"tests/vscode:/vscode.git/clone" did not exist on "f95302584b21db464423e0151dd6ce99ca07ccc3"
test_modeling_common.py 218 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
import collections
16
import copy
17
import gc
18
import inspect
Naman Garg's avatar
Naman Garg committed
19
import math
20
import os
21
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
23
import re
24
import tempfile
25
import warnings
26
from collections import defaultdict
NielsRogge's avatar
NielsRogge committed
27
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
28

29
import numpy as np
30
from packaging import version
31
from parameterized import parameterized
32
from pytest import mark
33
34

import transformers
35
36
from transformers import (
    AutoModel,
37
    AutoModelForCausalLM,
38
    AutoModelForSequenceClassification,
39
    AutoTokenizer,
40
    PretrainedConfig,
41
    PreTrainedModel,
42
43
    is_torch_available,
    logging,
44
    set_seed,
45
)
46
from transformers.models.auto import get_values
47
48
49
50
51
52
53
54
55
56
57
58
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
    MODEL_FOR_BACKBONE_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
Naman Garg's avatar
Naman Garg committed
59
    MODEL_FOR_PRETRAINING_MAPPING_NAMES,
60
61
62
63
64
65
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
amyeroberts's avatar
amyeroberts committed
66
    MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES,
67
68
    MODEL_MAPPING_NAMES,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
69
70
from transformers.testing_utils import (
    CaptureLogger,
71
    is_flaky,
72
73
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
74
    require_accelerate,
75
    require_bitsandbytes,
76
    require_flash_attn,
77
    require_read_token,
78
    require_safetensors,
Sylvain Gugger's avatar
Sylvain Gugger committed
79
    require_torch,
80
    require_torch_gpu,
81
    require_torch_multi_accelerator,
Sylvain Gugger's avatar
Sylvain Gugger committed
82
    require_torch_multi_gpu,
83
    require_torch_sdpa,
Sylvain Gugger's avatar
Sylvain Gugger committed
84
85
86
    slow,
    torch_device,
)
87
from transformers.utils import (
88
89
    CONFIG_NAME,
    GENERATION_CONFIG_NAME,
90
    SAFE_WEIGHTS_NAME,
91
    is_accelerate_available,
92
93
    is_flax_available,
    is_tf_available,
fxmarty's avatar
fxmarty committed
94
95
    is_torch_bf16_available_on_device,
    is_torch_fp16_available_on_device,
96
    is_torch_fx_available,
97
    is_torch_sdpa_available,
98
)
99
from transformers.utils.generic import ContextManagers, ModelOutput
100

Aymeric Augustin's avatar
Aymeric Augustin committed
101

102
103
104
105
if is_accelerate_available():
    from accelerate.utils import compute_module_sizes


106
if is_torch_available():
107
    import torch
108
    import torch.nn.functional as F
109
    from safetensors.torch import load_file as safe_load_file
110
    from safetensors.torch import save_file as safe_save_file
111
    from torch import nn
thomwolf's avatar
thomwolf committed
112

113
    from transformers import MODEL_MAPPING, AdaptiveEmbedding
114
    from transformers.modeling_utils import load_state_dict, no_init_weights
Sylvain Gugger's avatar
Sylvain Gugger committed
115
    from transformers.pytorch_utils import id_tensor_storage
thomwolf's avatar
thomwolf committed
116

Sylvain Gugger's avatar
Sylvain Gugger committed
117

118
119
120
if is_tf_available():
    import tensorflow as tf

121
122
if is_flax_available():
    import jax.numpy as jnp
123

124
    from tests.utils.test_modeling_flax_utils import check_models_equal
125
126
127
128
129
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

130
if is_torch_fx_available():
131
    from transformers.utils.fx import _FX_SUPPORTED_MODELS_WITH_KV_CACHE, symbolic_trace
132

133

134
135
136
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
137
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
138
            setattr(configs_no_init, key, 1e-10)
139
140
141
        if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
            no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
            setattr(configs_no_init, key, no_init_subconfig)
142
143
    return configs_no_init

thomwolf's avatar
thomwolf committed
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
def _mock_init_weights(self, module):
    for name, param in module.named_parameters(recurse=False):
        # Use the first letter of the name to get a value and go from a <> -13 to z <> 12
        value = ord(name[0].lower()) - 110
        param.data.fill_(value)


def _mock_all_init_weights(self):
    # Prune heads if needed
    if self.config.pruned_heads:
        self.prune_heads(self.config.pruned_heads)

    import transformers.modeling_utils

    if transformers.modeling_utils._init_weights:
        for module in self.modules():
            module._is_hf_initialized = False
        # Initialize weights
        self.apply(self._initialize_weights)

        # Tie weights should be skipped when not initializing all weights
        # since from_pretrained(...) calls tie weights anyways
        self.tie_weights()


170
171
172
173
@require_torch
class ModelTesterMixin:
    model_tester = None
    all_model_classes = ()
174
    all_generative_model_classes = ()
175
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
176
177
178
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
179
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
180
    test_head_masking = True
181
    test_mismatched_shapes = True
182
    test_missing_keys = True
183
    test_model_parallel = False
184
    is_encoder_decoder = False
185
    has_attentions = True
186
    model_split_percents = [0.5, 0.7, 0.9]
187

188
189
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
190
        if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
191
            inputs_dict = {
192
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
193
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
194
                else v
195
196
                for k, v in inputs_dict.items()
            }
197
        elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES):
198
            inputs_dict.pop("attention_mask")
Naman Garg's avatar
Naman Garg committed
199
200
201
202
203
204
205
206
        elif model_class.__name__ == MODEL_FOR_PRETRAINING_MAPPING_NAMES["hiera"]:
            config = self.model_tester.get_config()
            mask_spatial_shape = [
                i // s // ms for i, s, ms in zip(config.image_size, config.patch_stride, config.masked_unit_size)
            ]
            num_windows = math.prod(mask_spatial_shape)
            torch.manual_seed(0)
            inputs_dict["noise"] = torch.rand(self.model_tester.batch_size, num_windows)
207
208

        if return_labels:
209
            if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
210
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
211
212
213
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
214
            ]:
215
216
217
218
219
220
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
221
222
223
224
225
226
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
227
            ]:
228
229
230
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
231
232
233
234
235
236
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
amyeroberts's avatar
amyeroberts committed
237
                *get_values(MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES),
238
239
240
241
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
242
            elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
243
244
245
246
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
247
            elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
248
249
250
251
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
252

253
254
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
255
    def test_save_load(self):
256
257
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

258
259
260
261
        def check_save_load(out1, out2):
            # make sure we don't have nans
            out_2 = out2.cpu().numpy()
            out_2[np.isnan(out_2)] = 0
262
            out_2 = out_2[~np.isneginf(out_2)]
263
264
265

            out_1 = out1.cpu().numpy()
            out_1[np.isnan(out_1)] = 0
266
            out_1 = out_1[~np.isneginf(out_1)]
267
268
269
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

270
271
272
273
274
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
275
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
276

277
            with tempfile.TemporaryDirectory() as tmpdirname:
278
                model.save_pretrained(tmpdirname)
279
280
281
282
283
284
285

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

286
                model = model_class.from_pretrained(tmpdirname)
287
                model.to(torch_device)
288
                with torch.no_grad():
289
                    second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
thomwolf's avatar
thomwolf committed
290

291
292
293
294
295
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_save_load(tensor1, tensor2)
            else:
                check_save_load(first, second)
296

297
298
299
300
301
302
303
304
305
306
307
308
    def test_from_pretrained_no_checkpoint(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            state_dict = model.state_dict()

            new_model = model_class.from_pretrained(
                pretrained_model_name_or_path=None, config=config, state_dict=state_dict
            )
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

309
310
311
312
    def test_keep_in_fp32_modules(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            if model_class._keep_in_fp32_modules is None:
amyeroberts's avatar
amyeroberts committed
313
                self.skipTest(reason="Model class has no _keep_in_fp32_modules attribute defined")
314
315
316
317
318
319
320
321
322
323
324
325
326

            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16)

                for name, param in model.named_parameters():
                    if any(n in model_class._keep_in_fp32_modules for n in name.split(".")):
                        self.assertTrue(param.dtype == torch.float32)
                    else:
                        self.assertTrue(param.dtype == torch.float16, name)

327
    def test_save_load_keys_to_ignore_on_save(self):
328
329
330
331
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
332
333
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
334
335
336
                continue

            # check the keys are in the original state_dict
337
            for k in _keys_to_ignore_on_save:
338
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
339
340
341
342

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
343
344
345
                output_model_file = os.path.join(tmpdirname, SAFE_WEIGHTS_NAME)
                state_dict_saved = safe_load_file(output_model_file)

346
                for k in _keys_to_ignore_on_save:
347
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
348

Sylvain Gugger's avatar
Sylvain Gugger committed
349
350
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
351
352
353
354
355
356
                keys_to_ignore = set(model._keys_to_ignore_on_save)

                if hasattr(model, "_tied_weights_keys"):
                    keys_to_ignore.update(set(model._tied_weights_keys))

                self.assertTrue(len(load_result.missing_keys) == 0 or set(load_result.missing_keys) == keys_to_ignore)
Sylvain Gugger's avatar
Sylvain Gugger committed
357
358
                self.assertTrue(len(load_result.unexpected_keys) == 0)

359
360
361
362
363
364
365
366
367
368
369
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

385
386
387
388
389
390
391
            # Loop over all modules and check that relevant modules have gradient_checkpointing set to True
            for n, m in model.named_modules():
                if hasattr(m, "gradient_checkpointing"):
                    self.assertTrue(
                        m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to True"
                    )

392
393
394
395
            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

396
397
398
399
400
401
402
            # Loop over all modules and check that relevant modules have gradient_checkpointing set to False
            for n, m in model.named_modules():
                if hasattr(m, "gradient_checkpointing"):
                    self.assertFalse(
                        m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to False"
                    )

403
    @is_flaky(description="low likelihood of failure, reason not yet discovered")
404
405
    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
406
        if config.__class__ not in MODEL_MAPPING:
amyeroberts's avatar
amyeroberts committed
407
408
            self.skipTest(reason="Model class not in MODEL_MAPPING")

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
430
431
            model_class_copy._init_weights = _mock_init_weights
            model_class_copy.init_weights = _mock_all_init_weights
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)
448
                # Before we test anything
449
450

                for key in model_fast_init.state_dict().keys():
451
452
453
454
455
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item()
                    else:
                        max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
456

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
    @slow
    @require_accelerate
    @mark.accelerate_tests
    def test_save_load_low_cpu_mem_usage(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        with tempfile.TemporaryDirectory() as saved_model_path:
            for model_class in self.all_model_classes:
                model_to_save = model_class(config)
                model_to_save.save_pretrained(saved_model_path)

                self._check_save_load_low_cpu_mem_usage(model_class, saved_model_path)

    @slow
    @require_accelerate
    @mark.accelerate_tests
    def test_save_load_low_cpu_mem_usage_checkpoints(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        with tempfile.TemporaryDirectory() as saved_model_path:
            for model_class in self.all_model_classes:
                model_to_save = model_class(config)
                model_to_save.config.save_pretrained(saved_model_path)
                torch.save(model_to_save.state_dict(), os.path.join(saved_model_path, "pytorch_model.bin"))

                self._check_save_load_low_cpu_mem_usage(model_class, saved_model_path)

    @slow
    @require_accelerate
    @mark.accelerate_tests
    def test_save_load_low_cpu_mem_usage_no_safetensors(self):
        with tempfile.TemporaryDirectory() as saved_model_path:
            for model_class in self.all_model_classes:
                config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
                model_to_save = model_class(config)

                model_to_save.save_pretrained(saved_model_path, safe_serialization=False)
                self._check_save_load_low_cpu_mem_usage(model_class, saved_model_path)

    def _check_save_load_low_cpu_mem_usage(self, model_class, saved_model_path):
495
496
        from accelerate.utils.modeling import named_module_tensors

497
498
499
500
501
502
503
504
505
506
507
508
509
510
        # Load the low usage and the normal models.
        model_low_usage, loading_info = model_class.from_pretrained(
            saved_model_path,
            low_cpu_mem_usage=True,
            output_loading_info=True,
        )
        model_non_low_usage = model_class.from_pretrained(saved_model_path)

        # Check that there were no missing keys.
        self.assertEqual(loading_info["missing_keys"], [])

        # The low_cpu_mem_usage=True causes the model params to be initialized with device=meta, and then
        # subsequently loaded with the correct values and onto the correct device. We check if there are any
        # remaining params that were not properly loaded.
511
        for name, tensor in named_module_tensors(model_low_usage, recurse=True):
512
            self.assertNotEqual(
513
                tensor.device,
514
                torch.device("meta"),
515
                "Tensor '" + name + "' has not been properly loaded and has device=meta.",
516
517
518
519
            )

        # Check that the parameters are equal.
        for p1, p2 in zip(model_low_usage.parameters(), model_non_low_usage.parameters()):
Arthur's avatar
Arthur committed
520
            self.assertEqual(p1.data.ne(p2.data).sum(), 0)
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

        # Check that the state dict keys are equal.
        self.assertEqual(set(model_low_usage.state_dict().keys()), set(model_non_low_usage.state_dict().keys()))

        # Check that the shared tensors are equal.
        tensor_ptrs1 = collections.defaultdict(list)
        for name, tensor in model_low_usage.state_dict().items():
            tensor_ptrs1[id_tensor_storage(tensor)].append(name)
        tied_params1 = [names for _, names in tensor_ptrs1.items() if len(names) > 1]

        tensor_ptrs2 = collections.defaultdict(list)
        for name, tensor in model_non_low_usage.state_dict().items():
            tensor_ptrs2[id_tensor_storage(tensor)].append(name)
        tied_params2 = [names for _, names in tensor_ptrs2.items() if len(names) > 1]

        self.assertEqual(tied_params1, tied_params2)

538
539
    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
540
        if config.__class__ not in MODEL_MAPPING:
amyeroberts's avatar
amyeroberts committed
541
542
            self.skipTest(reason="Model class not in MODEL_MAPPING")

543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
564
565
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
584
585
586
587
588
589
590
591
592
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = torch.max(
                            model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]
                        ).item()
                    else:
                        max_diff = torch.max(
                            torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])
                        ).item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
593

594
595
596
    def test_torch_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if config.__class__ not in MODEL_MAPPING:
amyeroberts's avatar
amyeroberts committed
597
598
            self.skipTest(reason="Model class not in MODEL_MAPPING")

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            def check_equal(loaded):
                for key in state_dict.keys():
                    max_diff = torch.max(
                        state_dict()[key] ^ loaded[key]
                        if isinstance(state_dict[key], torch.BoolTensor)
                        else torch.abs(state_dict[key] - loaded[key])
                    ).item()
                    self.assertLessEqual(max_diff, 1e-6, msg=f"{key} not identical")

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pytorch_model.bin")
                torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=True)
                check_equal(load_state_dict(pt_checkpoint_path))
                torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=False)
                check_equal(load_state_dict(pt_checkpoint_path))

Patrick von Platen's avatar
Patrick von Platen committed
643
    def test_initialization(self):
644
645
646
647
648
649
650
651
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
652
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
653
                        [0.0, 1.0],
654
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
655
                    )
thomwolf's avatar
thomwolf committed
656

Patrick von Platen's avatar
Patrick von Platen committed
657
    def test_determinism(self):
658
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
659
660
661
662
663
664

        def check_determinism(first, second):
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
665
666
            out_1 = out_1[~np.isneginf(out_1)]
            out_2 = out_2[~np.isneginf(out_2)]
667
668
669
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

670
671
672
673
674
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
675
676
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
677

678
679
680
681
682
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_determinism(tensor1, tensor2)
            else:
                check_determinism(first, second)
683

684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
    def test_batching_equivalence(self):
        """
        Tests that the model supports batching and that the output is the nearly the same for the same input in
        different batch sizes.
        (Why "nearly the same" not "exactly the same"? Batching uses different matmul shapes, which often leads to
        different results: https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535)
        """

        def get_tensor_equivalence_function(batched_input):
            # models operating on continuous spaces have higher abs difference than LMs
            # instead, we can rely on cos distance for image/speech models, similar to `diffusers`
            if "input_ids" not in batched_input:
                return lambda tensor1, tensor2: (
                    1.0 - F.cosine_similarity(tensor1.float().flatten(), tensor2.float().flatten(), dim=0, eps=1e-38)
                )
            return lambda tensor1, tensor2: torch.max(torch.abs(tensor1 - tensor2))

        def recursive_check(batched_object, single_row_object, model_name, key):
            if isinstance(batched_object, (list, tuple)):
                for batched_object_value, single_row_object_value in zip(batched_object, single_row_object):
                    recursive_check(batched_object_value, single_row_object_value, model_name, key)
            elif isinstance(batched_object, dict):
                for batched_object_value, single_row_object_value in zip(
                    batched_object.values(), single_row_object.values()
                ):
                    recursive_check(batched_object_value, single_row_object_value, model_name, key)
710
711
            # do not compare returned loss (0-dim tensor) / codebook ids (int) / caching objects
            elif batched_object is None or not isinstance(batched_object, torch.Tensor):
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
                return
            elif batched_object.dim() == 0:
                return
            else:
                # indexing the first element does not always work
                # e.g. models that output similarity scores of size (N, M) would need to index [0, 0]
                slice_ids = [slice(0, index) for index in single_row_object.shape]
                batched_row = batched_object[slice_ids]
                self.assertFalse(
                    torch.isnan(batched_row).any(), f"Batched output has `nan` in {model_name} for key={key}"
                )
                self.assertFalse(
                    torch.isinf(batched_row).any(), f"Batched output has `inf` in {model_name} for key={key}"
                )
                self.assertFalse(
                    torch.isnan(single_row_object).any(), f"Single row output has `nan` in {model_name} for key={key}"
                )
                self.assertFalse(
                    torch.isinf(single_row_object).any(), f"Single row output has `inf` in {model_name} for key={key}"
                )
                self.assertTrue(
                    (equivalence(batched_row, single_row_object)) <= 1e-03,
                    msg=(
                        f"Batched and Single row outputs are not equal in {model_name} for key={key}. "
                        f"Difference={equivalence(batched_row, single_row_object)}."
                    ),
                )

        config, batched_input = self.model_tester.prepare_config_and_inputs_for_common()
        equivalence = get_tensor_equivalence_function(batched_input)

        for model_class in self.all_model_classes:
            config.output_hidden_states = True

            model_name = model_class.__name__
            if hasattr(self.model_tester, "prepare_config_and_inputs_for_model_class"):
                config, batched_input = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
            batched_input_prepared = self._prepare_for_class(batched_input, model_class)
            model = model_class(config).to(torch_device).eval()

            batch_size = self.model_tester.batch_size
            single_row_input = {}
            for key, value in batched_input_prepared.items():
                if isinstance(value, torch.Tensor) and value.shape[0] % batch_size == 0:
                    # e.g. musicgen has inputs of size (bs*codebooks). in most cases value.shape[0] == batch_size
                    single_batch_shape = value.shape[0] // batch_size
                    single_row_input[key] = value[:single_batch_shape]
                else:
                    single_row_input[key] = value

            with torch.no_grad():
                model_batched_output = model(**batched_input_prepared)
                model_row_output = model(**single_row_input)

            if isinstance(model_batched_output, torch.Tensor):
                model_batched_output = {"model_output": model_batched_output}
                model_row_output = {"model_output": model_row_output}

            for key in model_batched_output:
                # DETR starts from zero-init queries to decoder, leading to cos_similarity = `nan`
                if hasattr(self, "zero_init_hidden_state") and "decoder_hidden_states" in key:
                    model_batched_output[key] = model_batched_output[key][1:]
                    model_row_output[key] = model_row_output[key][1:]
                recursive_check(model_batched_output[key], model_row_output[key], model_name, key)

777
    def check_training_gradient_checkpointing(self, gradient_checkpointing_kwargs=None):
778
        if not self.model_tester.is_training:
amyeroberts's avatar
amyeroberts committed
779
            self.skipTest(reason="ModelTester is not configured to run training tests")
780
781

        for model_class in self.all_model_classes:
782
783
            if (
                model_class.__name__
784
785
786
787
                in [
                    *get_values(MODEL_MAPPING_NAMES),
                    *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
                ]
788
789
                or not model_class.supports_gradient_checkpointing
            ):
790
                continue
791

792
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
793
794
            config.use_cache = False
            config.return_dict = True
795
            model = model_class(config)
796

797
            model.to(torch_device)
798
            model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)
799
            model.train()
800
801
802
803
804
805
806

            # unfreeze additional layers
            for p in model.parameters():
                p.requires_grad_(True)

            optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

807
808
809
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()
810
            optimizer.step()
811

812
813
814
815
816
            for k, v in model.named_parameters():
                if v.requires_grad:
                    self.assertTrue(v.grad is not None, f"{k} in {model_class.__name__} has no gradient!")

    def test_training(self):
817
        if not self.model_tester.is_training:
amyeroberts's avatar
amyeroberts committed
818
            self.skipTest(reason="ModelTester is not configured to run training tests")
819
820

        for model_class in self.all_model_classes:
821
822
823
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

824
825
826
827
            if model_class.__name__ in [
                *get_values(MODEL_MAPPING_NAMES),
                *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
            ]:
828
                continue
829

830
831
832
833
834
835
836
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

837
838
839
840
841
842
843
844
845
846
847
848
849
    def test_training_gradient_checkpointing(self):
        # Scenario - 1 default behaviour
        self.check_training_gradient_checkpointing()

    def test_training_gradient_checkpointing_use_reentrant(self):
        # Scenario - 2 with `use_reentrant=True` - this is the default value that is used in pytorch's
        # torch.utils.checkpoint.checkpoint
        self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": True})

    def test_training_gradient_checkpointing_use_reentrant_false(self):
        # Scenario - 3 with `use_reentrant=False` pytorch suggests users to use this value for
        # future releases: https://pytorch.org/docs/stable/checkpoint.html
        self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": False})
850

Patrick von Platen's avatar
Patrick von Platen committed
851
    def test_attention_outputs(self):
852
853
854
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

855
856
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
857

858
859
860
861
862
863
864
865
866
867
868
869
        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
870
            config.return_dict = True
871
872
873
874
875
876
877
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
878

879
880
881
882
883
884
885
886
887
888
            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
889

890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
            out_len = len(outputs)

            if self.is_encoder_decoder:
                correct_outlen = 5

                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
909
910
911
                if model_class.__name__ in [
                    *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                    *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
912
                ]:
913
914
915
916
917
918
919
920
921
922
923
924
925
926
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )
927

928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
971

972
    @slow
973
    def test_torchscript_simple(self):
974
975
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
976

977
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
978
    def test_torchscript_output_attentions(self):
979
980
981
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
982

983
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
984
    def test_torchscript_output_hidden_state(self):
985
986
987
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
988

989
990
991
992
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):
        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
993
994
995
        # torch 1.8 has no `_clear_class_state` in `torch.jit._state`
        if hasattr(torch.jit._state, "_clear_class_state"):
            torch.jit._state._clear_class_state()
996

997
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
998
        if not self.test_torchscript:
amyeroberts's avatar
amyeroberts committed
999
            self.skipTest(reason="test_torchscript is set to `False`")
1000

1001
1002
1003
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
1004
            for attn_implementation in ["eager", "sdpa"]:
1005
                if attn_implementation == "sdpa" and (not model_class._supports_sdpa or not is_torch_sdpa_available()):
1006
                    continue
1007

1008
1009
1010
1011
1012
                configs_no_init._attn_implementation = attn_implementation
                model = model_class(config=configs_no_init)
                model.to(torch_device)
                model.eval()
                inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
1013

1014
                main_input_name = model_class.main_input_name
thomwolf's avatar
thomwolf committed
1015

1016
                try:
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
                    if model.config.is_encoder_decoder:
                        model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                        main_input = inputs[main_input_name]
                        attention_mask = inputs["attention_mask"]
                        decoder_input_ids = inputs["decoder_input_ids"]
                        decoder_attention_mask = inputs["decoder_attention_mask"]
                        model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
                        traced_model = torch.jit.trace(
                            model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
                        )
                    elif "bbox" in inputs and "image" in inputs:  # LayoutLMv2 requires additional inputs
                        input_ids = inputs["input_ids"]
                        bbox = inputs["bbox"]
                        image = inputs["image"].tensor
                        model(input_ids, bbox, image)
                        traced_model = torch.jit.trace(
                            model, (input_ids, bbox, image), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
                    elif "bbox" in inputs:  # Bros requires additional inputs (bbox)
                        input_ids = inputs["input_ids"]
                        bbox = inputs["bbox"]
                        model(input_ids, bbox)
                        traced_model = torch.jit.trace(
                            model, (input_ids, bbox), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
Eduardo Pacheco's avatar
Eduardo Pacheco committed
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
                    elif (
                        "pixel_values" in inputs and "prompt_pixel_values" in inputs and "prompt_masks" in inputs
                    ):  # SegGpt requires additional inputs
                        pixel_values = inputs["pixel_values"]
                        prompt_pixel_values = inputs["prompt_pixel_values"]
                        prompt_masks = inputs["prompt_masks"]
                        model(pixel_values, prompt_pixel_values, prompt_masks)
                        traced_model = torch.jit.trace(
                            model, (pixel_values, prompt_pixel_values, prompt_masks), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
1052
1053
1054
1055
1056
1057
1058
1059
1060
                    else:
                        main_input = inputs[main_input_name]

                        if model.config._attn_implementation == "sdpa":
                            trace_input = {main_input_name: main_input}

                            if "attention_mask" in inputs:
                                trace_input["attention_mask"] = inputs["attention_mask"]
                            else:
amyeroberts's avatar
amyeroberts committed
1061
                                self.skipTest(reason="testing SDPA without attention_mask is not supported")
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083

                            model(main_input, attention_mask=inputs["attention_mask"])
                            # example_kwarg_inputs was introduced in torch==2.0, but it is fine here since SDPA has a requirement on torch>=2.1.
                            traced_model = torch.jit.trace(model, example_kwarg_inputs=trace_input)
                        else:
                            model(main_input)
                            traced_model = torch.jit.trace(model, (main_input,))
                except RuntimeError:
                    self.fail("Couldn't trace module.")

                with tempfile.TemporaryDirectory() as tmp_dir_name:
                    pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                    try:
                        torch.jit.save(traced_model, pt_file_name)
                    except Exception:
                        self.fail("Couldn't save module.")

                    try:
                        loaded_model = torch.jit.load(pt_file_name)
                    except Exception:
                        self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
1084

1085
1086
                model.to(torch_device)
                model.eval()
thomwolf's avatar
thomwolf committed
1087

1088
1089
                loaded_model.to(torch_device)
                loaded_model.eval()
thomwolf's avatar
thomwolf committed
1090

1091
1092
                model_state_dict = model.state_dict()
                loaded_model_state_dict = loaded_model.state_dict()
1093

1094
1095
1096
1097
                non_persistent_buffers = {}
                for key in loaded_model_state_dict.keys():
                    if key not in model_state_dict.keys():
                        non_persistent_buffers[key] = loaded_model_state_dict[key]
1098

1099
1100
1101
                loaded_model_state_dict = {
                    key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
                }
1102

1103
                self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
1104

1105
1106
1107
1108
1109
1110
1111
                model_buffers = list(model.buffers())
                for non_persistent_buffer in non_persistent_buffers.values():
                    found_buffer = False
                    for i, model_buffer in enumerate(model_buffers):
                        if torch.equal(non_persistent_buffer, model_buffer):
                            found_buffer = True
                            break
1112

1113
1114
                    self.assertTrue(found_buffer)
                    model_buffers.pop(i)
1115

1116
1117
1118
1119
1120
1121
                models_equal = True
                for layer_name, p1 in model_state_dict.items():
                    if layer_name in loaded_model_state_dict:
                        p2 = loaded_model_state_dict[layer_name]
                        if p1.data.ne(p2.data).sum() > 0:
                            models_equal = False
thomwolf's avatar
thomwolf committed
1122

1123
                self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
1124

1125
1126
1127
                # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
                # (Even with this call, there are still memory leak by ~0.04MB)
                self.clear_torch_jit_class_registry()
1128

1129
1130
1131
1132
1133
1134
1135
1136
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

1137
1138
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
1139
1140
1141
            self.skipTest(
                f"Either torch.fx is not available, or the model type {config.model_type} is not compatible with torch.fx"
            )
1142
1143
1144
1145

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

1146
        for model_class in self.all_model_classes:
1147
1148
1149
1150
1151
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

1152
1153
            # We may want to test several inputs (various shapes, etc.).
            inputs_to_test = [inputs]
1154

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
            if model.config.is_encoder_decoder:
                model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                labels = inputs.get("labels", None)
                input_names = [
                    "attention_mask",
                    "decoder_attention_mask",
                    "decoder_input_ids",
                    "input_features",
                    "input_ids",
                    "input_values",
                ]
                if labels is not None:
                    input_names.append("labels")
            else:
                input_names = [
                    "attention_mask",
                    "bbox",
                    "input_features",
                    "input_ids",
                    "input_values",
1175
                    "inputs_embeds",
1176
1177
1178
1179
                    "pixel_values",
                    "token_type_ids",
                    "visual_feats",
                    "visual_pos",
Naman Garg's avatar
Naman Garg committed
1180
                    "noise",
1181
                ]
1182

1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
                labels = inputs.get("labels", None)
                start_positions = inputs.get("start_positions", None)
                end_positions = inputs.get("end_positions", None)
                if labels is not None:
                    input_names.append("labels")
                if start_positions is not None:
                    input_names.append("start_positions")
                if end_positions is not None:
                    input_names.append("end_positions")

                if model.config.model_type in _FX_SUPPORTED_MODELS_WITH_KV_CACHE:
                    input_names.append("past_key_values")

                    # Generally model_tester.prepare_config_and_inputs_for_common seem not to generate past key values inputs.
                    if "past_key_values" not in inputs:
                        batch_size = inputs[next(iter(inputs))].shape[0]
                        num_heads = model.config.num_attention_heads
                        head_dim = model.config.hidden_size // model.config.num_attention_heads

                        cache_shape = (batch_size, num_heads, 0, head_dim)
                        empty_pkv = tuple(
                            (
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
1207
                            )
1208
1209
                            for i in range(model.config.num_hidden_layers)
                        )
1210

1211
1212
1213
1214
1215
1216
1217
1218
1219
                        cache_length = 9
                        cache_shape = (batch_size, num_heads, cache_length, head_dim)
                        non_empty_pkv = tuple(
                            (
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                            )
                            for i in range(model.config.num_hidden_layers)
                        )
1220

1221
                        inps = copy.deepcopy(inputs_to_test[0])
1222

1223
                        inputs_to_test[0]["past_key_values"] = empty_pkv
1224

1225
1226
                        inps["past_key_values"] = non_empty_pkv
                        inputs_to_test.append(inps)
1227

1228
1229
1230
1231
                        past_mask = torch.ones(batch_size, cache_length, device=torch_device, dtype=torch.float)
                        inputs_to_test[1]["attention_mask"] = torch.cat(
                            (past_mask, inputs_to_test[1]["attention_mask"]), dim=1
                        )
1232

1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
                forward_parameters = inspect.signature(model.forward).parameters
                if "input_ids" in forward_parameters and "inputs_embeds" in forward_parameters:
                    inps = copy.deepcopy(inputs_to_test[0])

                    embedding_size = (
                        model.config.embedding_size
                        if getattr(model.config, "embedding_size", None) is not None
                        and model.config.model_type != "megatron-bert"
                        else model.config.hidden_size
                    )

                    if (
                        model.config.model_type in MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
                        and model.__class__.__name__
                        == MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES[model.config.model_type]
                    ):
                        batch_size, num_choices, sequence_length = inputs["input_ids"].shape
                        shape = (batch_size, num_choices, sequence_length, embedding_size)
                    elif inps["input_ids"].ndim == 2:
                        batch_size, sequence_length = inputs["input_ids"].shape
                        shape = (batch_size, sequence_length, embedding_size)
                    else:
                        self.skipTest("Unknown case")

                    del inps["input_ids"]
                    inps["inputs_embeds"] = torch.rand(shape, dtype=torch.float, device=torch_device)
                    inputs_to_test.append(inps)
1260

1261
1262
            for inps in inputs_to_test:
                filtered_inputs = {k: v for (k, v) in inps.items() if k in input_names}
1263
                input_names_to_trace = list(filtered_inputs.keys())
1264

1265
1266
1267
1268
                if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
                    not hasattr(model.config, "problem_type") or model.config.problem_type is None
                ):
                    model.config.problem_type = "single_label_classification"
1269

1270
1271
1272
                model.config.use_cache = "past_key_values" in input_names_to_trace

                traced_model = symbolic_trace(model, input_names_to_trace)
1273

1274
1275
1276
                with torch.no_grad():
                    traced_output = traced_model(**filtered_inputs)
                    model_output = model(**filtered_inputs)
1277

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
                def flatten_output(output):
                    flatten = []
                    for x in output:
                        if isinstance(x, (tuple, list)):
                            flatten += flatten_output(x)
                        elif not isinstance(x, torch.Tensor):
                            continue
                        else:
                            flatten.append(x)
                    return flatten
1288

1289
1290
1291
                model_output = flatten_output(model_output)
                traced_output = flatten_output(traced_output)
                num_outputs = len(model_output)
1292
1293
1294

                for i in range(num_outputs):
                    self.assertTrue(
1295
1296
                        torch.allclose(model_output[i], traced_output[i]),
                        f"traced {i}th output doesn't match model {i}th output for {model_class}",
1297
1298
                    )

1299
1300
1301
                # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
                # (Even with this call, there are still memory leak by ~0.04MB)
                self.clear_torch_jit_class_registry()
1302

Patrick von Platen's avatar
Patrick von Platen committed
1303
1304
    def test_headmasking(self):
        if not self.test_head_masking:
amyeroberts's avatar
amyeroberts committed
1305
            self.skipTest(reason="Model does not support head masking")
1306

1307
1308
1309
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
1310

1311
        inputs_dict["output_attentions"] = True
1312
1313
1314
1315
1316
1317
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
1318

1319
1320
1321
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
1322
1323
1324
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
1325
1326
1327
1328
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
1329
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
1330
            inputs["head_mask"] = head_mask
1331
1332
1333
1334
1335
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
1336
1337
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
1338
            outputs = model(**inputs, return_dict=True)
1339
1340
1341
1342
1343
1344
1345
1346
1347

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
1369
                check_attentions_validity(outputs.cross_attentions)
1370
1371
            else:
                check_attentions_validity(outputs.attentions)
1372

Patrick von Platen's avatar
Patrick von Platen committed
1373
1374
    def test_head_pruning(self):
        if not self.test_pruning:
amyeroberts's avatar
amyeroberts committed
1375
            self.skipTest(reason="Pruning is not activated")
1376
1377

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1378
1379
1380
1381
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1382

1383
1384
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1385

1386
            inputs_dict["output_attentions"] = True
1387
1388
1389
1390
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1391
1392
1393
1394
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1395
1396
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
1397
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1398

1399
            attentions = outputs[-1]
1400

1401
            self.assertEqual(attentions[0].shape[-3], 1)
1402
1403
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1404
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
1405

Patrick von Platen's avatar
Patrick von Platen committed
1406
1407
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
amyeroberts's avatar
amyeroberts committed
1408
            self.skipTest(reason="Pruning is not activated")
LysandreJik's avatar
LysandreJik committed
1409

1410
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1411
1412
1413
1414
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1415
1416
1417

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1418

1419
            inputs_dict["output_attentions"] = True
1420
1421
1422
1423
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1424
1425
1426
1427
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1428
            model.prune_heads(heads_to_prune)
1429

1430
            with tempfile.TemporaryDirectory() as temp_dir_name:
1431
1432
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1433
                model.to(torch_device)
1434

1435
            with torch.no_grad():
1436
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1437
1438
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
1439
1440
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1441
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1442

Patrick von Platen's avatar
Patrick von Platen committed
1443
1444
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
amyeroberts's avatar
amyeroberts committed
1445
            self.skipTest(reason="Pruning is not activated")
1446

1447
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1448
1449
1450
1451
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1452

1453
1454
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1455

1456
            inputs_dict["output_attentions"] = True
1457
            config.output_hidden_states = False
1458

1459
1460
1461
1462
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1463
            config.pruned_heads = heads_to_prune
1464

1465
1466
1467
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1468

1469
            with torch.no_grad():
1470
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1471
            attentions = outputs[-1]
1472

1473
            self.assertEqual(attentions[0].shape[-3], 1)
1474
1475
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1476
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1477

Patrick von Platen's avatar
Patrick von Platen committed
1478
1479
    def test_head_pruning_integration(self):
        if not self.test_pruning:
amyeroberts's avatar
amyeroberts committed
1480
            self.skipTest(reason="Pruning is not activated")
1481

1482
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1483
1484
1485
1486
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1487

1488
1489
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1490

1491
            inputs_dict["output_attentions"] = True
1492
            config.output_hidden_states = False
1493

1494
            heads_to_prune = {1: [1, 2]}
1495
            config.pruned_heads = heads_to_prune
1496

1497
1498
1499
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1500

1501
            with torch.no_grad():
1502
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1503
            attentions = outputs[-1]
1504

1505
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1506
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1507

1508
            with tempfile.TemporaryDirectory() as temp_dir_name:
1509
1510
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1511
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
1512

1513
            with torch.no_grad():
1514
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1515
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
1516

1517
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1518
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1519

1520
            heads_to_prune = {0: [0], 1: [1, 2]}
1521
            model.prune_heads(heads_to_prune)
1522

1523
            with torch.no_grad():
1524
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1525
            attentions = outputs[-1]
1526

1527
1528
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
1529

1530
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2]})
thomwolf's avatar
thomwolf committed
1531

Patrick von Platen's avatar
Patrick von Platen committed
1532
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1533
        def check_hidden_states_output(inputs_dict, config, model_class):
1534
            model = model_class(config)
1535
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1536
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1537

thomwolf's avatar
thomwolf committed
1538
            with torch.no_grad():
1539
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1540
1541

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1542

Sylvain Gugger's avatar
Sylvain Gugger committed
1543
1544
1545
1546
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1547

Patrick von Platen's avatar
Patrick von Platen committed
1548
1549
1550
1551
1552
1553
1554
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1555
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1556
1557
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1558
            )
thomwolf's avatar
thomwolf committed
1559

1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1585
1586
1587
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1588
        config.output_attentions = self.has_attentions
1589
1590
1591
1592
1593
1594
1595
1596
1597

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1598

1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1609
1610
1611
1612
1613
1614
1615
1616
1617
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1618
1619
1620
1621
1622

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1623
1624
1625
1626
1627

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1628
1629
1630
1631
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1632
1633
1634
1635

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1636
1637
1638
1639

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1640
1641
1642

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1643

Pradhy729's avatar
Pradhy729 committed
1644
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1645
1646
1647
1648
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1667
1668
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
amyeroberts's avatar
amyeroberts committed
1669
            self.skipTest(reason="Model does not have position embeddings")
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1746
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1747
1748
1749
1750
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1751
        if not self.test_resize_embeddings:
amyeroberts's avatar
amyeroberts committed
1752
            self.skipTest(reason="test_resize_embeddings is set to `False`")
1753
1754
1755
1756

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1757
            model.to(torch_device)
1758
1759
            model_embed_pre_resize = model.get_input_embeddings()
            type_model_embed_pre_resize = type(model_embed_pre_resize)
1760

Patrick von Platen's avatar
Patrick von Platen committed
1761
1762
1763
            if self.model_tester.is_training is False:
                model.eval()

1764
            model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
1765
1766
1767
1768
1769
1770
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
1771
1772
1773
1774
1775
1776
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size + 10)
1777
1778
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1779
1780
1781
            # Check to make sure the type of embeddings returned post resizing is same as type of input
            type_model_embed_post_resize = type(model_embed)
            self.assertEqual(type_model_embed_pre_resize, type_model_embed_post_resize)
1782
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1783
            model(**self._prepare_for_class(inputs_dict, model_class))
1784
1785
1786

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
1787
1788
1789
1790
1791
1792
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size - 15)
1793
1794
1795
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1796
1797
1798
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1799
1800
1801
1802

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1803
            model(**self._prepare_for_class(inputs_dict, model_class))
1804

1805
1806
1807
1808
1809
1810
1811
1812
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1813
1814
1815
1816
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

1817
            model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
1818
            model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
1819
1820
1821
1822
1823
1824
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertTrue(new_model_vocab_size + 10, model_vocab_size)
1825
1826

            model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
1827
1828
1829
1830
1831
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
1832
1833
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

1834
1835
            self.assertTrue(model_embed.weight.shape[0], new_model_vocab_size)
            self.assertTrue(new_model_vocab_size, model.vocab_size)
Arthur's avatar
Arthur committed
1836

1837
1838
1839
            model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

1840
1841
1842
1843
1844
            # Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
            target_dimension = 128
            model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0], target_dimension)

1845
1846
1847
1848
1849
1850
            with self.assertRaisesRegex(
                ValueError,
                "Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
            ):
                model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)

1851
1852
1853
1854
1855
1856
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
amyeroberts's avatar
amyeroberts committed
1857
            self.skipTest(reason="test_resize_embeddings is set to `False`")
1858
1859
1860
1861
1862

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
amyeroberts's avatar
amyeroberts committed
1863
            self.skipTest(reason="Model cannot untied embeddings")
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
1874
            model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
1875
            model.resize_token_embeddings(model_vocab_size + 10)
1876
1877
1878
1879
1880
1881
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size + 10)
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
1892
1893
1894
1895
1896
1897
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size - 15)
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

1912
    def test_model_get_set_embeddings(self):
1913
1914
1915
1916
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1917
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
1918
1919
1920
1921
1922

            new_input_embedding_layer = nn.Embedding(10, 10)
            model.set_input_embeddings(new_input_embedding_layer)
            self.assertEqual(model.get_input_embeddings(), new_input_embedding_layer)

1923
            x = model.get_output_embeddings()
1924
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1925

1926
1927
1928
1929
1930
1931
1932
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1933
    def test_correct_missing_keys(self):
1934
        if not self.test_missing_keys:
amyeroberts's avatar
amyeroberts committed
1935
            self.skipTest(reason="test_missing_keys is set to `False`")
1936
1937
1938
1939
1940
1941
1942
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
                extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
                extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
                # Some models define this as None
                if model._keys_to_ignore_on_load_missing:
                    for key in model._keys_to_ignore_on_load_missing:
                        extra_params.pop(key, None)

                if not extra_params:
                    # In that case, we *are* on a head model, but every
                    # single key is not actual parameters and this is
                    # tested in `test_tied_model_weights_key_ignore` test.
                    continue

1956
1957
1958
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1959
                    self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
1960

1961
1962
    def test_tie_model_weights(self):
        if not self.test_torchscript:
amyeroberts's avatar
amyeroberts committed
1963
            self.skipTest(reason="test_torchscript is set to `False`")
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
1988
1989
            vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
            model_tied.resize_token_embeddings(vocab_size + 10)
1990
1991
1992
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

1993
1994
    @require_safetensors
    def test_can_use_safetensors(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
1995
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
        for model_class in self.all_model_classes:
            model_tied = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                try:
                    model_tied.save_pretrained(d, safe_serialization=True)
                except Exception as e:
                    raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}")

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model_tied.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
2012
2013
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029

                # Checking the tensor sharing are correct
                ptrs = defaultdict(list)
                for k, v in model_tied.state_dict().items():
                    ptrs[v.data_ptr()].append(k)

                shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1}

                for _, shared_names in shared_ptrs.items():
                    reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names}
                    self.assertEqual(
                        len(reloaded_ptrs),
                        1,
                        f"The shared pointers are incorrect, found different pointers for keys {shared_names}",
                    )

Sylvain Gugger's avatar
Sylvain Gugger committed
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
    def test_load_save_without_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = False
        for model_class in self.all_model_classes:
            model = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                model.save_pretrained(d)

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])

Sylvain Gugger's avatar
Sylvain Gugger committed
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
    def test_tied_weights_keys(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = True
        for model_class in self.all_model_classes:
            model_tied = model_class(config)

            ptrs = collections.defaultdict(list)
            for name, tensor in model_tied.state_dict().items():
                ptrs[id_tensor_storage(tensor)].append(name)

            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]

            tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else []
            # Detect we get a hit for each key
            for key in tied_weight_keys:
2065
2066
                is_tied_key = any(re.search(key, p) for group in tied_params for p in group)
                self.assertTrue(is_tied_key, f"{key} is not a tied weight key for {model_class}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
2067
2068
2069
2070
2071
2072
2073

            # Removed tied weights found from tied params -> there should only be one left after
            for key in tied_weight_keys:
                for i in range(len(tied_params)):
                    tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None]

            tied_params = [group for group in tied_params if len(group) > 1]
Sylvain Gugger's avatar
Sylvain Gugger committed
2074
2075
2076
2077
2078
            self.assertListEqual(
                tied_params,
                [],
                f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.",
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
2079

Sylvain Gugger's avatar
Sylvain Gugger committed
2080
2081
    def test_model_weights_reload_no_missing_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
2082
        for model_class in self.all_model_classes:
Sylvain Gugger's avatar
Sylvain Gugger committed
2083
2084
2085
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.save_pretrained(tmp_dir)
2086
2087
2088

                # We are nuking ALL weights on file, so every parameter should
                # yell on load. We're going to detect if we yell too much, or too little.
2089
2090
                placeholder_dict = {"tensor": torch.tensor([1, 2])}
                safe_save_file(placeholder_dict, os.path.join(tmp_dir, "model.safetensors"), metadata={"format": "pt"})
Sylvain Gugger's avatar
Sylvain Gugger committed
2091
                model_reloaded, infos = model_class.from_pretrained(tmp_dir, output_loading_info=True)
2092
2093
2094
2095

                prefix = f"{model_reloaded.base_model_prefix}."
                params = dict(model_reloaded.named_parameters())
                params.update(dict(model_reloaded.named_buffers()))
2096
                param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()}
2097
2098
2099
2100

                missing_keys = set(infos["missing_keys"])

                extra_missing = missing_keys - param_names
Sylvain Gugger's avatar
Sylvain Gugger committed
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
                # Remove tied weights from extra missing: they are normally not warned as missing if their tied
                # counterpart is present but here there are no weights at all so we do get the warning.
                ptrs = collections.defaultdict(list)
                for name, tensor in model_reloaded.state_dict().items():
                    ptrs[id_tensor_storage(tensor)].append(name)
                tied_params = [names for _, names in ptrs.items() if len(names) > 1]
                for group in tied_params:
                    group = {k[len(prefix) :] if k.startswith(prefix) else k for k in group}
                    # We remove the group from extra_missing if not all weights from group are in it
                    if len(group - extra_missing) > 0:
                        extra_missing = extra_missing - set(group)
2112
2113
2114
2115

                self.assertEqual(
                    extra_missing,
                    set(),
Sylvain Gugger's avatar
Sylvain Gugger committed
2116
2117
                    f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}. "
                    f"For debugging, tied parameters are {tied_params}",
2118
2119
                )

Sylvain Gugger's avatar
Sylvain Gugger committed
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
                missed_missing = param_names - missing_keys
                # Remove nonpersistent buffers from missed_missing
                buffers = [n for n, _ in model_reloaded.named_buffers()]
                nonpersistent_buffers = {n for n in buffers if n not in model_reloaded.state_dict()}
                nonpersistent_buffers = {
                    k[len(prefix) :] if k.startswith(prefix) else k for k in nonpersistent_buffers
                }
                missed_missing = missed_missing - nonpersistent_buffers

                if model_reloaded._keys_to_ignore_on_load_missing is None:
                    expected_missing = set()
                else:
                    expected_missing = set(model_reloaded._keys_to_ignore_on_load_missing)
                self.assertEqual(
                    missed_missing,
                    expected_missing,
                    f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
                    " parameters. If they are non persistent buffers make sure to instantiate them with"
                    " `persistent=False`",
                )
2140

2141
2142
2143
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
2144
2145
2146
2147
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

2148
2149
2150
2151
2152
2153
2154
2155
2156
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
2157
2158
2159
2160
2161
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
2162
2163
2164
2165
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
2166
2167
2168
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
Sylvain Gugger's avatar
Sylvain Gugger committed
2169
2170
2171
2172
2173
2174
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

2200
2201
2202
2203
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
2204

2205
2206
2207
2208
2209
2210
2211
2212
2213
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
2214

2215
2216
2217
2218
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
2219

2220
2221
2222
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
2223

2224
2225
2226
2227
2228
2229
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = torch.cat(
                    [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
                )
2230

2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = torch.cat(
                #     [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
                #     dim=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

2248
2249
        tf_keys = {k for k, v in tf_outputs.items() if v is not None}
        pt_keys = {k for k, v in pt_outputs.items() if v is not None}
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "FlaubertWithLMHeadModel",
            "FunnelForPreTraining",
            "ElectraForPreTraining",
            "XLMWithLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("GPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2276
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
2277

2278
2279
2280
2281
2282
2283
2284
2285
        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """
2286

2287
2288
2289
        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
2290

2291
2292
2293
2294
2295
2296
        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
2297

2298
2299
2300
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
2301

2302
2303
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
2304

2305
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
2306

2307
            # convert to the case of `tuple`
2308
            # appending each key to the current (string) `name`
2309
2310
2311
2312
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
2313

2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
2324
                    f"{name}: The tuple `attributes` should have the same length as `tf_outputs`",
2325
                )
2326
            else:
2327
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
2328
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
2329

2330
2331
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
2332

2333
2334
2335
2336
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
2337

2338
2339
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
2340

2341
2342
2343
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
2344

2345
2346
2347
2348
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])
2349

2350
2351
            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
2352

2353
2354
2355
2356
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
2357

2358
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
2359
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).")
2360
2361
        else:
            raise ValueError(
2362
                "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got"
Sylvain Gugger's avatar
Sylvain Gugger committed
2363
                f" {type(tf_outputs)} instead."
2364
2365
            )

2366
2367
2368
2369
    def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):
        tf_inputs_dict = {}
        for key, tensor in pt_inputs_dict.items():
            # skip key that does not exist in tf
2370
            if isinstance(tensor, bool):
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
                tf_inputs_dict[key] = tensor
            elif key == "input_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "pixel_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "input_features":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            # other general float inputs
            elif tensor.is_floating_point():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            else:
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
2383

2384
        return tf_inputs_dict
2385

2386
2387
    def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
        tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
2388

2389
2390
2391
2392
        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }
2393

2394
2395
        # send pytorch model to the correct device
        pt_model.to(torch_device)
2396

2397
2398
        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()
2399

2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))

    @is_pt_tf_cross_test
Matt's avatar
Matt committed
2414
    def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
2415
        import transformers
2416
2417

        for model_class in self.all_model_classes:
2418
2419
2420
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
2421
            if not hasattr(transformers, tf_model_class_name):
amyeroberts's avatar
amyeroberts committed
2422
                self.skipTest(reason="transformers does not have TF version of this model yet")
2423

2424
2425
2426
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
2427

2428
2429
2430
2431
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
2432
2433

            tf_model_class = getattr(transformers, tf_model_class_name)
2434
2435

            pt_model = model_class(config)
2436
2437
2438
2439
2440
2441
2442
2443
2444
            tf_model = tf_model_class(config)

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_with_labels = self._prepare_for_class(
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
            )
2445
2446
2447
2448
2449
2450
2451
2452
2453

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

2454
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
2455
2456
2457
2458
            pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}

            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
2459
            if not set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
2460
                pt_inputs_dict_with_labels = None
2461
2462

            # Check we can load pt model in tf and vice-versa with model => model functions
2463
2464
            # Here requires `tf_inputs_dict` to build `tf_model`
            tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
Matt's avatar
Matt committed
2465
2466
2467
2468
2469
2470
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
            )
            pt_model = transformers.load_tf2_model_in_pytorch_model(
                pt_model, tf_model, allow_missing_keys=allow_missing_keys
            )
2471

2472
2473
2474
2475
2476
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2477
2478
2479
2480
2481

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
Matt's avatar
Matt committed
2482
2483
2484
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
                    tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2485
2486
2487

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
Matt's avatar
Matt committed
2488
2489
2490
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
                    pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2491

2492
2493
2494
2495
2496
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2497
2498
2499
2500
2501

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

2502
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2503
2504
2505
2506
2507
2508
2509
2510
2511
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(fx_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
            )

            fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")

            # convert to the case of `tuple`
            # appending each key to the current (string) `name`
            attributes = tuple([f"{name}.{k}" for k in fx_keys])
            self.check_pt_flax_outputs(
                fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )

        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(fx_outputs) in [tuple, list]:
            self.assertEqual(
                type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
            )
            self.assertEqual(
                len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
            )

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(fx_outputs),
                    f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
                )
2552
            else:
2553
2554
2555
2556
2557
2558
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])

            for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
                self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)

2559
        elif isinstance(fx_outputs, jnp.ndarray):
2560
2561
2562
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
            )
2563
2564
2565
2566
2567

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

2568
2569
2570
2571
2572
2573
2574
2575
2576
            self.assertEqual(
                fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
            )

            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(fx_outputs):
                fx_outputs = np.array([fx_outputs])
                pt_outputs = np.array([pt_outputs])

2577
2578
2579
2580
2581
2582
2583
2584
            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

2585
2586
2587
2588
            max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
            self.assertLessEqual(
                max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
            )
2589
2590
        else:
            raise ValueError(
2591
2592
                "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
                f" {type(fx_outputs)} instead."
2593
2594
            )

2595
2596
2597
2598
2599
2600
2601
2602
2603
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
amyeroberts's avatar
amyeroberts committed
2604
                    self.skipTest(reason="No Flax model exists for this class")
2605

2606
2607
2608
2609
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2610
2611
                fx_model_class = getattr(transformers, fx_model_class_name)

2612
2613
2614
2615
2616
2617
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2618
2619
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2620

2621
2622
2623
2624
2625
2626
2627
2628
2629
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2630
2631
2632
2633
2634
2635
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
2636
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2637

2638
2639
2640
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

2641
2642
2643
                # send pytorch model to the correct device
                pt_model.to(torch_device)

2644
                with torch.no_grad():
2645
2646
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
2647

2648
2649
2650
2651
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2652
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2653
2654
2655
2656
2657

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

2658
2659
2660
2661
2662
2663
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2664
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
amyeroberts's avatar
amyeroberts committed
2675
                    self.skipTest(reason="No Flax model exists for this class")
2676

2677
2678
2679
2680
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2681
2682
                fx_model_class = getattr(transformers, fx_model_class_name)

2683
2684
2685
2686
2687
2688
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2689
2690
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2691

2692
2693
2694
2695
2696
2697
2698
2699
2700
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2701
2702
2703
2704
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
2705

2706
                # convert inputs to Flax
2707
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2708

2709
2710
2711
2712
2713
2714
2715
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
2716

2717
2718
2719
2720
2721
2722
2723
2724
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2725
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2726
2727
2728

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
2729
2730
2731
                    pt_model_loaded = model_class.from_pretrained(
                        tmpdirname, from_flax=True, attn_implementation=fx_model.config._attn_implementation
                    )
2732

2733
2734
2735
2736
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

2737
                with torch.no_grad():
2738
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
2739

2740
2741
2742
2743
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2744
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
2745

Patrick von Platen's avatar
Patrick von Platen committed
2746
    def test_inputs_embeds(self):
2747
2748
2749
2750
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
2751
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
2752
            model.eval()
2753

2754
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
2755

2756
2757
2758
2759
2760
2761
2762
2763
2764
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

2765
2766
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
2767
                inputs["inputs_embeds"] = wte(input_ids)
2768
            else:
2769
2770
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
2771

thomwolf's avatar
thomwolf committed
2772
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
2773
                model(**inputs)[0]
2774

2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
    def test_inputs_embeds_matches_input_ids(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class.__name__ not in get_values(MODEL_MAPPING_NAMES):
                continue
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            model_forward_args = inspect.signature(model.forward).parameters
            if "inputs_embeds" not in model_forward_args:
amyeroberts's avatar
amyeroberts committed
2787
                self.skipTest(reason="This model doesn't use `inputs_embeds`")
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            pad_token_id = config.pad_token_id if config.pad_token_id is not None else 1

            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                # some models infer position ids/attn mask differently when input ids
                # by check if pad_token let's make sure no padding is in input ids
                not_pad_token_id = pad_token_id + 1 if max(0, pad_token_id - 1) == 0 else pad_token_id - 1
                input_ids[input_ids == pad_token_id] = not_pad_token_id
                del inputs["input_ids"]
                inputs_embeds = wte(input_ids)
                with torch.no_grad():
                    out_ids = model(input_ids=input_ids, **inputs)[0]
                    out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                encoder_input_ids[encoder_input_ids == pad_token_id] = max(0, pad_token_id + 1)
                decoder_input_ids[decoder_input_ids == pad_token_id] = max(0, pad_token_id + 1)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)
                inputs_embeds = wte(encoder_input_ids)
                decoder_inputs_embeds = wte(decoder_input_ids)
                with torch.no_grad():
                    out_ids = model(input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids, **inputs)[0]
                    out_embeds = model(
                        inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, **inputs
                    )[0]
            self.assertTrue(torch.allclose(out_embeds, out_ids))

2820
2821
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
2822
2823
2824
2825
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
2826
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
2841
            model = nn.DataParallel(model)
2842
            with torch.no_grad():
2843
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
2844

2845
2846
2847
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
amyeroberts's avatar
amyeroberts committed
2848
            self.skipTest(reason="test_model_parallel is set to False")
2849

2850
        # a candidate for testing_utils
2851
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2852
            """returns a list of cuda memory allocations per GPU in MBs"""
2853
2854
2855
2856
2857

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2858
2859
2860
2861
2862
2863
2864
2865
2866

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2867
2868
2869
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2870

2871
2872
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2873
2874
2875
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2876
2877
2878
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2879
            del model
2880
            gc.collect()
2881
2882
            torch.cuda.empty_cache()

2883
2884
2885
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2886
2887

            # Spread model layers over multiple devices
2888
            model = model_class(config)
2889
2890
2891
2892
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
2893
            for n in range(len(model.device_map.keys())):
2894
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2895

2896
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2897
2898
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2899
2900
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2901
2902
2903
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2904
            gc.collect()
2905
2906
2907
2908
2909
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
amyeroberts's avatar
amyeroberts committed
2910
            self.skipTest(reason="test_model_parallel is set to False")
2911
2912
2913
2914
2915
2916

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2917
            def cast_to_device(dictionary, device):
2918
2919
2920
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2921
                        output[k] = v.to(device)
2922
2923
2924
2925
2926
                    else:
                        output[k] = v

                return output

2927
2928
2929
2930
2931
2932
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2933
2934
2935
2936
2937
2938
2939
2940

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
2952
2953
            elif param_device in ["mps"]:
                self.assertEqual(param.device, torch.device("mps"))
2954
            else:
2955
2956
                # when loaded with device_map, `param_device` are integer values for cuda/xpu/npu/mlu
                self.assertEqual(param.device, torch.device(f"{torch_device}:{param_device}"))
2957

Sylvain Gugger's avatar
Sylvain Gugger committed
2958
    @require_accelerate
2959
    @mark.accelerate_tests
Sylvain Gugger's avatar
Sylvain Gugger committed
2960
    @require_torch_gpu
2961
    def test_disk_offload_bin(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
2962
2963
2964
2965
2966
2967
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2968
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2969
2970
            model = model_class(config).eval()
            model = model.to(torch_device)
2971
            torch.manual_seed(0)
2972
            base_output = model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2973
2974
2975

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
2976
                model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
Sylvain Gugger's avatar
Sylvain Gugger committed
2977
2978

                with self.assertRaises(ValueError):
Yih-Dar's avatar
Yih-Dar committed
2979
2980
                    max_size = int(self.model_split_percents[0] * model_size)
                    max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
2981
2982
2983
                    # This errors out cause it's missing an offload folder
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

Yih-Dar's avatar
Yih-Dar committed
2984
2985
                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
2986
2987
2988
2989
2990
                new_model = model_class.from_pretrained(
                    tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
                )

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2991
                torch.manual_seed(0)
2992
                new_output = new_model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2993

2994
2995
2996
2997
                if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                    self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                else:
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
Sylvain Gugger's avatar
Sylvain Gugger committed
2998

2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
    @require_accelerate
    @mark.accelerate_tests
    @require_torch_gpu
    def test_disk_offload_safetensors(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config).eval()
            model = model.to(torch_device)
            torch.manual_seed(0)
            base_output = model(**inputs_dict_class)

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}

                # This doesn't error out as it's in safetensors and doesn't need an offload folder
                new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
                torch.manual_seed(0)
                new_output = new_model(**inputs_dict_class)

3029
3030
3031
3032
                if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                    self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                else:
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
3033

3034
    @require_accelerate
3035
    @mark.accelerate_tests
3036
3037
3038
3039
3040
3041
3042
3043
    @require_torch_gpu
    def test_cpu_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

3044
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
3045
3046
            model = model_class(config).eval()
            model = model.to(torch_device)
3047
3048

            torch.manual_seed(0)
3049
            base_output = model(**inputs_dict_class)
3050
3051
3052

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
Yih-Dar's avatar
Yih-Dar committed
3053
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
3064
3065

                    torch.manual_seed(0)
3066
                    new_output = new_model(**inputs_dict_class)
3067

3068
3069
3070
3071
                    if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                        self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                    else:
                        self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
3072
3073

    @require_accelerate
3074
    @mark.accelerate_tests
3075
    @require_torch_multi_accelerator
3076
3077
3078
3079
3080
3081
3082
    def test_model_parallelism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

3083
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
3084
3085
            model = model_class(config).eval()
            model = model.to(torch_device)
3086
3087

            torch.manual_seed(0)
3088
            base_output = model(**inputs_dict_class)
3089
3090
3091

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
3092
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
3093
3094
3095
3096
3097
3098
3099
3100
3101
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})
                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
3102
3103

                    torch.manual_seed(0)
3104
                    new_output = new_model(**inputs_dict_class)
3105

3106
3107
3108
3109
                    if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                        self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                    else:
                        self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
3110

3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
3121
3122
3123
            if model_class.__name__ not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
3124
            ]:
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

3143
3144
3145
3146
3147
3148
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
3149
3150
3151
3152
3153
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
3154

3155
3156
                    loss.backward()

3157
    def test_load_with_mismatched_shapes(self):
3158
        if not self.test_mismatched_shapes:
amyeroberts's avatar
amyeroberts committed
3159
            self.skipTest(reason="test_missmatched_shapes is set to False")
3160
3161
3162
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
3163
            if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
3164
3165
3166
3167
3168
3169
3170
3171
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
3172
                    with self.assertRaises(RuntimeError):
3173
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
3174
3175
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
3176
3177

                    logger = logging.get_logger("transformers.modeling_utils")
3178

3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

3201
3202
    def test_mismatched_shapes_have_properly_initialized_weights(self):
        if not self.test_mismatched_shapes:
amyeroberts's avatar
amyeroberts committed
3203
            self.skipTest(reason="test_missmatched_shapes is set to False")
3204
3205
3206
3207
3208
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)

        for model_class in self.all_model_classes:
Yih-Dar's avatar
Yih-Dar committed
3209
3210
3211
3212
3213
3214
3215
3216
3217
            mappings = [
                MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
                MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
                MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
                MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
            ]
            is_classication_model = any(model_class.__name__ in get_values(mapping) for mapping in mappings)

            if not is_classication_model:
3218
3219
                continue

Yih-Dar's avatar
Yih-Dar committed
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
            # TODO: ydshieh
            is_special_classes = model_class.__name__ in [
                "wav2vec2.masked_spec_embed",
                "Wav2Vec2ForSequenceClassification",
                "CLIPForImageClassification",
                "RegNetForImageClassification",
                "ResNetForImageClassification",
                "UniSpeechSatForSequenceClassification",
                "Wav2Vec2BertForSequenceClassification",
                "PvtV2ForImageClassification",
                "Wav2Vec2ConformerForSequenceClassification",
                "WavLMForSequenceClassification",
                "SwiftFormerForImageClassification",
                "SEWForSequenceClassification",
                "BitForImageClassification",
                "SEWDForSequenceClassification",
                "SiglipForImageClassification",
                "HubertForSequenceClassification",
                "Swinv2ForImageClassification",
                "Data2VecAudioForSequenceClassification",
                "UniSpeechForSequenceClassification",
                "PvtForImageClassification",
            ]
            special_param_names = [
                r"^bit\.",
                r"^classifier\.weight",
                r"^classifier\.bias",
                r"^classifier\..+\.weight",
                r"^classifier\..+\.bias",
                r"^data2vec_audio\.",
                r"^dist_head\.",
                r"^head\.",
                r"^hubert\.",
                r"^pvt\.",
                r"^pvt_v2\.",
                r"^regnet\.",
                r"^resnet\.",
                r"^sew\.",
                r"^sew_d\.",
                r"^swiftformer\.",
                r"^swinv2\.",
                r"^transformers\.models\.swiftformer\.",
                r"^unispeech\.",
                r"^unispeech_sat\.",
                r"^vision_model\.",
                r"^wav2vec2\.",
                r"^wav2vec2_bert\.",
                r"^wav2vec2_conformer\.",
                r"^wavlm\.",
            ]

3271
3272
3273
3274
3275
3276
3277
            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(configs_no_init)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(RuntimeError):
Yih-Dar's avatar
Yih-Dar committed
3278
                        new_model = model_class.from_pretrained(tmp_dir, num_labels=42)
3279
3280
3281
3282

                    logger = logging.get_logger("transformers.modeling_utils")

                    with CaptureLogger(logger) as cl:
Yih-Dar's avatar
Yih-Dar committed
3283
                        new_model = model_class.from_pretrained(tmp_dir, num_labels=42, ignore_mismatched_sizes=True)
3284
3285
3286
3287
                    self.assertIn("the shapes did not match", cl.out)

                    for name, param in new_model.named_parameters():
                        if param.requires_grad:
Yih-Dar's avatar
Yih-Dar committed
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
                            param_mean = ((param.data.mean() * 1e9).round() / 1e9).item()
                            if not (
                                is_special_classes
                                and any(len(re.findall(target, name)) > 0 for target in special_param_names)
                            ):
                                self.assertIn(
                                    param_mean,
                                    [0.0, 1.0],
                                    msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                                )
                            else:
                                # Here we allow the parameters' mean to be in the range [-5.0, 5.0] instead of being
                                # either `0.0` or `1.0`, because their initializations are not using
                                # `config.initializer_factor` (or something similar). The purpose of this test is simply
                                # to make sure they are properly initialized (to avoid very large value or even `nan`).
                                self.assertGreaterEqual(
                                    param_mean,
                                    -5.0,
                                    msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                                )
                                self.assertLessEqual(
                                    param_mean,
                                    5.0,
                                    msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                                )
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381

    def test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist(self):
        # 1. Create a dummy class. Should have buffers as well? To make sure we test __init__
        class MyClass(PreTrainedModel):
            config_class = PretrainedConfig

            def __init__(self, config=None):
                super().__init__(config if config is not None else PretrainedConfig())
                self.linear = nn.Linear(10, config.num_labels, bias=True)
                self.embedding = nn.Embedding(10, 10)
                self.std = 1

            def _init_weights(self, module):
                if isinstance(module, nn.Linear):
                    module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5))
                    if module.bias is not None:
                        module.bias.data = module.bias.data.normal_(mean=0.0, std=self.std)

        # Used to make sure the weights with matched shape are loaded correctly
        config = PretrainedConfig()
        config.num_labels = 3
        model = MyClass(config=config)

        # Used to make sure the weights with mismatched shape are properly initialized
        set_seed(0)
        config = PretrainedConfig()
        config.num_labels = 4
        # not to init. the weights during the creation: to match the logic in `from_pretrained`, so we can keep the
        # same sequence of random ops in the execution path to allow us to compare `target_model` and `new_model` below
        # for `linear` part.
        with ContextManagers([no_init_weights(True)]):
            target_model = MyClass(config=config)
        target_model.apply(target_model._initialize_weights)

        with tempfile.TemporaryDirectory() as tmpdirname:
            state_dict = model.state_dict()
            del state_dict["linear.weight"]

            model.config.save_pretrained(tmpdirname)
            torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

            set_seed(0)
            new_model = MyClass.from_pretrained(tmpdirname, num_labels=4, ignore_mismatched_sizes=True)

            for key in new_model.state_dict().keys():
                # check weight values for weights with matched shapes are identical
                # (i.e. correctly loaded from the checkpoint)
                if key not in ["linear.weight", "linear.bias"]:
                    max_diff = torch.max(torch.abs(model.state_dict()[key] - new_model.state_dict()[key]))
                    self.assertLessEqual(
                        max_diff.item(),
                        1e-6,
                        msg=f"the weight values for `{key}` in `new_model` and `model` are  not identical",
                    )
                else:
                    # check we have some mismatched shapes
                    self.assertNotEqual(
                        model.state_dict()[key].shape,
                        new_model.state_dict()[key].shape,
                        msg=f"the weight shapes for {key} in `model` and `new_model` should differ",
                    )
                    # check the weights with mismatched shape are properly initialized
                    max_diff = torch.max(torch.abs(new_model.state_dict()[key] - target_model.state_dict()[key]))
                    self.assertLessEqual(
                        max_diff.item(),
                        1e-6,
                        msg=f"the weight values for `{key}` in `new_model` and `target_model` are not identical",
                    )

3382
3383
3384
3385
3386
3387
3388
3389
3390
    def test_model_is_small(self):
        # Just a consistency check to make sure we are not running tests on 80M parameter models.
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            num_params = model.num_parameters()
            assert (
                num_params < 1000000
3391
            ), f"{model_class} is too big for the common tests ({num_params})! It should have 1M max."
3392

3393
3394
3395
3396
3397
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_conversion(self):
amyeroberts's avatar
amyeroberts committed
3398
3399
3400
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3401
3402
3403
3404
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3405
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3406
3407
3408
3409
3410
3411

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(
3412
                    tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2"
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
                ).to(torch_device)

                for _, module in model.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        return

                self.assertTrue(False, "FlashAttention2 modules not found in model")

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
3425
    @is_flaky()
Yoach Lacombe's avatar
Yoach Lacombe committed
3426
    def test_flash_attn_2_inference_equivalence(self):
amyeroberts's avatar
amyeroberts committed
3427
3428
3429
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3430
3431
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3432
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3433

3434
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3435
3436
3437
3438
3439
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
3440
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
3441
3442
3443
                )
                model_fa.to(torch_device)

Yoach Lacombe's avatar
Yoach Lacombe committed
3444
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
3445
3446
                model.to(torch_device)

3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                dummy_attention_mask = inputs_dict.get("attention_mask", None)

                if dummy_attention_mask is not None:
                    dummy_attention_mask = dummy_attention_mask[:1]
                    dummy_attention_mask[:, 1:] = 1
                    dummy_attention_mask[:, :1] = 0
3457

3458
3459
3460
3461
3462
3463
3464
3465
                if model.config.is_encoder_decoder:
                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]

                    outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                else:
                    outputs = model(dummy_input, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, output_hidden_states=True)
3466

3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3477

3478
                assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)
3479

3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
                if model.config.is_encoder_decoder:
                    other_inputs = {
                        "decoder_input_ids": decoder_input_ids,
                        "decoder_attention_mask": dummy_attention_mask,
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)
                else:
                    other_inputs = {
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3511

3512
                assert torch.allclose(logits_fa[1:], logits[1:], atol=4e-2, rtol=4e-2)
3513

3514
3515
                # check with inference + dropout
                model.train()
3516
                _ = model_fa(dummy_input, **other_inputs)
3517

3518
3519
3520
3521
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
3522
    @is_flaky()
Yoach Lacombe's avatar
Yoach Lacombe committed
3523
    def test_flash_attn_2_inference_equivalence_right_padding(self):
amyeroberts's avatar
amyeroberts committed
3524
3525
3526
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3527
3528
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3529
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3530

3531
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3532
3533
3534
3535
3536
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
3537
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
3538
3539
3540
                )
                model_fa.to(torch_device)

Yoach Lacombe's avatar
Yoach Lacombe committed
3541
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
3542
3543
                model.to(torch_device)

3544
3545
3546
3547
3548
                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                dummy_attention_mask = inputs_dict.get("attention_mask", None)
3549

3550
3551
3552
3553
                if dummy_attention_mask is not None:
                    dummy_attention_mask = dummy_attention_mask[:1]
                    dummy_attention_mask[:, :-1] = 1
                    dummy_attention_mask[:, -1:] = 0
3554

3555
3556
                if model.config.is_encoder_decoder:
                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]
3557

3558
3559
3560
3561
3562
                    outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                else:
                    outputs = model(dummy_input, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, output_hidden_states=True)
3563

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3574

3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
                assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)

                if model.config.is_encoder_decoder:
                    other_inputs = {
                        "decoder_input_ids": decoder_input_ids,
                        "decoder_attention_mask": dummy_attention_mask,
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)
                else:
                    other_inputs = {
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )

                assert torch.allclose(logits_fa[:-1], logits[:-1], atol=4e-2, rtol=4e-2)
3610
3611
3612
3613
3614

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
3615
    @is_flaky()
3616
    def test_flash_attn_2_generate_left_padding(self):
amyeroberts's avatar
amyeroberts committed
3617
3618
3619
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3620
3621
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3622
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3623

3624
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3625
3626
3627
3628
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
3629
3630
3631
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
3632

3633
3634
3635
3636
3637
3638
3639
3640
                dummy_input = inputs_dict[model.main_input_name]
                if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                    dummy_input = dummy_input.to(torch.float16)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
                # make sure we do left padding
                dummy_attention_mask[:, :-1] = 0
                dummy_attention_mask[:, -1:] = 1
3641
3642
3643
3644
3645
3646

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
3647
3648
3649
3650
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
3651
3652
3653
3654
3655
3656
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

3657
                self.assertTrue(torch.allclose(out, out_fa))
3658
3659
3660
3661

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
3662
    @is_flaky()
3663
3664
    @slow
    def test_flash_attn_2_generate_padding_right(self):
amyeroberts's avatar
amyeroberts committed
3665
3666
3667
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3668
3669
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3670
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3671

3672
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3673
3674
3675
3676
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
3677
3678
3679
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
3680

3681
3682
3683
3684
3685
                dummy_input = inputs_dict[model.main_input_name]
                if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                    dummy_input = dummy_input.to(torch.float16)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
3686
                # make sure we do right padding
3687
3688
                dummy_attention_mask[:, :-1] = 1
                dummy_attention_mask[:, -1:] = 0
3689
3690
3691
3692
3693
3694

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
3695
3696
3697
3698
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
3699
3700
3701
3702
3703
3704
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

3705
                self.assertTrue(torch.allclose(out, out_fa))
3706

3707
3708
3709
3710
    @parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_inference(self, torch_dtype: str):
amyeroberts's avatar
amyeroberts committed
3711
3712
3713
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3714
3715
3716
        if not self.all_model_classes[0]._supports_sdpa:
            self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")

fxmarty's avatar
fxmarty committed
3717
3718
3719
3720
3721
3722
3723
        if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device):
            self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")

        if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device):
            self.skipTest(
                f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
            )
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739

        # Not sure whether it's fine to put torch.XXX in a decorator if torch is not available so hacking it here instead.
        if torch_dtype == "float16":
            torch_dtype = torch.float16
        elif torch_dtype == "bfloat16":
            torch_dtype = torch.bfloat16
        elif torch_dtype == "float32":
            torch_dtype = torch.float32

        atols = {
            ("cpu", False, torch.float32): 1e-6,
            ("cpu", False, torch.bfloat16): 1e-2,
            ("cpu", True, torch.float32): 1e-6,
            ("cpu", True, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float32): 1e-6,
            ("cuda", False, torch.bfloat16): 1e-2,
fxmarty's avatar
fxmarty committed
3740
            ("cuda", False, torch.float16): 5e-3,
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
            ("cuda", True, torch.float32): 1e-6,
            ("cuda", True, torch.bfloat16): 1e-2,
            ("cuda", True, torch.float16): 5e-3,
        }
        rtols = {
            ("cpu", False, torch.float32): 1e-4,
            ("cpu", False, torch.bfloat16): 1e-2,
            ("cpu", True, torch.float32): 1e-4,
            ("cpu", True, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float32): 1e-4,
            ("cuda", False, torch.bfloat16): 1e-2,
fxmarty's avatar
fxmarty committed
3752
            ("cuda", False, torch.float16): 5e-3,
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
            ("cuda", True, torch.float32): 1e-4,
            ("cuda", True, torch.bfloat16): 3e-2,
            ("cuda", True, torch.float16): 5e-3,
        }

        def get_mean_reldiff(failcase, x, ref, atol, rtol):
            return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)
3764
3765
3766
3767
3768
            # FIXME: we deactivate boolean mask for models using "use_mask_token" in their constructors.
            # These models support masking only in the case `use_mask_token=True`. Otherwise they cannot consume an input mask.
            # This means that the class needs to be instantiated much later, after `use_mask` is set, which means a significant refactor of the code.
            # However masking there is not done at any layers that matters (i.e self-attention), therefore we can safely deactivate it.
            deactivate_mask = "use_mask_token" in inspect.signature(model_class).parameters
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788

            is_encoder_decoder = model.config.is_encoder_decoder

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
                model_sdpa = model_sdpa.eval().to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch_dtype,
                    attn_implementation="eager",
                )
                model_eager = model_eager.eval().to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
3789
3790
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
3791
3792
3793
3794
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
3795
3796
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
3797
3798
3799
3800
3801
                        has_sdpa = True
                        break
                if not has_sdpa and model_sdpa.config.model_type != "falcon":
                    raise ValueError("The SDPA model should have SDPA attention layers")

3802
                # We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving 16 times the model,
3803
3804
3805
3806
                # but it would be nicer to have an efficient way to use parameterized.expand
                fail_cases = []
                for padding_side in ["left", "right"]:
                    for use_mask in [False, True]:
3807
3808
3809
3810
3811
3812
                        for output_attentions in [True, False]:
                            can_output_attn = "output_attentions" in inspect.signature(model_sdpa.forward).parameters
                            if not (self.has_attentions and can_output_attn) and output_attentions:
                                continue
                            for batch_size in [1, 5]:
                                dummy_input = inputs_dict[model.main_input_name]
3813
3814

                                if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
                                    dummy_input = dummy_input.to(torch_dtype)

                                dummy_input = dummy_input[:batch_size]
                                if dummy_input.shape[0] != batch_size:
                                    if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
                                        extension = torch.rand(
                                            batch_size - dummy_input.shape[0],
                                            *dummy_input.shape[1:],
                                            dtype=torch_dtype,
                                            device=torch_device,
                                        )
                                        dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
3827
                                    else:
3828
3829
3830
3831
3832
3833
3834
                                        extension = torch.randint(
                                            high=5,
                                            size=(batch_size - dummy_input.shape[0], *dummy_input.shape[1:]),
                                            dtype=dummy_input.dtype,
                                            device=torch_device,
                                        )
                                        dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
3835

3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
                                if not use_mask:
                                    dummy_attention_mask = None
                                else:
                                    dummy_attention_mask = inputs_dict.get("attention_mask", None)
                                    if dummy_attention_mask is None:
                                        if is_encoder_decoder:
                                            seqlen = inputs_dict.get("decoder_input_ids", dummy_input).shape[-1]
                                        else:
                                            seqlen = dummy_input.shape[-1]
                                        dummy_attention_mask = (
                                            torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device)
                                        )

                                    dummy_attention_mask = dummy_attention_mask[:batch_size]
                                    if dummy_attention_mask.shape[0] != batch_size:
3851
                                        extension = torch.ones(
3852
3853
3854
                                            batch_size - dummy_attention_mask.shape[0],
                                            *dummy_attention_mask.shape[1:],
                                            dtype=dummy_attention_mask.dtype,
3855
3856
                                            device=torch_device,
                                        )
3857
3858
                                        dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0)
                                        dummy_attention_mask = dummy_attention_mask.to(torch_device)
3859

3860
                                    dummy_attention_mask[:] = 1
3861
                                    if padding_side == "left":
3862
3863
3864
3865
3866
                                        dummy_attention_mask[-1, :-1] = 1
                                        dummy_attention_mask[-1, -4:] = 0
                                    elif padding_side == "right":
                                        dummy_attention_mask[-1, 1:] = 1
                                        dummy_attention_mask[-1, :3] = 0
3867

3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
                                for enable_kernels in [False, True]:
                                    failcase = f"padding_side={padding_side}, use_mask={use_mask}, batch_size={batch_size}, enable_kernels={enable_kernels}"
                                    if is_encoder_decoder:
                                        decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[
                                            :batch_size
                                        ]
                                        if decoder_input_ids.shape[0] != batch_size:
                                            extension = torch.ones(
                                                batch_size - decoder_input_ids.shape[0],
                                                *decoder_input_ids.shape[1:],
                                                dtype=decoder_input_ids.dtype,
                                                device=torch_device,
3880
                                            )
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
                                            decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0)
                                            decoder_input_ids = decoder_input_ids.to(torch_device)

                                        # TODO: never an `attention_mask` arg here?
                                        processed_inputs = {
                                            model.main_input_name: dummy_input,
                                            "decoder_input_ids": decoder_input_ids,
                                            "decoder_attention_mask": dummy_attention_mask,
                                            "output_hidden_states": True,
                                        }
                                    else:
                                        processed_inputs = {
                                            model.main_input_name: dummy_input,
                                            "output_hidden_states": True,
                                        }

                                        # Otherwise fails for e.g. WhisperEncoderModel
                                        if "attention_mask" in inspect.signature(model_eager.forward).parameters:
                                            processed_inputs["attention_mask"] = dummy_attention_mask

                                        if (
                                            self.has_attentions
                                            and "output_attentions" in inspect.signature(model_sdpa.forward).parameters
                                        ):
                                            processed_inputs["output_attentions"] = output_attentions
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
                                    if not deactivate_mask and (
                                        "bool_masked_pos" in inspect.signature(model_eager.forward).parameters
                                    ):
                                        dummy_mask = torch.ones((self.model_tester.num_masks,))

                                        # In case of additional token (like class) we define a custom `mask_length`
                                        if hasattr(self.model_tester, "mask_length"):
                                            mask_length = self.model_tester.mask_length - dummy_mask.size(0)
                                        else:
                                            mask_length = self.model_tester.seq_length - dummy_mask.size(0)
                                        dummy_mask = torch.cat([dummy_mask, torch.zeros(mask_length)])
                                        dummy_bool_masked_pos = dummy_mask.expand(batch_size, -1).bool()
                                        processed_inputs["bool_masked_pos"] = dummy_bool_masked_pos.to(torch_device)

                                    if "noise" in inspect.signature(model_eager.forward).parameters:
                                        np.random.seed(2)
                                        num_patches = int(
                                            (self.model_tester.image_size // self.model_tester.patch_size) ** 2
                                        )
                                        noise = np.random.uniform(size=(batch_size, num_patches))
                                        processed_inputs["noise"] = torch.from_numpy(noise)
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948

                                    # TODO: test gradients as well (& for FA2 as well!)
                                    with torch.no_grad():
                                        with torch.backends.cuda.sdp_kernel(
                                            enable_flash=enable_kernels,
                                            enable_math=True,
                                            enable_mem_efficient=enable_kernels,
                                        ):
                                            prepared_inputs = self._prepare_for_class(processed_inputs, model_class)
                                            outputs_eager = model_eager(**prepared_inputs)
                                            outputs_sdpa = model_sdpa(**prepared_inputs)

                                    logits_eager = (
                                        outputs_eager.hidden_states[-1]
                                        if not is_encoder_decoder
                                        else outputs_eager.decoder_hidden_states[-1]
                                    )
                                    logits_sdpa = (
                                        outputs_sdpa.hidden_states[-1]
                                        if not is_encoder_decoder
                                        else outputs_sdpa.decoder_hidden_states[-1]
                                    )
3949

3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
                                    if torch_device in ["cpu", "cuda"]:
                                        atol = atols[torch_device, enable_kernels, torch_dtype]
                                        rtol = rtols[torch_device, enable_kernels, torch_dtype]
                                    else:
                                        atol = 1e-7
                                        rtol = 1e-4

                                    # Masked tokens output slightly deviates - we don't mind that.
                                    if use_mask:
                                        if padding_side == "left":
                                            sub_sdpa = logits_sdpa[:-1]
                                            sub_eager = logits_eager[:-1]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            sub_sdpa = logits_sdpa[-1, :-4]
                                            sub_eager = logits_eager[-1, :-4]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            # Testing the padding tokens is not really meaningful but anyway
                                            # sub_sdpa = logits_sdpa[-1, -4:]
                                            # sub_eager = logits_eager[-1, -4:]
                                            # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            #     fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))
                                        elif padding_side == "right":
                                            sub_sdpa = logits_sdpa[:-1]
                                            sub_eager = logits_eager[:-1]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            sub_sdpa = logits_sdpa[-1, 3:]
                                            sub_eager = logits_eager[-1, 3:]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            # Testing the padding tokens is not really meaningful but anyway
                                            # sub_sdpa = logits_sdpa[-1, :3]
                                            # sub_eager = logits_eager[-1, :3]
                                            # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            #     fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))
3999

4000
4001
                                    else:
                                        if not torch.allclose(logits_sdpa, logits_eager, atol=atol, rtol=rtol):
4002
                                            fail_cases.append(
4003
                                                get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol)
4004
4005
4006
4007
                                            )

                self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))

4008
4009
4010
4011
    @require_torch_sdpa
    @require_torch_gpu
    @slow
    def test_sdpa_can_dispatch_on_flash(self):
amyeroberts's avatar
amyeroberts committed
4012
4013
4014
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4015
4016
4017
4018
        compute_capability = torch.cuda.get_device_capability()
        major, _ = compute_capability

        if not torch.version.cuda or major < 8:
amyeroberts's avatar
amyeroberts committed
4019
            self.skipTest(reason="This test requires an NVIDIA GPU with compute capability >= 8.0")
4020
4021
4022
4023
4024
4025

        for model_class in self.all_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
4026
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
Raushan Turganbay's avatar
Raushan Turganbay committed
4027
            if config.model_type in ["llava", "llava_next", "vipllava", "video_llava"]:
amyeroberts's avatar
amyeroberts committed
4028
4029
4030
                self.skipTest(
                    reason="Llava-like models currently (transformers==4.39.1) requires an attention_mask input"
                )
Pablo Montalvo's avatar
Pablo Montalvo committed
4031
4032
4033
4034
            if config.model_type in ["paligemma"]:
                self.skipTest(
                    "PaliGemma-like models currently (transformers==4.41.0) requires an attention_mask input"
                )
4035
            if config.model_type in ["idefics"]:
amyeroberts's avatar
amyeroberts committed
4036
                self.skipTest(reason="Idefics currently (transformers==4.39.1) requires an image_attention_mask input")
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa")
                model.to(torch_device)

                inputs_dict.pop("attention_mask", None)
                inputs_dict.pop("decoder_attention_mask", None)

                for name, inp in inputs_dict.items():
                    if isinstance(inp, torch.Tensor) and inp.dtype in [torch.float32, torch.float16]:
                        inputs_dict[name] = inp.to(torch.float16)

                with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
                    _ = model(**inputs_dict)

4054
4055
4056
4057
    @require_torch_sdpa
    @require_torch_gpu
    @slow
    def test_sdpa_can_compile_dynamic(self):
amyeroberts's avatar
amyeroberts committed
4058
4059
4060
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4061
4062
4063
4064
        compute_capability = torch.cuda.get_device_capability()
        major, _ = compute_capability

        if not torch.version.cuda or major < 8:
amyeroberts's avatar
amyeroberts committed
4065
            self.skipTest(reason="This test requires an NVIDIA GPU with compute capability >= 8.0")
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097

        for model_class in self.all_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            if config.model_type in ["dbrx"]:
                self.skipTest(
                    "DBRX (transformers==4.40) requires a modification to support dynamic shapes with compile."
                )
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa")
                model.to(torch_device)

                # For PyTorch 2.1 - 2.3.0 set `dynamic=True`. In the future setting `dynamic=None` and using `torch._dynamo.mark_dynamic()`
                # on input tensors will be required. `mark_dynamic` currently raises inconsistent shape errors.
                model = torch.compile(model, dynamic=True)

                inputs_dict.pop("attention_mask", None)
                inputs_dict.pop("decoder_attention_mask", None)
                for name, inp in inputs_dict.items():
                    if isinstance(inp, torch.Tensor) and inp.dtype in [torch.float32, torch.float16]:
                        inputs_dict[name] = inp.to(torch.float16)

                # use no_grad to save some memory
                with torch.no_grad():
                    _ = model(**inputs_dict)

4098
4099
4100
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_generate(self):
amyeroberts's avatar
amyeroberts committed
4101
4102
4103
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
        max_new_tokens = 30

        if len(self.all_generative_model_classes) == 0:
            self.skipTest(f"{self.__class__.__name__} tests a model that does support generate: skipping this test")

        for model_class in self.all_generative_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))

                model_sdpa = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                ).to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                    attn_implementation="eager",
                ).to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
4148
4149
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
4150
4151
4152
4153
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
4154
4155
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
                        has_sdpa = True
                        break
                if not has_sdpa:
                    raise ValueError("The SDPA model should have SDPA attention layers")

                # Just test that a large cache works as expected
                res_eager = model_eager.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                res_sdpa = model_sdpa.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                self.assertTrue(torch.allclose(res_eager, res_sdpa))

4172
4173
    @require_torch_sdpa
    def test_sdpa_matches_eager_sliding_window(self):
amyeroberts's avatar
amyeroberts committed
4174
4175
4176
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
        WINDOW_ATTENTION_MODELS = ["mistral", "mixtral", "qwen2", "qwen_moe", "starcoder2"]

        if len(self.all_generative_model_classes) == 0:
            self.skipTest(f"No generative model classes for {self.__class__.__name__}")

        for model_class in self.all_generative_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            if config.model_type not in WINDOW_ATTENTION_MODELS:
                self.skipTest(f"{config.model_type} does not use window attention")

            config.sliding_window = 2

            dummy_input = inputs_dict[model_class.main_input_name]
            attention_mask = inputs_dict["attention_mask"]

            self.assertTrue(dummy_input.ndim == 2)
            self.assertTrue(dummy_input.shape[1] > 6)

            with tempfile.TemporaryDirectory() as tmpdir:
                with torch.device(torch_device):
                    model_eager = AutoModelForCausalLM.from_config(
                        config, attn_implementation="eager", torch_dtype=torch.float32
                    )

                model_eager.save_pretrained(tmpdir)

                with torch.device(torch_device):
                    model_sdpa = AutoModelForCausalLM.from_pretrained(
                        tmpdir, attn_implementation="sdpa", torch_dtype=torch.float32
                    )

                model_eager = model_eager.eval()
                model_sdpa = model_sdpa.eval()

                with torch.no_grad():
                    with torch.backends.cuda.sdp_kernel(
                        enable_flash=False,
                        enable_math=True,
                        enable_mem_efficient=False,
                    ):
                        res_eager = model_eager(**inputs_dict, return_dict=False)[0]
                        res_sdpa = model_sdpa(**inputs_dict, return_dict=False)[0]

                # Only non-padding tokens are expected to match.
                self.assertTrue(
4223
                    torch.allclose(res_eager[attention_mask == 1], res_sdpa[attention_mask == 1], rtol=1e-4, atol=1e-4)
4224
4225
                )

4226
4227
4228
4229
4230
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_use_cache(self):
amyeroberts's avatar
amyeroberts committed
4231
4232
4233
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4234
4235
        max_new_tokens = 30

4236
4237
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
4238
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
4239

4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

4250
4251
4252
4253
4254
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

4255
                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
4256
4257

                model = model_class.from_pretrained(
4258
4259
                    tmpdirname,
                    torch_dtype=torch.float16,
4260
                    attn_implementation="flash_attention_2",
4261
                    low_cpu_mem_usage=True,
4262
4263
4264
4265
                ).to(torch_device)

                # Just test that a large cache works as expected
                _ = model.generate(
4266
4267
4268
4269
4270
                    dummy_input,
                    attention_mask=dummy_attention_mask,
                    max_new_tokens=max_new_tokens,
                    do_sample=False,
                    use_cache=True,
4271
4272
                )

4273
4274
4275
4276
4277
4278
    @require_flash_attn
    @require_torch_gpu
    @require_bitsandbytes
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_fp32_ln(self):
amyeroberts's avatar
amyeroberts committed
4279
4280
4281
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4282
4283
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
4284
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
4285
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
4286
4287
4288
4289
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

4290
4291
                dummy_input = inputs_dict[model.main_input_name]
                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
4292
                batch_size = dummy_attention_mask.shape[0]
4293

4294
4295
4296
4297
4298
                is_padding_right = dummy_attention_mask[:, -1].sum().item() != batch_size

                # To avoid errors with padding_side=="right"
                if is_padding_right:
                    dummy_attention_mask = torch.ones_like(dummy_input)
4299
4300
4301
4302

                model = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
4303
                    attn_implementation="flash_attention_2",
4304
4305
4306
4307
4308
4309
4310
4311
4312
                    low_cpu_mem_usage=True,
                    load_in_4bit=True,
                )

                for _, param in model.named_parameters():
                    # upcast only layer norms
                    if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
                        param.data = param.data.to(torch.float32)

4313
                if model.config.is_encoder_decoder:
4314
4315
4316
                    dummy_decoder_input_ids = inputs_dict["decoder_input_ids"]
                    dummy_decoder_attention_mask = inputs_dict["decoder_attention_mask"]

4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
                    _ = model(dummy_input, decoder_input_ids=dummy_decoder_input_ids)
                    # with attention mask
                    _ = model(
                        dummy_input,
                        attention_mask=dummy_attention_mask,
                        decoder_input_ids=dummy_decoder_input_ids,
                        decoder_attention_mask=dummy_decoder_attention_mask,
                    )
                else:
                    _ = model(dummy_input)
                    # with attention mask
                    _ = model(dummy_input, attention_mask=dummy_attention_mask)
4329

4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attention_2_padding_matches_padding_free_with_position_ids(self):
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

        max_new_tokens = 30

        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                assert 0 in inputs_dict["attention_mask"], "assert padding in testing inputs"
                # ensure left padding, to adapt for some models
                if 0 in inputs_dict["attention_mask"][:, -1]:
                    inputs_dict["attention_mask"] = inputs_dict["attention_mask"].flip(1)
                dummy_attention_mask = inputs_dict["attention_mask"]
                inputs_dict["input_ids"][~dummy_attention_mask.bool()] = config.pad_token_id

                model = (
                    model_class.from_pretrained(
                        tmpdirname,
                        torch_dtype=torch.float16,
                        attn_implementation="flash_attention_2",
                        low_cpu_mem_usage=True,
                    )
                    .to(torch_device)
                    .eval()
                )

                # flatten
                padfree_inputs_dict = {
                    k: v[dummy_attention_mask.bool()].unsqueeze(0)
                    for k, v in inputs_dict.items()
                    if not k == "attention_mask"
                }
                # add position_ids
                padfree_inputs_dict["position_ids"] = (
                    torch.cat([torch.arange(length) for length in dummy_attention_mask.sum(1).tolist()])
                    .long()
                    .unsqueeze(0)
                    .to(torch_device)
                )

                res_padded = model(**inputs_dict)
                res_padfree = model(**padfree_inputs_dict)

                logits_padded = res_padded.logits[inputs_dict["attention_mask"].bool()]
                logits_padfree = res_padfree.logits[0]

                torch.testing.assert_close(logits_padded.argmax(-1), logits_padfree.argmax(-1), atol=0, rtol=0)
                # acceptable numerical instability
                tol = torch.finfo(torch.float16).eps
                torch.testing.assert_close(logits_padded, logits_padfree, atol=tol, rtol=tol)

4402
4403
4404
4405
4406
4407
4408
    @is_pt_tf_cross_test
    def test_tf_from_pt_safetensors(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
            if not hasattr(transformers, tf_model_class_name):
amyeroberts's avatar
amyeroberts committed
4409
                self.skipTest(reason="transformers does not have this model in TF version yet")
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432

            tf_model_class = getattr(transformers, tf_model_class_name)

            pt_model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname, safe_serialization=True)
                tf_model_1 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)

                pt_model.save_pretrained(tmpdirname, safe_serialization=False)
                tf_model_2 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)

                # Check models are equal
                for p1, p2 in zip(tf_model_1.weights, tf_model_2.weights):
                    self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))

    @is_pt_flax_cross_test
    def test_flax_from_pt_safetensors(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            flax_model_class_name = "Flax" + model_class.__name__  # Add the "Flax at the beginning
            if not hasattr(transformers, flax_model_class_name):
amyeroberts's avatar
amyeroberts committed
4433
                self.skipTest(reason="transformers does not have this model in Flax version yet")
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448

            flax_model_class = getattr(transformers, flax_model_class_name)

            pt_model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname, safe_serialization=True)
                flax_model_1 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)

                pt_model.save_pretrained(tmpdirname, safe_serialization=False)
                flax_model_2 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)

                # Check models are equal
                self.assertTrue(check_models_equal(flax_model_1, flax_model_2))

4449
4450
4451
4452
4453
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_from_config(self):
amyeroberts's avatar
amyeroberts committed
4454
4455
4456
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4457
4458
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
4459
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
4460
4461
4462
4463

            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
            # TODO: to change it in the future with other relevant auto classes
            fa2_model = AutoModelForCausalLM.from_config(
4464
                config, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
            ).to(torch_device)

            dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
            dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [0, 1, 1, 1]]).to(torch_device)

            fa2_correctly_converted = False

            for _, module in fa2_model.named_modules():
                if "FlashAttention" in module.__class__.__name__:
                    fa2_correctly_converted = True
                    break

            self.assertTrue(fa2_correctly_converted)

            _ = fa2_model(input_ids=dummy_input, attention_mask=dummy_attention_mask)

            with tempfile.TemporaryDirectory() as tmpdirname:
                fa2_model.save_pretrained(tmpdirname)

                model_from_pretrained = AutoModelForCausalLM.from_pretrained(tmpdirname)

4486
                self.assertTrue(model_from_pretrained.config._attn_implementation != "flash_attention_2")
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496

                fa2_correctly_converted = False

                for _, module in model_from_pretrained.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        fa2_correctly_converted = True
                        break

                self.assertFalse(fa2_correctly_converted)

4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
    def _get_custom_4d_mask_test_data(self):
        # Sequence in which all but the last token is the same
        input_ids = torch.tensor(
            [[10, 11, 12, 13], [10, 11, 12, 14], [10, 11, 12, 15]], device=torch_device, dtype=torch.int64
        )
        position_ids = torch.tensor([[0, 1, 2, 3]] * 3, device=torch_device, dtype=torch.int64)

        # Combining common prefix with the unique ending tokens:
        input_ids_shared_prefix = torch.cat([input_ids[0][:-1], input_ids[:, -1]]).unsqueeze(0)

        # Creating a 4D mask where each of the last 3 tokens do not attend to each other.
        mask_shared_prefix = torch.tensor(
            [
                [
                    [
                        [1, 0, 0, 0, 0, 0],
                        [1, 1, 0, 0, 0, 0],
                        [1, 1, 1, 0, 0, 0],
                        [1, 1, 1, 1, 0, 0],
                        [1, 1, 1, 0, 1, 0],
                        [1, 1, 1, 0, 0, 1],
                    ]
                ]
            ],
        )
        # inverting the attention mask
        mask_dtype = torch.float32
        min_dtype = torch.finfo(mask_dtype).min
        mask_shared_prefix = (mask_shared_prefix.eq(0.0)).to(dtype=mask_dtype, device=torch_device) * min_dtype

        # Creating a position_ids tensor. note the repeating figures in the end.
        position_ids_shared_prefix = torch.tensor([[0, 1, 2, 3, 3, 3]], device=torch_device, dtype=torch.int64)

        return input_ids, position_ids, input_ids_shared_prefix, mask_shared_prefix, position_ids_shared_prefix

    def test_custom_4d_attention_mask(self):
amyeroberts's avatar
amyeroberts committed
4533
4534
4535
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4536
        if len(self.all_generative_model_classes) == 0:
amyeroberts's avatar
amyeroberts committed
4537
4538
4539
            self.skipTest(
                reason="Model architecture has no generative classes, and thus not necessarily supporting 4D masks"
            )
4540
4541

        for model_class in self.all_generative_model_classes:
4542
            if not model_class._supports_static_cache:
4543
4544
                self.skipTest(f"{model_class.__name__} is not guaranteed to work with custom 4D attention masks")
            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
4545
4546
            if getattr(config, "sliding_window", 0) > 0:
                self.skipTest(f"{model_class.__name__} with sliding window attention is not supported by this test")
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
            model = model_class(config).to(device=torch_device, dtype=torch.float32)

            (
                input_ids,
                position_ids,
                input_ids_shared_prefix,
                mask_shared_prefix,
                position_ids_shared_prefix,
            ) = self._get_custom_4d_mask_test_data()

            logits = model.forward(input_ids, position_ids=position_ids).logits
            # logits.shape == torch.Size([3, 4, ...])

            logits_shared_prefix = model(
                input_ids_shared_prefix,
                attention_mask=mask_shared_prefix,
                position_ids=position_ids_shared_prefix,
            )[0]
            # logits_shared_prefix.shape == torch.Size([1, 6, ...])

            out_last_tokens = logits[:, -1, :]  # last tokens in each batch line
            out_shared_prefix_last_tokens = logits_shared_prefix[0, -3:, :]  # last three tokens

            # comparing softmax-normalized logits:
            normalized_0 = F.softmax(out_last_tokens)
            normalized_1 = F.softmax(out_shared_prefix_last_tokens)
            torch.testing.assert_close(normalized_0, normalized_1, rtol=1e-3, atol=1e-4)

4575
4576
4577
4578
4579
4580
    # For now, Let's focus only on GPU for `torch.compile`
    @slow
    @require_torch_gpu
    @require_read_token
    def test_torch_compile(self):
        if version.parse(torch.__version__) < version.parse("2.3"):
amyeroberts's avatar
amyeroberts committed
4581
            self.skipTest(reason="This test requires torch >= 2.3 to run.")
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606

        if not hasattr(self, "_torch_compile_test_ckpt"):
            self.skipTest(f"{self.__class__.__name__} doesn't have the attribute `_torch_compile_test_ckpt`.")
        ckpt = self._torch_compile_test_ckpt

        os.environ["TOKENIZERS_PARALLELISM"] = "false"

        batch_size = 1
        n_iter = 3

        tokenizer = AutoTokenizer.from_pretrained(ckpt)
        model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16).to(torch_device)

        model.generation_config.max_new_tokens = 4
        model.generation_config.max_new_tokens = 4

        model.generation_config.cache_implementation = "static"
        model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)

        input_text = "Why dogs are cute?"
        input_ids = tokenizer([input_text] * batch_size, return_tensors="pt").to(torch_device)

        for i in range(n_iter):
            _ = model.generate(**input_ids, do_sample=False)

4607

4608
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
4609
4610


thomwolf's avatar
thomwolf committed
4611
def ids_tensor(shape, vocab_size, rng=None, name=None):
4612
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
4613
    if rng is None:
4614
        rng = global_rng
thomwolf's avatar
thomwolf committed
4615

thomwolf's avatar
thomwolf committed
4616
4617
4618
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
4619

thomwolf's avatar
thomwolf committed
4620
4621
4622
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
4623

4624
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
4625
4626


4627
4628
4629
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
4630
4631
    # we choose the 1st token so this property of `at least one being non-zero` still holds after applying causal mask
    attn_mask[:, 0] = 1
4632
4633
4634
    return attn_mask


4635
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
4636
    """Creates a random float32 tensor"""
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

4648
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()