gugger committed
3000

3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
    @require_accelerate
    @mark.accelerate_tests
    @require_torch_gpu
    def test_disk_offload_safetensors(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config).eval()
            model = model.to(torch_device)
            torch.manual_seed(0)
            base_output = model(**inputs_dict_class)

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}

                # This doesn't error out as it's in safetensors and doesn't need an offload folder
                new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
                torch.manual_seed(0)
                new_output = new_model(**inputs_dict_class)

3031
3032
3033
3034
                if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                    self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                else:
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
3035

3036
    @require_accelerate
3037
    @mark.accelerate_tests
3038
3039
3040
3041
3042
3043
3044
3045
    @require_torch_gpu
    def test_cpu_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

3046
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
3047
3048
            model = model_class(config).eval()
            model = model.to(torch_device)
3049
3050

            torch.manual_seed(0)
3051
            base_output = model(**inputs_dict_class)
3052
3053
3054

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
Yih-Dar's avatar
Yih-Dar committed
3055
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
3066
3067

                    torch.manual_seed(0)
3068
                    new_output = new_model(**inputs_dict_class)
3069

3070
3071
3072
3073
                    if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                        self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                    else:
                        self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
3074
3075

    @require_accelerate
3076
    @mark.accelerate_tests
3077
    @require_torch_multi_accelerator
3078
3079
3080
3081
3082
3083
3084
    def test_model_parallelism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

3085
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
3086
3087
            model = model_class(config).eval()
            model = model.to(torch_device)
3088
3089

            torch.manual_seed(0)
3090
            base_output = model(**inputs_dict_class)
3091
3092
3093

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
3094
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
3095
3096
3097
3098
3099
3100
3101
3102
3103
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})
                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
3104
3105

                    torch.manual_seed(0)
3106
                    new_output = new_model(**inputs_dict_class)
3107

3108
3109
3110
3111
                    if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                        self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                    else:
                        self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
3112

3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
3123
3124
3125
            if model_class.__name__ not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
3126
            ]:
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

3145
3146
3147
3148
3149
3150
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
3151
3152
3153
3154
3155
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
3156

3157
3158
                    loss.backward()

3159
    def test_load_with_mismatched_shapes(self):
3160
        if not self.test_mismatched_shapes:
amyeroberts's avatar
amyeroberts committed
3161
            self.skipTest(reason="test_missmatched_shapes is set to False")
3162
3163
3164
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
3165
            if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
3166
3167
3168
3169
3170
3171
3172
3173
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
3174
                    with self.assertRaises(RuntimeError):
3175
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
3176
3177
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
3178
3179

                    logger = logging.get_logger("transformers.modeling_utils")
3180

3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

3203
3204
    def test_mismatched_shapes_have_properly_initialized_weights(self):
        if not self.test_mismatched_shapes:
amyeroberts's avatar
amyeroberts committed
3205
            self.skipTest(reason="test_missmatched_shapes is set to False")
3206
3207
3208
3209
3210
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)

        for model_class in self.all_model_classes:
Yih-Dar's avatar
Yih-Dar committed
3211
3212
3213
3214
3215
3216
3217
3218
3219
            mappings = [
                MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
                MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
                MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
                MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
            ]
            is_classication_model = any(model_class.__name__ in get_values(mapping) for mapping in mappings)

            if not is_classication_model:
3220
3221
                continue

Yih-Dar's avatar
Yih-Dar committed
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
            # TODO: ydshieh
            is_special_classes = model_class.__name__ in [
                "wav2vec2.masked_spec_embed",
                "Wav2Vec2ForSequenceClassification",
                "CLIPForImageClassification",
                "RegNetForImageClassification",
                "ResNetForImageClassification",
                "UniSpeechSatForSequenceClassification",
                "Wav2Vec2BertForSequenceClassification",
                "PvtV2ForImageClassification",
                "Wav2Vec2ConformerForSequenceClassification",
                "WavLMForSequenceClassification",
                "SwiftFormerForImageClassification",
                "SEWForSequenceClassification",
                "BitForImageClassification",
                "SEWDForSequenceClassification",
                "SiglipForImageClassification",
                "HubertForSequenceClassification",
                "Swinv2ForImageClassification",
                "Data2VecAudioForSequenceClassification",
                "UniSpeechForSequenceClassification",
                "PvtForImageClassification",
            ]
            special_param_names = [
                r"^bit\.",
                r"^classifier\.weight",
                r"^classifier\.bias",
                r"^classifier\..+\.weight",
                r"^classifier\..+\.bias",
                r"^data2vec_audio\.",
                r"^dist_head\.",
                r"^head\.",
                r"^hubert\.",
                r"^pvt\.",
                r"^pvt_v2\.",
                r"^regnet\.",
                r"^resnet\.",
                r"^sew\.",
                r"^sew_d\.",
                r"^swiftformer\.",
                r"^swinv2\.",
                r"^transformers\.models\.swiftformer\.",
                r"^unispeech\.",
                r"^unispeech_sat\.",
                r"^vision_model\.",
                r"^wav2vec2\.",
                r"^wav2vec2_bert\.",
                r"^wav2vec2_conformer\.",
                r"^wavlm\.",
            ]

3273
3274
3275
3276
3277
3278
3279
            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(configs_no_init)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(RuntimeError):
Yih-Dar's avatar
Yih-Dar committed
3280
                        new_model = model_class.from_pretrained(tmp_dir, num_labels=42)
3281
3282
3283
3284

                    logger = logging.get_logger("transformers.modeling_utils")

                    with CaptureLogger(logger) as cl:
Yih-Dar's avatar
Yih-Dar committed
3285
                        new_model = model_class.from_pretrained(tmp_dir, num_labels=42, ignore_mismatched_sizes=True)
3286
3287
3288
3289
                    self.assertIn("the shapes did not match", cl.out)

                    for name, param in new_model.named_parameters():
                        if param.requires_grad:
Yih-Dar's avatar
Yih-Dar committed
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
                            param_mean = ((param.data.mean() * 1e9).round() / 1e9).item()
                            if not (
                                is_special_classes
                                and any(len(re.findall(target, name)) > 0 for target in special_param_names)
                            ):
                                self.assertIn(
                                    param_mean,
                                    [0.0, 1.0],
                                    msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                                )
                            else:
                                # Here we allow the parameters' mean to be in the range [-5.0, 5.0] instead of being
                                # either `0.0` or `1.0`, because their initializations are not using
                                # `config.initializer_factor` (or something similar). The purpose of this test is simply
                                # to make sure they are properly initialized (to avoid very large value or even `nan`).
                                self.assertGreaterEqual(
                                    param_mean,
                                    -5.0,
                                    msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                                )
                                self.assertLessEqual(
                                    param_mean,
                                    5.0,
                                    msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                                )
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383

    def test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist(self):
        # 1. Create a dummy class. Should have buffers as well? To make sure we test __init__
        class MyClass(PreTrainedModel):
            config_class = PretrainedConfig

            def __init__(self, config=None):
                super().__init__(config if config is not None else PretrainedConfig())
                self.linear = nn.Linear(10, config.num_labels, bias=True)
                self.embedding = nn.Embedding(10, 10)
                self.std = 1

            def _init_weights(self, module):
                if isinstance(module, nn.Linear):
                    module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5))
                    if module.bias is not None:
                        module.bias.data = module.bias.data.normal_(mean=0.0, std=self.std)

        # Used to make sure the weights with matched shape are loaded correctly
        config = PretrainedConfig()
        config.num_labels = 3
        model = MyClass(config=config)

        # Used to make sure the weights with mismatched shape are properly initialized
        set_seed(0)
        config = PretrainedConfig()
        config.num_labels = 4
        # not to init. the weights during the creation: to match the logic in `from_pretrained`, so we can keep the
        # same sequence of random ops in the execution path to allow us to compare `target_model` and `new_model` below
        # for `linear` part.
        with ContextManagers([no_init_weights(True)]):
            target_model = MyClass(config=config)
        target_model.apply(target_model._initialize_weights)

        with tempfile.TemporaryDirectory() as tmpdirname:
            state_dict = model.state_dict()
            del state_dict["linear.weight"]

            model.config.save_pretrained(tmpdirname)
            torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

            set_seed(0)
            new_model = MyClass.from_pretrained(tmpdirname, num_labels=4, ignore_mismatched_sizes=True)

            for key in new_model.state_dict().keys():
                # check weight values for weights with matched shapes are identical
                # (i.e. correctly loaded from the checkpoint)
                if key not in ["linear.weight", "linear.bias"]:
                    max_diff = torch.max(torch.abs(model.state_dict()[key] - new_model.state_dict()[key]))
                    self.assertLessEqual(
                        max_diff.item(),
                        1e-6,
                        msg=f"the weight values for `{key}` in `new_model` and `model` are  not identical",
                    )
                else:
                    # check we have some mismatched shapes
                    self.assertNotEqual(
                        model.state_dict()[key].shape,
                        new_model.state_dict()[key].shape,
                        msg=f"the weight shapes for {key} in `model` and `new_model` should differ",
                    )
                    # check the weights with mismatched shape are properly initialized
                    max_diff = torch.max(torch.abs(new_model.state_dict()[key] - target_model.state_dict()[key]))
                    self.assertLessEqual(
                        max_diff.item(),
                        1e-6,
                        msg=f"the weight values for `{key}` in `new_model` and `target_model` are not identical",
                    )

3384
3385
3386
3387
3388
3389
3390
3391
3392
    def test_model_is_small(self):
        # Just a consistency check to make sure we are not running tests on 80M parameter models.
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            num_params = model.num_parameters()
            assert (
                num_params < 1000000
3393
            ), f"{model_class} is too big for the common tests ({num_params})! It should have 1M max."
3394

3395
3396
3397
3398
3399
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_conversion(self):
amyeroberts's avatar
amyeroberts committed
3400
3401
3402
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3403
3404
3405
3406
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3407
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3408
3409
3410
3411
3412
3413

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(
3414
                    tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2"
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
                ).to(torch_device)

                for _, module in model.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        return

                self.assertTrue(False, "FlashAttention2 modules not found in model")

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
3427
    @is_flaky()
Yoach Lacombe's avatar
Yoach Lacombe committed
3428
    def test_flash_attn_2_inference_equivalence(self):
amyeroberts's avatar
amyeroberts committed
3429
3430
3431
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3432
3433
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3434
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3435

3436
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3437
3438
3439
3440
3441
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
3442
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
3443
3444
3445
                )
                model_fa.to(torch_device)

Yoach Lacombe's avatar
Yoach Lacombe committed
3446
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
3447
3448
                model.to(torch_device)

3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                dummy_attention_mask = inputs_dict.get("attention_mask", None)

                if dummy_attention_mask is not None:
                    dummy_attention_mask = dummy_attention_mask[:1]
                    dummy_attention_mask[:, 1:] = 1
                    dummy_attention_mask[:, :1] = 0
3459

3460
3461
3462
3463
3464
3465
3466
3467
                if model.config.is_encoder_decoder:
                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]

                    outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                else:
                    outputs = model(dummy_input, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, output_hidden_states=True)
3468

3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3479

3480
                assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)
3481

3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
                if model.config.is_encoder_decoder:
                    other_inputs = {
                        "decoder_input_ids": decoder_input_ids,
                        "decoder_attention_mask": dummy_attention_mask,
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)
                else:
                    other_inputs = {
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3513

3514
                assert torch.allclose(logits_fa[1:], logits[1:], atol=4e-2, rtol=4e-2)
3515

3516
3517
                # check with inference + dropout
                model.train()
3518
                _ = model_fa(dummy_input, **other_inputs)
3519

3520
3521
3522
3523
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
3524
    @is_flaky()
Yoach Lacombe's avatar
Yoach Lacombe committed
3525
    def test_flash_attn_2_inference_equivalence_right_padding(self):
amyeroberts's avatar
amyeroberts committed
3526
3527
3528
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3529
3530
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3531
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3532

3533
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3534
3535
3536
3537
3538
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
3539
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
3540
3541
3542
                )
                model_fa.to(torch_device)

Yoach Lacombe's avatar
Yoach Lacombe committed
3543
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
3544
3545
                model.to(torch_device)

3546
3547
3548
3549
3550
                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                dummy_attention_mask = inputs_dict.get("attention_mask", None)
3551

3552
3553
3554
3555
                if dummy_attention_mask is not None:
                    dummy_attention_mask = dummy_attention_mask[:1]
                    dummy_attention_mask[:, :-1] = 1
                    dummy_attention_mask[:, -1:] = 0
3556

3557
3558
                if model.config.is_encoder_decoder:
                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]
3559

3560
3561
3562
3563
3564
                    outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                else:
                    outputs = model(dummy_input, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, output_hidden_states=True)
3565

3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3576

3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
                assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)

                if model.config.is_encoder_decoder:
                    other_inputs = {
                        "decoder_input_ids": decoder_input_ids,
                        "decoder_attention_mask": dummy_attention_mask,
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)
                else:
                    other_inputs = {
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )

                assert torch.allclose(logits_fa[:-1], logits[:-1], atol=4e-2, rtol=4e-2)
3612
3613
3614
3615
3616

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
3617
    @is_flaky()
3618
    def test_flash_attn_2_generate_left_padding(self):
amyeroberts's avatar
amyeroberts committed
3619
3620
3621
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3622
3623
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3624
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3625

3626
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3627
3628
3629
3630
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
3631
3632
3633
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
3634

3635
3636
3637
3638
3639
3640
3641
3642
                dummy_input = inputs_dict[model.main_input_name]
                if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                    dummy_input = dummy_input.to(torch.float16)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
                # make sure we do left padding
                dummy_attention_mask[:, :-1] = 0
                dummy_attention_mask[:, -1:] = 1
3643
3644
3645
3646
3647
3648

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
3649
3650
3651
3652
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
3653
3654
3655
3656
3657
3658
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

3659
                self.assertTrue(torch.allclose(out, out_fa))
3660
3661
3662
3663

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
3664
    @is_flaky()
3665
3666
    @slow
    def test_flash_attn_2_generate_padding_right(self):
amyeroberts's avatar
amyeroberts committed
3667
3668
3669
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3670
3671
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3672
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3673

3674
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3675
3676
3677
3678
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
3679
3680
3681
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
3682

3683
3684
3685
3686
3687
                dummy_input = inputs_dict[model.main_input_name]
                if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                    dummy_input = dummy_input.to(torch.float16)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
3688
                # make sure we do right padding
3689
3690
                dummy_attention_mask[:, :-1] = 1
                dummy_attention_mask[:, -1:] = 0
3691
3692
3693
3694
3695
3696

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
3697
3698
3699
3700
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
3701
3702
3703
3704
3705
3706
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

3707
                self.assertTrue(torch.allclose(out, out_fa))
3708

3709
3710
3711
3712
    @parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_inference(self, torch_dtype: str):
amyeroberts's avatar
amyeroberts committed
3713
3714
3715
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3716
3717
3718
        if not self.all_model_classes[0]._supports_sdpa:
            self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")

fxmarty's avatar
fxmarty committed
3719
3720
3721
3722
3723
3724
3725
        if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device):
            self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")

        if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device):
            self.skipTest(
                f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
            )
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741

        # Not sure whether it's fine to put torch.XXX in a decorator if torch is not available so hacking it here instead.
        if torch_dtype == "float16":
            torch_dtype = torch.float16
        elif torch_dtype == "bfloat16":
            torch_dtype = torch.bfloat16
        elif torch_dtype == "float32":
            torch_dtype = torch.float32

        atols = {
            ("cpu", False, torch.float32): 1e-6,
            ("cpu", False, torch.bfloat16): 1e-2,
            ("cpu", True, torch.float32): 1e-6,
            ("cpu", True, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float32): 1e-6,
            ("cuda", False, torch.bfloat16): 1e-2,
fxmarty's avatar
fxmarty committed
3742
            ("cuda", False, torch.float16): 5e-3,
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
            ("cuda", True, torch.float32): 1e-6,
            ("cuda", True, torch.bfloat16): 1e-2,
            ("cuda", True, torch.float16): 5e-3,
        }
        rtols = {
            ("cpu", False, torch.float32): 1e-4,
            ("cpu", False, torch.bfloat16): 1e-2,
            ("cpu", True, torch.float32): 1e-4,
            ("cpu", True, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float32): 1e-4,
            ("cuda", False, torch.bfloat16): 1e-2,
fxmarty's avatar
fxmarty committed
3754
            ("cuda", False, torch.float16): 5e-3,
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
            ("cuda", True, torch.float32): 1e-4,
            ("cuda", True, torch.bfloat16): 3e-2,
            ("cuda", True, torch.float16): 5e-3,
        }

        def get_mean_reldiff(failcase, x, ref, atol, rtol):
            return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)
3766
3767
3768
3769
3770
            # FIXME: we deactivate boolean mask for models using "use_mask_token" in their constructors.
            # These models support masking only in the case `use_mask_token=True`. Otherwise they cannot consume an input mask.
            # This means that the class needs to be instantiated much later, after `use_mask` is set, which means a significant refactor of the code.
            # However masking there is not done at any layers that matters (i.e self-attention), therefore we can safely deactivate it.
            deactivate_mask = "use_mask_token" in inspect.signature(model_class).parameters
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790

            is_encoder_decoder = model.config.is_encoder_decoder

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
                model_sdpa = model_sdpa.eval().to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch_dtype,
                    attn_implementation="eager",
                )
                model_eager = model_eager.eval().to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
3791
3792
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
3793
3794
3795
3796
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
3797
3798
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
3799
3800
3801
3802
3803
                        has_sdpa = True
                        break
                if not has_sdpa and model_sdpa.config.model_type != "falcon":
                    raise ValueError("The SDPA model should have SDPA attention layers")

3804
                # We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving 16 times the model,
3805
3806
3807
3808
                # but it would be nicer to have an efficient way to use parameterized.expand
                fail_cases = []
                for padding_side in ["left", "right"]:
                    for use_mask in [False, True]:
3809
3810
3811
3812
3813
3814
                        for output_attentions in [True, False]:
                            can_output_attn = "output_attentions" in inspect.signature(model_sdpa.forward).parameters
                            if not (self.has_attentions and can_output_attn) and output_attentions:
                                continue
                            for batch_size in [1, 5]:
                                dummy_input = inputs_dict[model.main_input_name]
3815
3816

                                if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
                                    dummy_input = dummy_input.to(torch_dtype)

                                dummy_input = dummy_input[:batch_size]
                                if dummy_input.shape[0] != batch_size:
                                    if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
                                        extension = torch.rand(
                                            batch_size - dummy_input.shape[0],
                                            *dummy_input.shape[1:],
                                            dtype=torch_dtype,
                                            device=torch_device,
                                        )
                                        dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
3829
                                    else:
3830
3831
3832
3833
3834
3835
3836
                                        extension = torch.randint(
                                            high=5,
                                            size=(batch_size - dummy_input.shape[0], *dummy_input.shape[1:]),
                                            dtype=dummy_input.dtype,
                                            device=torch_device,
                                        )
                                        dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
3837

3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
                                if not use_mask:
                                    dummy_attention_mask = None
                                else:
                                    dummy_attention_mask = inputs_dict.get("attention_mask", None)
                                    if dummy_attention_mask is None:
                                        if is_encoder_decoder:
                                            seqlen = inputs_dict.get("decoder_input_ids", dummy_input).shape[-1]
                                        else:
                                            seqlen = dummy_input.shape[-1]
                                        dummy_attention_mask = (
                                            torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device)
                                        )

                                    dummy_attention_mask = dummy_attention_mask[:batch_size]
                                    if dummy_attention_mask.shape[0] != batch_size:
3853
                                        extension = torch.ones(
3854
3855
3856
                                            batch_size - dummy_attention_mask.shape[0],
                                            *dummy_attention_mask.shape[1:],
                                            dtype=dummy_attention_mask.dtype,
3857
3858
                                            device=torch_device,
                                        )
3859
3860
                                        dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0)
                                        dummy_attention_mask = dummy_attention_mask.to(torch_device)
3861

3862
                                    dummy_attention_mask[:] = 1
3863
                                    if padding_side == "left":
3864
3865
3866
3867
3868
                                        dummy_attention_mask[-1, :-1] = 1
                                        dummy_attention_mask[-1, -4:] = 0
                                    elif padding_side == "right":
                                        dummy_attention_mask[-1, 1:] = 1
                                        dummy_attention_mask[-1, :3] = 0
3869

3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
                                for enable_kernels in [False, True]:
                                    failcase = f"padding_side={padding_side}, use_mask={use_mask}, batch_size={batch_size}, enable_kernels={enable_kernels}"
                                    if is_encoder_decoder:
                                        decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[
                                            :batch_size
                                        ]
                                        if decoder_input_ids.shape[0] != batch_size:
                                            extension = torch.ones(
                                                batch_size - decoder_input_ids.shape[0],
                                                *decoder_input_ids.shape[1:],
                                                dtype=decoder_input_ids.dtype,
                                                device=torch_device,
3882
                                            )
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
                                            decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0)
                                            decoder_input_ids = decoder_input_ids.to(torch_device)

                                        # TODO: never an `attention_mask` arg here?
                                        processed_inputs = {
                                            model.main_input_name: dummy_input,
                                            "decoder_input_ids": decoder_input_ids,
                                            "decoder_attention_mask": dummy_attention_mask,
                                            "output_hidden_states": True,
                                        }
                                    else:
                                        processed_inputs = {
                                            model.main_input_name: dummy_input,
                                            "output_hidden_states": True,
                                        }

                                        # Otherwise fails for e.g. WhisperEncoderModel
                                        if "attention_mask" in inspect.signature(model_eager.forward).parameters:
                                            processed_inputs["attention_mask"] = dummy_attention_mask

                                        if (
                                            self.has_attentions
                                            and "output_attentions" in inspect.signature(model_sdpa.forward).parameters
                                        ):
                                            processed_inputs["output_attentions"] = output_attentions
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
                                    if not deactivate_mask and (
                                        "bool_masked_pos" in inspect.signature(model_eager.forward).parameters
                                    ):
                                        dummy_mask = torch.ones((self.model_tester.num_masks,))

                                        # In case of additional token (like class) we define a custom `mask_length`
                                        if hasattr(self.model_tester, "mask_length"):
                                            mask_length = self.model_tester.mask_length - dummy_mask.size(0)
                                        else:
                                            mask_length = self.model_tester.seq_length - dummy_mask.size(0)
                                        dummy_mask = torch.cat([dummy_mask, torch.zeros(mask_length)])
                                        dummy_bool_masked_pos = dummy_mask.expand(batch_size, -1).bool()
                                        processed_inputs["bool_masked_pos"] = dummy_bool_masked_pos.to(torch_device)

                                    if "noise" in inspect.signature(model_eager.forward).parameters:
                                        np.random.seed(2)
                                        num_patches = int(
                                            (self.model_tester.image_size // self.model_tester.patch_size) ** 2
                                        )
                                        noise = np.random.uniform(size=(batch_size, num_patches))
                                        processed_inputs["noise"] = torch.from_numpy(noise)
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950

                                    # TODO: test gradients as well (& for FA2 as well!)
                                    with torch.no_grad():
                                        with torch.backends.cuda.sdp_kernel(
                                            enable_flash=enable_kernels,
                                            enable_math=True,
                                            enable_mem_efficient=enable_kernels,
                                        ):
                                            prepared_inputs = self._prepare_for_class(processed_inputs, model_class)
                                            outputs_eager = model_eager(**prepared_inputs)
                                            outputs_sdpa = model_sdpa(**prepared_inputs)

                                    logits_eager = (
                                        outputs_eager.hidden_states[-1]
                                        if not is_encoder_decoder
                                        else outputs_eager.decoder_hidden_states[-1]
                                    )
                                    logits_sdpa = (
                                        outputs_sdpa.hidden_states[-1]
                                        if not is_encoder_decoder
                                        else outputs_sdpa.decoder_hidden_states[-1]
                                    )
3951

3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
                                    if torch_device in ["cpu", "cuda"]:
                                        atol = atols[torch_device, enable_kernels, torch_dtype]
                                        rtol = rtols[torch_device, enable_kernels, torch_dtype]
                                    else:
                                        atol = 1e-7
                                        rtol = 1e-4

                                    # Masked tokens output slightly deviates - we don't mind that.
                                    if use_mask:
                                        if padding_side == "left":
                                            sub_sdpa = logits_sdpa[:-1]
                                            sub_eager = logits_eager[:-1]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            sub_sdpa = logits_sdpa[-1, :-4]
                                            sub_eager = logits_eager[-1, :-4]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            # Testing the padding tokens is not really meaningful but anyway
                                            # sub_sdpa = logits_sdpa[-1, -4:]
                                            # sub_eager = logits_eager[-1, -4:]
                                            # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            #     fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))
                                        elif padding_side == "right":
                                            sub_sdpa = logits_sdpa[:-1]
                                            sub_eager = logits_eager[:-1]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            sub_sdpa = logits_sdpa[-1, 3:]
                                            sub_eager = logits_eager[-1, 3:]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            # Testing the padding tokens is not really meaningful but anyway
                                            # sub_sdpa = logits_sdpa[-1, :3]
                                            # sub_eager = logits_eager[-1, :3]
                                            # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            #     fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))
4001

4002
4003
                                    else:
                                        if not torch.allclose(logits_sdpa, logits_eager, atol=atol, rtol=rtol):
4004
                                            fail_cases.append(
4005
                                                get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol)
4006
4007
4008
4009
                                            )

                self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))

4010
4011
4012
4013
    @require_torch_sdpa
    @require_torch_gpu
    @slow
    def test_sdpa_can_dispatch_on_flash(self):
amyeroberts's avatar
amyeroberts committed
4014
4015
4016
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4017
4018
4019
4020
        compute_capability = torch.cuda.get_device_capability()
        major, _ = compute_capability

        if not torch.version.cuda or major < 8:
amyeroberts's avatar
amyeroberts committed
4021
            self.skipTest(reason="This test requires an NVIDIA GPU with compute capability >= 8.0")
4022
4023
4024
4025
4026
4027

        for model_class in self.all_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
4028
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
Raushan Turganbay's avatar
Raushan Turganbay committed
4029
            if config.model_type in ["llava", "llava_next", "vipllava", "video_llava"]:
amyeroberts's avatar
amyeroberts committed
4030
4031
4032
                self.skipTest(
                    reason="Llava-like models currently (transformers==4.39.1) requires an attention_mask input"
                )
Pablo Montalvo's avatar
Pablo Montalvo committed
4033
4034
4035
4036
            if config.model_type in ["paligemma"]:
                self.skipTest(
                    "PaliGemma-like models currently (transformers==4.41.0) requires an attention_mask input"
                )
4037
            if config.model_type in ["idefics"]:
amyeroberts's avatar
amyeroberts committed
4038
                self.skipTest(reason="Idefics currently (transformers==4.39.1) requires an image_attention_mask input")
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa")
                model.to(torch_device)

                inputs_dict.pop("attention_mask", None)
                inputs_dict.pop("decoder_attention_mask", None)

                for name, inp in inputs_dict.items():
                    if isinstance(inp, torch.Tensor) and inp.dtype in [torch.float32, torch.float16]:
                        inputs_dict[name] = inp.to(torch.float16)

                with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
                    _ = model(**inputs_dict)

4056
4057
4058
4059
    @require_torch_sdpa
    @require_torch_gpu
    @slow
    def test_sdpa_can_compile_dynamic(self):
amyeroberts's avatar
amyeroberts committed
4060
4061
4062
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4063
4064
4065
4066
        compute_capability = torch.cuda.get_device_capability()
        major, _ = compute_capability

        if not torch.version.cuda or major < 8:
amyeroberts's avatar
amyeroberts committed
4067
            self.skipTest(reason="This test requires an NVIDIA GPU with compute capability >= 8.0")
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099

        for model_class in self.all_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            if config.model_type in ["dbrx"]:
                self.skipTest(
                    "DBRX (transformers==4.40) requires a modification to support dynamic shapes with compile."
                )
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa")
                model.to(torch_device)

                # For PyTorch 2.1 - 2.3.0 set `dynamic=True`. In the future setting `dynamic=None` and using `torch._dynamo.mark_dynamic()`
                # on input tensors will be required. `mark_dynamic` currently raises inconsistent shape errors.
                model = torch.compile(model, dynamic=True)

                inputs_dict.pop("attention_mask", None)
                inputs_dict.pop("decoder_attention_mask", None)
                for name, inp in inputs_dict.items():
                    if isinstance(inp, torch.Tensor) and inp.dtype in [torch.float32, torch.float16]:
                        inputs_dict[name] = inp.to(torch.float16)

                # use no_grad to save some memory
                with torch.no_grad():
                    _ = model(**inputs_dict)

4100
4101
4102
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_generate(self):
amyeroberts's avatar
amyeroberts committed
4103
4104
4105
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
        max_new_tokens = 30

        if len(self.all_generative_model_classes) == 0:
            self.skipTest(f"{self.__class__.__name__} tests a model that does support generate: skipping this test")

        for model_class in self.all_generative_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))

                model_sdpa = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                ).to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                    attn_implementation="eager",
                ).to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
4150
4151
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
4152
4153
4154
4155
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
4156
4157
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
                        has_sdpa = True
                        break
                if not has_sdpa:
                    raise ValueError("The SDPA model should have SDPA attention layers")

                # Just test that a large cache works as expected
                res_eager = model_eager.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                res_sdpa = model_sdpa.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                self.assertTrue(torch.allclose(res_eager, res_sdpa))

4174
4175
    @require_torch_sdpa
    def test_sdpa_matches_eager_sliding_window(self):
amyeroberts's avatar
amyeroberts committed
4176
4177
4178
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
        WINDOW_ATTENTION_MODELS = ["mistral", "mixtral", "qwen2", "qwen_moe", "starcoder2"]

        if len(self.all_generative_model_classes) == 0:
            self.skipTest(f"No generative model classes for {self.__class__.__name__}")

        for model_class in self.all_generative_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            if config.model_type not in WINDOW_ATTENTION_MODELS:
                self.skipTest(f"{config.model_type} does not use window attention")

            config.sliding_window = 2

            dummy_input = inputs_dict[model_class.main_input_name]
            attention_mask = inputs_dict["attention_mask"]

            self.assertTrue(dummy_input.ndim == 2)
            self.assertTrue(dummy_input.shape[1] > 6)

            with tempfile.TemporaryDirectory() as tmpdir:
                with torch.device(torch_device):
                    model_eager = AutoModelForCausalLM.from_config(
                        config, attn_implementation="eager", torch_dtype=torch.float32
                    )

                model_eager.save_pretrained(tmpdir)

                with torch.device(torch_device):
                    model_sdpa = AutoModelForCausalLM.from_pretrained(
                        tmpdir, attn_implementation="sdpa", torch_dtype=torch.float32
                    )

                model_eager = model_eager.eval()
                model_sdpa = model_sdpa.eval()

                with torch.no_grad():
                    with torch.backends.cuda.sdp_kernel(
                        enable_flash=False,
                        enable_math=True,
                        enable_mem_efficient=False,
                    ):
                        res_eager = model_eager(**inputs_dict, return_dict=False)[0]
                        res_sdpa = model_sdpa(**inputs_dict, return_dict=False)[0]

                # Only non-padding tokens are expected to match.
                self.assertTrue(
4225
                    torch.allclose(res_eager[attention_mask == 1], res_sdpa[attention_mask == 1], rtol=1e-4, atol=1e-4)
4226
4227
                )

4228
4229
4230
4231
4232
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_use_cache(self):
amyeroberts's avatar
amyeroberts committed
4233
4234
4235
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4236
4237
        max_new_tokens = 30

4238
4239
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
4240
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
4241

4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

4252
4253
4254
4255
4256
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

4257
                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
4258
4259

                model = model_class.from_pretrained(
4260
4261
                    tmpdirname,
                    torch_dtype=torch.float16,
4262
                    attn_implementation="flash_attention_2",
4263
                    low_cpu_mem_usage=True,
4264
4265
4266
4267
                ).to(torch_device)

                # Just test that a large cache works as expected
                _ = model.generate(
4268
4269
4270
4271
4272
                    dummy_input,
                    attention_mask=dummy_attention_mask,
                    max_new_tokens=max_new_tokens,
                    do_sample=False,
                    use_cache=True,
4273
4274
                )

4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
                # Generate with one batch only to test generation when attention mask will be None
                # when real inputs are used, because there is no padding. See issue #32237 for more
                dummy_input = dummy_input[:1, ...]
                dummy_attention_mask = torch.ones_like(dummy_attention_mask[:1, ...])
                _ = model.generate(
                    dummy_input,
                    attention_mask=dummy_attention_mask,
                    max_new_tokens=max_new_tokens,
                    do_sample=False,
                    use_cache=True,
                )

4287
4288
4289
4290
4291
4292
    @require_flash_attn
    @require_torch_gpu
    @require_bitsandbytes
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_fp32_ln(self):
amyeroberts's avatar
amyeroberts committed
4293
4294
4295
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4296
4297
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
4298
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
4299
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
4300
4301
4302
4303
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

4304
4305
                dummy_input = inputs_dict[model.main_input_name]
                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
4306
                batch_size = dummy_attention_mask.shape[0]
4307

4308
4309
4310
4311
4312
                is_padding_right = dummy_attention_mask[:, -1].sum().item() != batch_size

                # To avoid errors with padding_side=="right"
                if is_padding_right:
                    dummy_attention_mask = torch.ones_like(dummy_input)
4313
4314
4315
4316

                model = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
4317
                    attn_implementation="flash_attention_2",
4318
4319
4320
4321
4322
4323
4324
4325
4326
                    low_cpu_mem_usage=True,
                    load_in_4bit=True,
                )

                for _, param in model.named_parameters():
                    # upcast only layer norms
                    if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
                        param.data = param.data.to(torch.float32)

4327
                if model.config.is_encoder_decoder:
4328
4329
4330
                    dummy_decoder_input_ids = inputs_dict["decoder_input_ids"]
                    dummy_decoder_attention_mask = inputs_dict["decoder_attention_mask"]

4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
                    _ = model(dummy_input, decoder_input_ids=dummy_decoder_input_ids)
                    # with attention mask
                    _ = model(
                        dummy_input,
                        attention_mask=dummy_attention_mask,
                        decoder_input_ids=dummy_decoder_input_ids,
                        decoder_attention_mask=dummy_decoder_attention_mask,
                    )
                else:
                    _ = model(dummy_input)
                    # with attention mask
                    _ = model(dummy_input, attention_mask=dummy_attention_mask)
4343

4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attention_2_padding_matches_padding_free_with_position_ids(self):
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

        max_new_tokens = 30

        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
4359
4360
            if 0 not in inputs_dict.get("attention_mask", []) or "attention_mask" not in inputs_dict:
                self.skipTest("Model dummy inputs should contain padding in their attention mask")
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                # ensure left padding, to adapt for some models
                if 0 in inputs_dict["attention_mask"][:, -1]:
                    inputs_dict["attention_mask"] = inputs_dict["attention_mask"].flip(1)
                dummy_attention_mask = inputs_dict["attention_mask"]
                inputs_dict["input_ids"][~dummy_attention_mask.bool()] = config.pad_token_id

                model = (
                    model_class.from_pretrained(
                        tmpdirname,
                        torch_dtype=torch.float16,
                        attn_implementation="flash_attention_2",
                        low_cpu_mem_usage=True,
                    )
                    .to(torch_device)
                    .eval()
                )

                # flatten
                padfree_inputs_dict = {
                    k: v[dummy_attention_mask.bool()].unsqueeze(0)
                    for k, v in inputs_dict.items()
                    if not k == "attention_mask"
                }
                # add position_ids
                padfree_inputs_dict["position_ids"] = (
                    torch.cat([torch.arange(length) for length in dummy_attention_mask.sum(1).tolist()])
                    .long()
                    .unsqueeze(0)
                    .to(torch_device)
                )

                res_padded = model(**inputs_dict)
                res_padfree = model(**padfree_inputs_dict)

                logits_padded = res_padded.logits[inputs_dict["attention_mask"].bool()]
                logits_padfree = res_padfree.logits[0]

                torch.testing.assert_close(logits_padded.argmax(-1), logits_padfree.argmax(-1), atol=0, rtol=0)
                # acceptable numerical instability
                tol = torch.finfo(torch.float16).eps
                torch.testing.assert_close(logits_padded, logits_padfree, atol=tol, rtol=tol)

4417
4418
4419
4420
4421
4422
4423
    @is_pt_tf_cross_test
    def test_tf_from_pt_safetensors(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
            if not hasattr(transformers, tf_model_class_name):
amyeroberts's avatar
amyeroberts committed
4424
                self.skipTest(reason="transformers does not have this model in TF version yet")
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447

            tf_model_class = getattr(transformers, tf_model_class_name)

            pt_model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname, safe_serialization=True)
                tf_model_1 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)

                pt_model.save_pretrained(tmpdirname, safe_serialization=False)
                tf_model_2 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)

                # Check models are equal
                for p1, p2 in zip(tf_model_1.weights, tf_model_2.weights):
                    self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))

    @is_pt_flax_cross_test
    def test_flax_from_pt_safetensors(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            flax_model_class_name = "Flax" + model_class.__name__  # Add the "Flax at the beginning
            if not hasattr(transformers, flax_model_class_name):
amyeroberts's avatar
amyeroberts committed
4448
                self.skipTest(reason="transformers does not have this model in Flax version yet")
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463

            flax_model_class = getattr(transformers, flax_model_class_name)

            pt_model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname, safe_serialization=True)
                flax_model_1 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)

                pt_model.save_pretrained(tmpdirname, safe_serialization=False)
                flax_model_2 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)

                # Check models are equal
                self.assertTrue(check_models_equal(flax_model_1, flax_model_2))

4464
4465
4466
4467
4468
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_from_config(self):
amyeroberts's avatar
amyeroberts committed
4469
4470
4471
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4472
4473
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
4474
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
4475
4476
4477
4478

            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
            # TODO: to change it in the future with other relevant auto classes
            fa2_model = AutoModelForCausalLM.from_config(
4479
                config, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
            ).to(torch_device)

            dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
            dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [0, 1, 1, 1]]).to(torch_device)

            fa2_correctly_converted = False

            for _, module in fa2_model.named_modules():
                if "FlashAttention" in module.__class__.__name__:
                    fa2_correctly_converted = True
                    break

            self.assertTrue(fa2_correctly_converted)

            _ = fa2_model(input_ids=dummy_input, attention_mask=dummy_attention_mask)

            with tempfile.TemporaryDirectory() as tmpdirname:
                fa2_model.save_pretrained(tmpdirname)

                model_from_pretrained = AutoModelForCausalLM.from_pretrained(tmpdirname)

4501
                self.assertTrue(model_from_pretrained.config._attn_implementation != "flash_attention_2")
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511

                fa2_correctly_converted = False

                for _, module in model_from_pretrained.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        fa2_correctly_converted = True
                        break

                self.assertFalse(fa2_correctly_converted)

4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
    def _get_custom_4d_mask_test_data(self):
        # Sequence in which all but the last token is the same
        input_ids = torch.tensor(
            [[10, 11, 12, 13], [10, 11, 12, 14], [10, 11, 12, 15]], device=torch_device, dtype=torch.int64
        )
        position_ids = torch.tensor([[0, 1, 2, 3]] * 3, device=torch_device, dtype=torch.int64)

        # Combining common prefix with the unique ending tokens:
        input_ids_shared_prefix = torch.cat([input_ids[0][:-1], input_ids[:, -1]]).unsqueeze(0)

        # Creating a 4D mask where each of the last 3 tokens do not attend to each other.
        mask_shared_prefix = torch.tensor(
            [
                [
                    [
                        [1, 0, 0, 0, 0, 0],
                        [1, 1, 0, 0, 0, 0],
                        [1, 1, 1, 0, 0, 0],
                        [1, 1, 1, 1, 0, 0],
                        [1, 1, 1, 0, 1, 0],
                        [1, 1, 1, 0, 0, 1],
                    ]
                ]
            ],
        )
        # inverting the attention mask
        mask_dtype = torch.float32
        min_dtype = torch.finfo(mask_dtype).min
        mask_shared_prefix = (mask_shared_prefix.eq(0.0)).to(dtype=mask_dtype, device=torch_device) * min_dtype

        # Creating a position_ids tensor. note the repeating figures in the end.
        position_ids_shared_prefix = torch.tensor([[0, 1, 2, 3, 3, 3]], device=torch_device, dtype=torch.int64)

        return input_ids, position_ids, input_ids_shared_prefix, mask_shared_prefix, position_ids_shared_prefix

    def test_custom_4d_attention_mask(self):
amyeroberts's avatar
amyeroberts committed
4548
4549
4550
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4551
        if len(self.all_generative_model_classes) == 0:
amyeroberts's avatar
amyeroberts committed
4552
4553
4554
            self.skipTest(
                reason="Model architecture has no generative classes, and thus not necessarily supporting 4D masks"
            )
4555
4556

        for model_class in self.all_generative_model_classes:
4557
            if not model_class._supports_static_cache:
4558
4559
                self.skipTest(f"{model_class.__name__} is not guaranteed to work with custom 4D attention masks")
            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
4560
4561
            if getattr(config, "sliding_window", 0) > 0:
                self.skipTest(f"{model_class.__name__} with sliding window attention is not supported by this test")
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
            model = model_class(config).to(device=torch_device, dtype=torch.float32)

            (
                input_ids,
                position_ids,
                input_ids_shared_prefix,
                mask_shared_prefix,
                position_ids_shared_prefix,
            ) = self._get_custom_4d_mask_test_data()

            logits = model.forward(input_ids, position_ids=position_ids).logits
            # logits.shape == torch.Size([3, 4, ...])

            logits_shared_prefix = model(
                input_ids_shared_prefix,
                attention_mask=mask_shared_prefix,
                position_ids=position_ids_shared_prefix,
            )[0]
            # logits_shared_prefix.shape == torch.Size([1, 6, ...])

            out_last_tokens = logits[:, -1, :]  # last tokens in each batch line
            out_shared_prefix_last_tokens = logits_shared_prefix[0, -3:, :]  # last three tokens

            # comparing softmax-normalized logits:
            normalized_0 = F.softmax(out_last_tokens)
            normalized_1 = F.softmax(out_shared_prefix_last_tokens)
            torch.testing.assert_close(normalized_0, normalized_1, rtol=1e-3, atol=1e-4)

4590
4591
4592
4593
4594
4595
    # For now, Let's focus only on GPU for `torch.compile`
    @slow
    @require_torch_gpu
    @require_read_token
    def test_torch_compile(self):
        if version.parse(torch.__version__) < version.parse("2.3"):
amyeroberts's avatar
amyeroberts committed
4596
            self.skipTest(reason="This test requires torch >= 2.3 to run.")
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620

        if not hasattr(self, "_torch_compile_test_ckpt"):
            self.skipTest(f"{self.__class__.__name__} doesn't have the attribute `_torch_compile_test_ckpt`.")
        ckpt = self._torch_compile_test_ckpt

        os.environ["TOKENIZERS_PARALLELISM"] = "false"

        batch_size = 1
        n_iter = 3

        tokenizer = AutoTokenizer.from_pretrained(ckpt)
        model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16).to(torch_device)

        model.generation_config.max_new_tokens = 4

        model.generation_config.cache_implementation = "static"
        model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)

        input_text = "Why dogs are cute?"
        input_ids = tokenizer([input_text] * batch_size, return_tensors="pt").to(torch_device)

        for i in range(n_iter):
            _ = model.generate(**input_ids, do_sample=False)

4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
    @slow
    @require_torch_gpu  # Testing cuda graphs.
    @require_read_token
    def test_compile_cuda_graph_time(self):
        if version.parse(torch.__version__) < version.parse("2.3"):
            self.skipTest(reason="This test requires torch >= 2.3 to run.")

        # TODO felix: All models supporting `StaticCache` or `torch.compile` should be tested.
        # At the moment, only llama, gemma and gemma2 are tested here!
        if not hasattr(self, "_torch_compile_test_ckpt"):
            self.skipTest(f"{self.__class__.__name__} doesn't have the attribute `_torch_compile_test_ckpt`.")
        ckpt = self._torch_compile_test_ckpt

        os.environ["TOKENIZERS_PARALLELISM"] = "false"

        tokenizer = AutoTokenizer.from_pretrained(ckpt)
        model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16).to(torch_device)

        cache_implementation = "static"
        if model.config.model_type == "gemma2":
            cache_implementation = "hybrid"

        new_tokens = 50
        gen_config = GenerationConfig(
            max_new_tokens=new_tokens,
            min_new_tokens=new_tokens,
            use_cache=True,
            pad_token_id=tokenizer.pad_token_id,
            num_beams=1,
            do_sample=False,
            eos_token_id=None,  # This is required for min_new_tokens to actually have an effect.
        )
        model.generation_config.eos_token_id = None  # greedy_search falls back on this eos_token_id that we need to set to None as well for min_new_tokens to have an effect.

        model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)

        inp = tokenizer("Why cats are cute?", return_tensors="pt").to(torch_device)

        # First run: the first run warms up each graph, which does things like CuBlas or Triton benchmarking
        start = time.perf_counter()
        _ = model.generate(**inp, generation_config=gen_config, cache_implementation=cache_implementation)
        end = time.perf_counter()
        graph_warmup_time = end - start

        # Second run: CUDA Graph recording, and replays it
        start = time.perf_counter()
        _ = model.generate(**inp, generation_config=gen_config, cache_implementation=cache_implementation)
        end = time.perf_counter()
        record_time = end - start

        # Finally: we hit the optimized, CUDA Graph replay path
        start = time.perf_counter()
        _ = model.generate(**inp, generation_config=gen_config, cache_implementation=cache_implementation)
        end = time.perf_counter()
        opt_time = end - start

        # For the recording step, we expect only two cuda graphs and this step should be much faster than the first.
        self.assertTrue(record_time < 0.15 * graph_warmup_time)
        self.assertTrue(opt_time < record_time)

4681

4682
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
4683
4684


thomwolf's avatar
thomwolf committed
4685
def ids_tensor(shape, vocab_size, rng=None, name=None):
4686
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
4687
    if rng is None:
4688
        rng = global_rng
thomwolf's avatar
thomwolf committed
4689

thomwolf's avatar
thomwolf committed
4690
4691
4692
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
4693

thomwolf's avatar
thomwolf committed
4694
4695
4696
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
4697

4698
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
4699
4700


4701
4702
4703
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
4704
4705
    # we choose the 1st token so this property of `at least one being non-zero` still holds after applying causal mask
    attn_mask[:, 0] = 1
4706
4707
4708
    return attn_mask


4709
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
4710
    """Creates a random float32 tensor"""
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

4722
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()