test_modeling_common.py 194 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
import collections
16
import copy
17
import gc
18
import inspect
19
import os
20
import os.path
21
import pickle
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
23
import re
24
import tempfile
25
import warnings
26
from collections import defaultdict
NielsRogge's avatar
NielsRogge committed
27
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
28

29
import numpy as np
30
from parameterized import parameterized
31
from pytest import mark
32
33

import transformers
34
35
from transformers import (
    AutoModel,
36
    AutoModelForCausalLM,
37
38
    AutoModelForSequenceClassification,
    PretrainedConfig,
39
    PreTrainedModel,
40
41
    is_torch_available,
    logging,
42
    set_seed,
43
)
44
from transformers.models.auto import get_values
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
    MODEL_FOR_BACKBONE_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
amyeroberts's avatar
amyeroberts committed
63
    MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES,
64
65
    MODEL_MAPPING_NAMES,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
66
67
from transformers.testing_utils import (
    CaptureLogger,
68
    is_flaky,
69
70
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
71
    require_accelerate,
72
    require_bitsandbytes,
73
    require_flash_attn,
74
    require_safetensors,
Sylvain Gugger's avatar
Sylvain Gugger committed
75
    require_torch,
76
    require_torch_gpu,
Sylvain Gugger's avatar
Sylvain Gugger committed
77
    require_torch_multi_gpu,
78
    require_torch_sdpa,
Sylvain Gugger's avatar
Sylvain Gugger committed
79
80
81
    slow,
    torch_device,
)
82
from transformers.utils import (
83
84
    CONFIG_NAME,
    GENERATION_CONFIG_NAME,
85
    SAFE_WEIGHTS_NAME,
86
    is_accelerate_available,
87
88
    is_flax_available,
    is_tf_available,
fxmarty's avatar
fxmarty committed
89
90
    is_torch_bf16_available_on_device,
    is_torch_fp16_available_on_device,
91
    is_torch_fx_available,
92
    is_torch_sdpa_available,
93
)
94
from transformers.utils.generic import ContextManagers, ModelOutput
95

Aymeric Augustin's avatar
Aymeric Augustin committed
96

97
98
99
100
if is_accelerate_available():
    from accelerate.utils import compute_module_sizes


101
if is_torch_available():
102
    import torch
103
    import torch.nn.functional as F
104
    from safetensors.torch import load_file as safe_load_file
105
    from safetensors.torch import save_file as safe_save_file
106
    from torch import nn
thomwolf's avatar
thomwolf committed
107

108
    from transformers import MODEL_MAPPING, AdaptiveEmbedding
109
    from transformers.modeling_utils import load_state_dict, no_init_weights
Sylvain Gugger's avatar
Sylvain Gugger committed
110
    from transformers.pytorch_utils import id_tensor_storage
thomwolf's avatar
thomwolf committed
111

Sylvain Gugger's avatar
Sylvain Gugger committed
112

113
114
115
if is_tf_available():
    import tensorflow as tf

116
117
if is_flax_available():
    import jax.numpy as jnp
118

119
    from tests.test_modeling_flax_utils import check_models_equal
120
121
122
123
124
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

125
if is_torch_fx_available():
126
    from transformers.utils.fx import _FX_SUPPORTED_MODELS_WITH_KV_CACHE, symbolic_trace
127

128

129
130
131
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
132
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
133
            setattr(configs_no_init, key, 1e-10)
134
135
136
        if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
            no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
            setattr(configs_no_init, key, no_init_subconfig)
137
138
    return configs_no_init

thomwolf's avatar
thomwolf committed
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def _mock_init_weights(self, module):
    for name, param in module.named_parameters(recurse=False):
        # Use the first letter of the name to get a value and go from a <> -13 to z <> 12
        value = ord(name[0].lower()) - 110
        param.data.fill_(value)


def _mock_all_init_weights(self):
    # Prune heads if needed
    if self.config.pruned_heads:
        self.prune_heads(self.config.pruned_heads)

    import transformers.modeling_utils

    if transformers.modeling_utils._init_weights:
        for module in self.modules():
            module._is_hf_initialized = False
        # Initialize weights
        self.apply(self._initialize_weights)

        # Tie weights should be skipped when not initializing all weights
        # since from_pretrained(...) calls tie weights anyways
        self.tie_weights()


165
166
167
168
@require_torch
class ModelTesterMixin:
    model_tester = None
    all_model_classes = ()
169
    all_generative_model_classes = ()
170
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
171
172
173
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
174
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
175
    test_head_masking = True
176
    test_mismatched_shapes = True
177
    test_missing_keys = True
178
    test_model_parallel = False
179
    is_encoder_decoder = False
180
    has_attentions = True
181
    model_split_percents = [0.5, 0.7, 0.9]
182

183
184
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
185
        if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
186
            inputs_dict = {
187
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
188
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
189
                else v
190
191
                for k, v in inputs_dict.items()
            }
192
        elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES):
193
            inputs_dict.pop("attention_mask")
194
195

        if return_labels:
196
            if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
197
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
198
199
200
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
201
            ]:
202
203
204
205
206
207
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
208
209
210
211
212
213
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
214
            ]:
215
216
217
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
218
219
220
221
222
223
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
amyeroberts's avatar
amyeroberts committed
224
                *get_values(MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES),
225
226
227
228
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
229
            elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
230
231
232
233
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
234
            elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
235
236
237
238
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
239

240
241
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
242
    def test_save_load(self):
243
244
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

245
246
247
248
249
250
251
252
253
254
        def check_save_load(out1, out2):
            # make sure we don't have nans
            out_2 = out2.cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            out_1 = out1.cpu().numpy()
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

255
256
257
258
259
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
260
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
261

262
            with tempfile.TemporaryDirectory() as tmpdirname:
263
                model.save_pretrained(tmpdirname)
264
265
266
267
268
269
270

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

271
                model = model_class.from_pretrained(tmpdirname)
272
                model.to(torch_device)
273
                with torch.no_grad():
274
                    second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
thomwolf's avatar
thomwolf committed
275

276
277
278
279
280
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_save_load(tensor1, tensor2)
            else:
                check_save_load(first, second)
281

282
283
284
285
286
287
288
289
290
291
292
293
    def test_from_pretrained_no_checkpoint(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            state_dict = model.state_dict()

            new_model = model_class.from_pretrained(
                pretrained_model_name_or_path=None, config=config, state_dict=state_dict
            )
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    def test_keep_in_fp32_modules(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            if model_class._keep_in_fp32_modules is None:
                return

            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16)

                for name, param in model.named_parameters():
                    if any(n in model_class._keep_in_fp32_modules for n in name.split(".")):
                        self.assertTrue(param.dtype == torch.float32)
                    else:
                        self.assertTrue(param.dtype == torch.float16, name)

312
    def test_save_load_keys_to_ignore_on_save(self):
313
314
315
316
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
317
318
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
319
320
321
                continue

            # check the keys are in the original state_dict
322
            for k in _keys_to_ignore_on_save:
323
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
324
325
326
327

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
328
329
330
                output_model_file = os.path.join(tmpdirname, SAFE_WEIGHTS_NAME)
                state_dict_saved = safe_load_file(output_model_file)

331
                for k in _keys_to_ignore_on_save:
332
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
333

Sylvain Gugger's avatar
Sylvain Gugger committed
334
335
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
336
337
338
339
340
341
                keys_to_ignore = set(model._keys_to_ignore_on_save)

                if hasattr(model, "_tied_weights_keys"):
                    keys_to_ignore.update(set(model._tied_weights_keys))

                self.assertTrue(len(load_result.missing_keys) == 0 or set(load_result.missing_keys) == keys_to_ignore)
Sylvain Gugger's avatar
Sylvain Gugger committed
342
343
                self.assertTrue(len(load_result.unexpected_keys) == 0)

344
345
346
347
348
349
350
351
352
353
354
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

370
371
372
373
374
375
376
            # Loop over all modules and check that relevant modules have gradient_checkpointing set to True
            for n, m in model.named_modules():
                if hasattr(m, "gradient_checkpointing"):
                    self.assertTrue(
                        m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to True"
                    )

377
378
379
380
            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

381
382
383
384
385
386
387
            # Loop over all modules and check that relevant modules have gradient_checkpointing set to False
            for n, m in model.named_modules():
                if hasattr(m, "gradient_checkpointing"):
                    self.assertFalse(
                        m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to False"
                    )

388
    @is_flaky(description="low likelihood of failure, reason not yet discovered")
389
390
    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
391
392
        if config.__class__ not in MODEL_MAPPING:
            return
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
414
415
            model_class_copy._init_weights = _mock_init_weights
            model_class_copy.init_weights = _mock_all_init_weights
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)
432
                # Before we test anything
433
434

                for key in model_fast_init.state_dict().keys():
435
436
437
438
439
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item()
                    else:
                        max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
440

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
    def test_fast_init_context_manager(self):
        # 1. Create a dummy class. Should have buffers as well? To make sure we test __init__
        class MyClass(PreTrainedModel):
            config_class = PretrainedConfig

            def __init__(self, config=None):
                super().__init__(config if config is not None else PretrainedConfig())
                self.linear = nn.Linear(10, 10, bias=True)
                self.embedding = nn.Embedding(10, 10)
                self.std = 1

            def _init_weights(self, module):
                if isinstance(module, nn.Linear):
                    module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5))
                    if module.bias is not None:
                        module.bias.data.normal_(mean=0.0, std=self.std)

        # 2. Make sure a linear layer's reset params is properly skipped:
        with ContextManagers([no_init_weights(True)]):
            no_init_instance = MyClass()

        set_seed(0)
        expected_bias = torch.tensor(
            ([0.2975, 0.2131, -0.1379, -0.0796, -0.3012, -0.0057, -0.2381, -0.2439, -0.0174, 0.0475])
        )
        init_instance = MyClass()
467
        torch.testing.assert_close(init_instance.linear.bias, expected_bias, rtol=1e-3, atol=1e-4)
468
469

        set_seed(0)
470
        torch.testing.assert_close(
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
            init_instance.linear.weight, nn.init.kaiming_uniform_(no_init_instance.linear.weight, np.sqrt(5))
        )

        # 3. Make sure weights that are not present use init_weight_ and get expected values
        with tempfile.TemporaryDirectory() as tmpdirname:
            state_dict = init_instance.state_dict()
            del state_dict["linear.weight"]

            init_instance.config.save_pretrained(tmpdirname)
            torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))
            set_seed(0)
            model_fast_init = MyClass.from_pretrained(tmpdirname)

            set_seed(0)
            model_slow_init = MyClass.from_pretrained(tmpdirname, _fast_init=False)

            for key in model_fast_init.state_dict().keys():
                max_diff = torch.max(torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]))
                self.assertLessEqual(max_diff.item(), 1e-3, msg=f"{key} not identical")

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
    def test_fast_init_tied_embeddings(self):
        class MyClass(PreTrainedModel):
            config_class = PretrainedConfig
            _tied_weights_keys = ["output_embeddings.weight"]

            def __init__(self, config=None):
                super().__init__(config if config is not None else PretrainedConfig())
                self.input_embeddings = nn.Embedding(10, 10)
                self.output_embeddings = nn.Linear(10, 10, bias=False)
                self.tie_weights()

            def get_output_embeddings(self):
                return self.output_embeddings

            def set_output_embeddings(self, output_embeddings):
                self.output_embeddings = output_embeddings

            def get_input_embeddings(self):
                return self.input_embeddings

            def set_input_embeddings(self, input_embeddings):
                self.input_embeddings = input_embeddings

            def _init_weights(self, module):
                if module is self.output_embeddings:
                    raise ValueError("unnecessarily initialized tied output embedding!")

        model = MyClass()

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            # throws if it initializes the tied output_embeddings
            MyClass.from_pretrained(tmpdirname)

525
526
    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
527
528
        if config.__class__ not in MODEL_MAPPING:
            return
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
550
551
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
570
571
572
573
574
575
576
577
578
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = torch.max(
                            model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]
                        ).item()
                    else:
                        max_diff = torch.max(
                            torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])
                        ).item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
579

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
    def test_torch_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if config.__class__ not in MODEL_MAPPING:
            return
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            def check_equal(loaded):
                for key in state_dict.keys():
                    max_diff = torch.max(
                        state_dict()[key] ^ loaded[key]
                        if isinstance(state_dict[key], torch.BoolTensor)
                        else torch.abs(state_dict[key] - loaded[key])
                    ).item()
                    self.assertLessEqual(max_diff, 1e-6, msg=f"{key} not identical")

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pytorch_model.bin")
                torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=True)
                check_equal(load_state_dict(pt_checkpoint_path))
                torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=False)
                check_equal(load_state_dict(pt_checkpoint_path))

Patrick von Platen's avatar
Patrick von Platen committed
628
    def test_initialization(self):
629
630
631
632
633
634
635
636
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
637
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
638
                        [0.0, 1.0],
639
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
640
                    )
thomwolf's avatar
thomwolf committed
641

Patrick von Platen's avatar
Patrick von Platen committed
642
    def test_determinism(self):
643
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
644
645
646
647
648
649
650
651
652

        def check_determinism(first, second):
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

653
654
655
656
657
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
658
659
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
660

661
662
663
664
665
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_determinism(tensor1, tensor2)
            else:
                check_determinism(first, second)
666

667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
683
                expected_arg_names.extend(
684
685
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
686
687
688
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
689
690
691
692
693
694
            elif model_class.__name__ in [*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] and self.has_attentions:
                expected_arg_names = ["pixel_values", "output_hidden_states", "output_attentions", "return_dict"]
                self.assertListEqual(arg_names, expected_arg_names)
            elif model_class.__name__ in [*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] and not self.has_attentions:
                expected_arg_names = ["pixel_values", "output_hidden_states", "return_dict"]
                self.assertListEqual(arg_names, expected_arg_names)
695
            else:
696
                expected_arg_names = [model.main_input_name]
697
698
                self.assertListEqual(arg_names[:1], expected_arg_names)

699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
    def test_batching_equivalence(self):
        """
        Tests that the model supports batching and that the output is the nearly the same for the same input in
        different batch sizes.
        (Why "nearly the same" not "exactly the same"? Batching uses different matmul shapes, which often leads to
        different results: https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535)
        """

        def get_tensor_equivalence_function(batched_input):
            # models operating on continuous spaces have higher abs difference than LMs
            # instead, we can rely on cos distance for image/speech models, similar to `diffusers`
            if "input_ids" not in batched_input:
                return lambda tensor1, tensor2: (
                    1.0 - F.cosine_similarity(tensor1.float().flatten(), tensor2.float().flatten(), dim=0, eps=1e-38)
                )
            return lambda tensor1, tensor2: torch.max(torch.abs(tensor1 - tensor2))

        def recursive_check(batched_object, single_row_object, model_name, key):
            if isinstance(batched_object, (list, tuple)):
                for batched_object_value, single_row_object_value in zip(batched_object, single_row_object):
                    recursive_check(batched_object_value, single_row_object_value, model_name, key)
            elif isinstance(batched_object, dict):
                for batched_object_value, single_row_object_value in zip(
                    batched_object.values(), single_row_object.values()
                ):
                    recursive_check(batched_object_value, single_row_object_value, model_name, key)
725
726
            # do not compare returned loss (0-dim tensor) / codebook ids (int) / caching objects
            elif batched_object is None or not isinstance(batched_object, torch.Tensor):
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
                return
            elif batched_object.dim() == 0:
                return
            else:
                # indexing the first element does not always work
                # e.g. models that output similarity scores of size (N, M) would need to index [0, 0]
                slice_ids = [slice(0, index) for index in single_row_object.shape]
                batched_row = batched_object[slice_ids]
                self.assertFalse(
                    torch.isnan(batched_row).any(), f"Batched output has `nan` in {model_name} for key={key}"
                )
                self.assertFalse(
                    torch.isinf(batched_row).any(), f"Batched output has `inf` in {model_name} for key={key}"
                )
                self.assertFalse(
                    torch.isnan(single_row_object).any(), f"Single row output has `nan` in {model_name} for key={key}"
                )
                self.assertFalse(
                    torch.isinf(single_row_object).any(), f"Single row output has `inf` in {model_name} for key={key}"
                )
                self.assertTrue(
                    (equivalence(batched_row, single_row_object)) <= 1e-03,
                    msg=(
                        f"Batched and Single row outputs are not equal in {model_name} for key={key}. "
                        f"Difference={equivalence(batched_row, single_row_object)}."
                    ),
                )

        config, batched_input = self.model_tester.prepare_config_and_inputs_for_common()
        equivalence = get_tensor_equivalence_function(batched_input)

        for model_class in self.all_model_classes:
            config.output_hidden_states = True

            model_name = model_class.__name__
            if hasattr(self.model_tester, "prepare_config_and_inputs_for_model_class"):
                config, batched_input = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
            batched_input_prepared = self._prepare_for_class(batched_input, model_class)
            model = model_class(config).to(torch_device).eval()

            batch_size = self.model_tester.batch_size
            single_row_input = {}
            for key, value in batched_input_prepared.items():
                if isinstance(value, torch.Tensor) and value.shape[0] % batch_size == 0:
                    # e.g. musicgen has inputs of size (bs*codebooks). in most cases value.shape[0] == batch_size
                    single_batch_shape = value.shape[0] // batch_size
                    single_row_input[key] = value[:single_batch_shape]
                else:
                    single_row_input[key] = value

            with torch.no_grad():
                model_batched_output = model(**batched_input_prepared)
                model_row_output = model(**single_row_input)

            if isinstance(model_batched_output, torch.Tensor):
                model_batched_output = {"model_output": model_batched_output}
                model_row_output = {"model_output": model_row_output}

            for key in model_batched_output:
                # DETR starts from zero-init queries to decoder, leading to cos_similarity = `nan`
                if hasattr(self, "zero_init_hidden_state") and "decoder_hidden_states" in key:
                    model_batched_output[key] = model_batched_output[key][1:]
                    model_row_output[key] = model_row_output[key][1:]
                recursive_check(model_batched_output[key], model_row_output[key], model_name, key)

792
    def check_training_gradient_checkpointing(self, gradient_checkpointing_kwargs=None):
793
794
795
796
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
797
798
            if (
                model_class.__name__
799
800
801
802
                in [
                    *get_values(MODEL_MAPPING_NAMES),
                    *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
                ]
803
804
                or not model_class.supports_gradient_checkpointing
            ):
805
                continue
806

807
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
808
809
            config.use_cache = False
            config.return_dict = True
810
            model = model_class(config)
811

812
            model.to(torch_device)
813
            model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)
814
            model.train()
815
816
817
818
819
820
821

            # unfreeze additional layers
            for p in model.parameters():
                p.requires_grad_(True)

            optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

822
823
824
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()
825
            optimizer.step()
826

827
828
829
830
831
            for k, v in model.named_parameters():
                if v.requires_grad:
                    self.assertTrue(v.grad is not None, f"{k} in {model_class.__name__} has no gradient!")

    def test_training(self):
832
        if not self.model_tester.is_training:
833
834
835
            return

        for model_class in self.all_model_classes:
836
837
838
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

839
840
841
842
            if model_class.__name__ in [
                *get_values(MODEL_MAPPING_NAMES),
                *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
            ]:
843
                continue
844

845
846
847
848
849
850
851
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

852
853
854
855
856
857
858
859
860
861
862
863
864
    def test_training_gradient_checkpointing(self):
        # Scenario - 1 default behaviour
        self.check_training_gradient_checkpointing()

    def test_training_gradient_checkpointing_use_reentrant(self):
        # Scenario - 2 with `use_reentrant=True` - this is the default value that is used in pytorch's
        # torch.utils.checkpoint.checkpoint
        self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": True})

    def test_training_gradient_checkpointing_use_reentrant_false(self):
        # Scenario - 3 with `use_reentrant=False` pytorch suggests users to use this value for
        # future releases: https://pytorch.org/docs/stable/checkpoint.html
        self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": False})
865

Patrick von Platen's avatar
Patrick von Platen committed
866
    def test_attention_outputs(self):
867
868
869
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

870
871
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
872

873
874
875
876
877
878
879
880
881
882
883
884
        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
885
            config.return_dict = True
886
887
888
889
890
891
892
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
893

894
895
896
897
898
899
900
901
902
903
            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
904

905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
            out_len = len(outputs)

            if self.is_encoder_decoder:
                correct_outlen = 5

                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
924
925
926
                if model_class.__name__ in [
                    *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                    *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
927
                ]:
928
929
930
931
932
933
934
935
936
937
938
939
940
941
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )
942

943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
986

987
    @slow
988
    def test_torchscript_simple(self):
989
990
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
991

992
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
993
    def test_torchscript_output_attentions(self):
994
995
996
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
997

998
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
999
    def test_torchscript_output_hidden_state(self):
1000
1001
1002
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
1003

1004
1005
1006
1007
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):
        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
1008
1009
1010
        # torch 1.8 has no `_clear_class_state` in `torch.jit._state`
        if hasattr(torch.jit._state, "_clear_class_state"):
            torch.jit._state._clear_class_state()
1011

1012
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
1013
        if not self.test_torchscript:
1014
            return
1015

1016
1017
1018
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
1019
            for attn_implementation in ["eager", "sdpa"]:
1020
                if attn_implementation == "sdpa" and (not model_class._supports_sdpa or not is_torch_sdpa_available()):
1021
                    continue
1022

1023
1024
1025
1026
1027
                configs_no_init._attn_implementation = attn_implementation
                model = model_class(config=configs_no_init)
                model.to(torch_device)
                model.eval()
                inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
1028

1029
                main_input_name = model_class.main_input_name
thomwolf's avatar
thomwolf committed
1030

1031
                try:
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
                    if model.config.is_encoder_decoder:
                        model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                        main_input = inputs[main_input_name]
                        attention_mask = inputs["attention_mask"]
                        decoder_input_ids = inputs["decoder_input_ids"]
                        decoder_attention_mask = inputs["decoder_attention_mask"]
                        model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
                        traced_model = torch.jit.trace(
                            model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
                        )
                    elif "bbox" in inputs and "image" in inputs:  # LayoutLMv2 requires additional inputs
                        input_ids = inputs["input_ids"]
                        bbox = inputs["bbox"]
                        image = inputs["image"].tensor
                        model(input_ids, bbox, image)
                        traced_model = torch.jit.trace(
                            model, (input_ids, bbox, image), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
                    elif "bbox" in inputs:  # Bros requires additional inputs (bbox)
                        input_ids = inputs["input_ids"]
                        bbox = inputs["bbox"]
                        model(input_ids, bbox)
                        traced_model = torch.jit.trace(
                            model, (input_ids, bbox), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
Eduardo Pacheco's avatar
Eduardo Pacheco committed
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
                    elif (
                        "pixel_values" in inputs and "prompt_pixel_values" in inputs and "prompt_masks" in inputs
                    ):  # SegGpt requires additional inputs
                        pixel_values = inputs["pixel_values"]
                        prompt_pixel_values = inputs["prompt_pixel_values"]
                        prompt_masks = inputs["prompt_masks"]
                        model(pixel_values, prompt_pixel_values, prompt_masks)
                        traced_model = torch.jit.trace(
                            model, (pixel_values, prompt_pixel_values, prompt_masks), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
                    else:
                        main_input = inputs[main_input_name]

                        if model.config._attn_implementation == "sdpa":
                            trace_input = {main_input_name: main_input}

                            if "attention_mask" in inputs:
                                trace_input["attention_mask"] = inputs["attention_mask"]
                            else:
                                self.skipTest("testing SDPA without attention_mask is not supported")

                            model(main_input, attention_mask=inputs["attention_mask"])
                            # example_kwarg_inputs was introduced in torch==2.0, but it is fine here since SDPA has a requirement on torch>=2.1.
                            traced_model = torch.jit.trace(model, example_kwarg_inputs=trace_input)
                        else:
                            model(main_input)
                            traced_model = torch.jit.trace(model, (main_input,))
                except RuntimeError:
                    self.fail("Couldn't trace module.")

                with tempfile.TemporaryDirectory() as tmp_dir_name:
                    pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                    try:
                        torch.jit.save(traced_model, pt_file_name)
                    except Exception:
                        self.fail("Couldn't save module.")

                    try:
                        loaded_model = torch.jit.load(pt_file_name)
                    except Exception:
                        self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
1099

1100
1101
                model.to(torch_device)
                model.eval()
thomwolf's avatar
thomwolf committed
1102

1103
1104
                loaded_model.to(torch_device)
                loaded_model.eval()
thomwolf's avatar
thomwolf committed
1105

1106
1107
                model_state_dict = model.state_dict()
                loaded_model_state_dict = loaded_model.state_dict()
1108

1109
1110
1111
1112
                non_persistent_buffers = {}
                for key in loaded_model_state_dict.keys():
                    if key not in model_state_dict.keys():
                        non_persistent_buffers[key] = loaded_model_state_dict[key]
1113

1114
1115
1116
                loaded_model_state_dict = {
                    key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
                }
1117

1118
                self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
1119

1120
1121
1122
1123
1124
1125
1126
                model_buffers = list(model.buffers())
                for non_persistent_buffer in non_persistent_buffers.values():
                    found_buffer = False
                    for i, model_buffer in enumerate(model_buffers):
                        if torch.equal(non_persistent_buffer, model_buffer):
                            found_buffer = True
                            break
1127

1128
1129
                    self.assertTrue(found_buffer)
                    model_buffers.pop(i)
1130

1131
1132
1133
1134
1135
1136
                models_equal = True
                for layer_name, p1 in model_state_dict.items():
                    if layer_name in loaded_model_state_dict:
                        p2 = loaded_model_state_dict[layer_name]
                        if p1.data.ne(p2.data).sum() > 0:
                            models_equal = False
thomwolf's avatar
thomwolf committed
1137

1138
                self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
1139

1140
1141
1142
                # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
                # (Even with this call, there are still memory leak by ~0.04MB)
                self.clear_torch_jit_class_registry()
1143

1144
1145
1146
1147
1148
1149
1150
1151
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

1152
1153
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
1154
1155
1156
            self.skipTest(
                f"Either torch.fx is not available, or the model type {config.model_type} is not compatible with torch.fx"
            )
1157
1158
1159
1160

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

1161
        for model_class in self.all_model_classes:
1162
1163
1164
1165
1166
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

1167
1168
            # We may want to test several inputs (various shapes, etc.).
            inputs_to_test = [inputs]
1169

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
            if model.config.is_encoder_decoder:
                model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                labels = inputs.get("labels", None)
                input_names = [
                    "attention_mask",
                    "decoder_attention_mask",
                    "decoder_input_ids",
                    "input_features",
                    "input_ids",
                    "input_values",
                ]
                if labels is not None:
                    input_names.append("labels")
            else:
                input_names = [
                    "attention_mask",
                    "bbox",
                    "input_features",
                    "input_ids",
                    "input_values",
                    "pixel_values",
                    "token_type_ids",
                    "visual_feats",
                    "visual_pos",
                ]
1195

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
                labels = inputs.get("labels", None)
                start_positions = inputs.get("start_positions", None)
                end_positions = inputs.get("end_positions", None)
                if labels is not None:
                    input_names.append("labels")
                if start_positions is not None:
                    input_names.append("start_positions")
                if end_positions is not None:
                    input_names.append("end_positions")

                if model.config.model_type in _FX_SUPPORTED_MODELS_WITH_KV_CACHE:
                    input_names.append("past_key_values")

                    # Generally model_tester.prepare_config_and_inputs_for_common seem not to generate past key values inputs.
                    if "past_key_values" not in inputs:
                        batch_size = inputs[next(iter(inputs))].shape[0]
                        num_heads = model.config.num_attention_heads
                        head_dim = model.config.hidden_size // model.config.num_attention_heads

                        cache_shape = (batch_size, num_heads, 0, head_dim)
                        empty_pkv = tuple(
                            (
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
1220
                            )
1221
1222
                            for i in range(model.config.num_hidden_layers)
                        )
1223

1224
1225
1226
1227
1228
1229
1230
1231
1232
                        cache_length = 9
                        cache_shape = (batch_size, num_heads, cache_length, head_dim)
                        non_empty_pkv = tuple(
                            (
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                            )
                            for i in range(model.config.num_hidden_layers)
                        )
1233

1234
                        inps = copy.deepcopy(inputs_to_test[0])
1235

1236
                        inputs_to_test[0]["past_key_values"] = empty_pkv
1237

1238
1239
                        inps["past_key_values"] = non_empty_pkv
                        inputs_to_test.append(inps)
1240

1241
1242
1243
1244
                        past_mask = torch.ones(batch_size, cache_length, device=torch_device, dtype=torch.float)
                        inputs_to_test[1]["attention_mask"] = torch.cat(
                            (past_mask, inputs_to_test[1]["attention_mask"]), dim=1
                        )
1245

1246
1247
1248
            for inps in inputs_to_test:
                filtered_inputs = {k: v for (k, v) in inps.items() if k in input_names}
                input_names = list(filtered_inputs.keys())
1249

1250
1251
1252
1253
                if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
                    not hasattr(model.config, "problem_type") or model.config.problem_type is None
                ):
                    model.config.problem_type = "single_label_classification"
1254

1255
                traced_model = symbolic_trace(model, input_names)
1256

1257
1258
1259
                with torch.no_grad():
                    traced_output = traced_model(**filtered_inputs)
                    model_output = model(**filtered_inputs)
1260

1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
                def flatten_output(output):
                    flatten = []
                    for x in output:
                        if isinstance(x, (tuple, list)):
                            flatten += flatten_output(x)
                        elif not isinstance(x, torch.Tensor):
                            continue
                        else:
                            flatten.append(x)
                    return flatten
1271

1272
1273
1274
                model_output = flatten_output(model_output)
                traced_output = flatten_output(traced_output)
                num_outputs = len(model_output)
1275
1276
1277

                for i in range(num_outputs):
                    self.assertTrue(
1278
1279
                        torch.allclose(model_output[i], traced_output[i]),
                        f"traced {i}th output doesn't match model {i}th output for {model_class}",
1280
1281
                    )

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
                # Test that the model can be serialized and restored properly
                with tempfile.TemporaryDirectory() as tmp_dir_name:
                    pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
                    try:
                        with open(pkl_file_name, "wb") as f:
                            pickle.dump(traced_model, f)
                        with open(pkl_file_name, "rb") as f:
                            loaded = pickle.load(f)
                    except Exception as e:
                        self.fail(f"Couldn't serialize / deserialize the traced model: {e}")

                    loaded_output = loaded(**filtered_inputs)
                    loaded_output = flatten_output(loaded_output)

                    for i in range(num_outputs):
                        self.assertTrue(
                            torch.allclose(model_output[i], loaded_output[i]),
                            f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
                        )

                # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
                # (Even with this call, there are still memory leak by ~0.04MB)
                self.clear_torch_jit_class_registry()
1305

Patrick von Platen's avatar
Patrick von Platen committed
1306
1307
    def test_headmasking(self):
        if not self.test_head_masking:
1308
            return
1309

1310
1311
1312
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
1313

1314
        inputs_dict["output_attentions"] = True
1315
1316
1317
1318
1319
1320
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
1321

1322
1323
1324
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
1325
1326
1327
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
1328
1329
1330
1331
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
1332
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
1333
            inputs["head_mask"] = head_mask
1334
1335
1336
1337
1338
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
1339
1340
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
1341
            outputs = model(**inputs, return_dict=True)
1342
1343
1344
1345
1346
1347
1348
1349
1350

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
1372
                check_attentions_validity(outputs.cross_attentions)
1373
1374
            else:
                check_attentions_validity(outputs.attentions)
1375

Patrick von Platen's avatar
Patrick von Platen committed
1376
1377
    def test_head_pruning(self):
        if not self.test_pruning:
1378
1379
1380
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1381
1382
1383
1384
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1385

1386
1387
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1388

1389
            inputs_dict["output_attentions"] = True
1390
1391
1392
1393
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1394
1395
1396
1397
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1398
1399
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
1400
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1401

1402
            attentions = outputs[-1]
1403

1404
            self.assertEqual(attentions[0].shape[-3], 1)
1405
1406
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1407
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
1408

Patrick von Platen's avatar
Patrick von Platen committed
1409
1410
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
1411
            return
LysandreJik's avatar
LysandreJik committed
1412

1413
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1414
1415
1416
1417
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1418
1419
1420

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1421

1422
            inputs_dict["output_attentions"] = True
1423
1424
1425
1426
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1427
1428
1429
1430
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1431
            model.prune_heads(heads_to_prune)
1432

1433
            with tempfile.TemporaryDirectory() as temp_dir_name:
1434
1435
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1436
                model.to(torch_device)
1437

1438
            with torch.no_grad():
1439
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1440
1441
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
1442
1443
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1444
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1445

Patrick von Platen's avatar
Patrick von Platen committed
1446
1447
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
1448
            return
1449

1450
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1451
1452
1453
1454
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1455

1456
1457
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1458

1459
            inputs_dict["output_attentions"] = True
1460
            config.output_hidden_states = False
1461

1462
1463
1464
1465
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1466
            config.pruned_heads = heads_to_prune
1467

1468
1469
1470
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1471

1472
            with torch.no_grad():
1473
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1474
            attentions = outputs[-1]
1475

1476
            self.assertEqual(attentions[0].shape[-3], 1)
1477
1478
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1479
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1480

Patrick von Platen's avatar
Patrick von Platen committed
1481
1482
    def test_head_pruning_integration(self):
        if not self.test_pruning:
1483
            return
1484

1485
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1486
1487
1488
1489
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1490

1491
1492
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1493

1494
            inputs_dict["output_attentions"] = True
1495
            config.output_hidden_states = False
1496

1497
            heads_to_prune = {1: [1, 2]}
1498
            config.pruned_heads = heads_to_prune
1499

1500
1501
1502
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1503

1504
            with torch.no_grad():
1505
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1506
            attentions = outputs[-1]
1507

1508
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1509
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1510

1511
            with tempfile.TemporaryDirectory() as temp_dir_name:
1512
1513
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1514
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
1515

1516
            with torch.no_grad():
1517
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1518
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
1519

1520
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1521
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1522

1523
            heads_to_prune = {0: [0], 1: [1, 2]}
1524
            model.prune_heads(heads_to_prune)
1525

1526
            with torch.no_grad():
1527
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1528
            attentions = outputs[-1]
1529

1530
1531
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
1532

1533
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2]})
thomwolf's avatar
thomwolf committed
1534

Patrick von Platen's avatar
Patrick von Platen committed
1535
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1536
        def check_hidden_states_output(inputs_dict, config, model_class):
1537
            model = model_class(config)
1538
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1539
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1540

thomwolf's avatar
thomwolf committed
1541
            with torch.no_grad():
1542
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1543
1544

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1545

Sylvain Gugger's avatar
Sylvain Gugger committed
1546
1547
1548
1549
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1550

Patrick von Platen's avatar
Patrick von Platen committed
1551
1552
1553
1554
1555
1556
1557
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1558
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1559
1560
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1561
            )
thomwolf's avatar
thomwolf committed
1562

1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1588
1589
1590
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1591
        config.output_attentions = self.has_attentions
1592
1593
1594
1595
1596
1597
1598
1599
1600

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1601

1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1612
1613
1614
1615
1616
1617
1618
1619
1620
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1621
1622
1623
1624
1625

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1626
1627
1628
1629
1630

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1631
1632
1633
1634
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1635
1636
1637
1638

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1639
1640
1641
1642

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1643
1644
1645

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1646

Pradhy729's avatar
Pradhy729 committed
1647
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1648
1649
1650
1651
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1749
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1750
1751
1752
1753
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1754
        if not self.test_resize_embeddings:
1755
1756
1757
1758
1759
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1760
            model.to(torch_device)
1761

Patrick von Platen's avatar
Patrick von Platen committed
1762
1763
1764
            if self.model_tester.is_training is False:
                model.eval()

1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1775
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1776
            model(**self._prepare_for_class(inputs_dict, model_class))
1777
1778
1779
1780
1781
1782
1783

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1784
1785
1786
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1787
1788
1789
1790

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1791
            model(**self._prepare_for_class(inputs_dict, model_class))
1792

1793
1794
1795
1796
1797
1798
1799
1800
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
            self.assertTrue(model.config.vocab_size + 10, model_vocab_size)

            model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

Arthur's avatar
Arthur committed
1812
1813
1814
            self.assertTrue(model_embed.weight.shape[0], model.config.vocab_size)
            self.assertTrue(model.config.vocab_size, model.vocab_size)

1815
1816
1817
            model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

1818
1819
1820
1821
1822
            # Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
            target_dimension = 128
            model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0], target_dimension)

1823
1824
1825
1826
1827
1828
            with self.assertRaisesRegex(
                ValueError,
                "Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
            ):
                model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)

1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1880
    def test_model_common_attributes(self):
1881
1882
1883
1884
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1885
1886
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1887
            x = model.get_output_embeddings()
1888
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1889

1890
1891
1892
1893
1894
1895
1896
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1897
    def test_correct_missing_keys(self):
1898
1899
        if not self.test_missing_keys:
            return
1900
1901
1902
1903
1904
1905
1906
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
                extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
                extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
                # Some models define this as None
                if model._keys_to_ignore_on_load_missing:
                    for key in model._keys_to_ignore_on_load_missing:
                        extra_params.pop(key, None)

                if not extra_params:
                    # In that case, we *are* on a head model, but every
                    # single key is not actual parameters and this is
                    # tested in `test_tied_model_weights_key_ignore` test.
                    continue

1920
1921
1922
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1923
                    self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
1924

1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

1956
1957
    @require_safetensors
    def test_can_use_safetensors(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
1958
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
        for model_class in self.all_model_classes:
            model_tied = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                try:
                    model_tied.save_pretrained(d, safe_serialization=True)
                except Exception as e:
                    raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}")

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model_tied.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
1975
1976
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

                # Checking the tensor sharing are correct
                ptrs = defaultdict(list)
                for k, v in model_tied.state_dict().items():
                    ptrs[v.data_ptr()].append(k)

                shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1}

                for _, shared_names in shared_ptrs.items():
                    reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names}
                    self.assertEqual(
                        len(reloaded_ptrs),
                        1,
                        f"The shared pointers are incorrect, found different pointers for keys {shared_names}",
                    )

Sylvain Gugger's avatar
Sylvain Gugger committed
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
    def test_load_save_without_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = False
        for model_class in self.all_model_classes:
            model = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                model.save_pretrained(d)

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])

Sylvain Gugger's avatar
Sylvain Gugger committed
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
    def test_tied_weights_keys(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = True
        for model_class in self.all_model_classes:
            model_tied = model_class(config)

            ptrs = collections.defaultdict(list)
            for name, tensor in model_tied.state_dict().items():
                ptrs[id_tensor_storage(tensor)].append(name)

            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]

            tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else []
            # Detect we get a hit for each key
            for key in tied_weight_keys:
2028
2029
                is_tied_key = any(re.search(key, p) for group in tied_params for p in group)
                self.assertTrue(is_tied_key, f"{key} is not a tied weight key for {model_class}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
2030
2031
2032
2033
2034
2035
2036

            # Removed tied weights found from tied params -> there should only be one left after
            for key in tied_weight_keys:
                for i in range(len(tied_params)):
                    tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None]

            tied_params = [group for group in tied_params if len(group) > 1]
Sylvain Gugger's avatar
Sylvain Gugger committed
2037
2038
2039
2040
2041
            self.assertListEqual(
                tied_params,
                [],
                f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.",
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
2042

Sylvain Gugger's avatar
Sylvain Gugger committed
2043
2044
    def test_model_weights_reload_no_missing_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
2045
        for model_class in self.all_model_classes:
Sylvain Gugger's avatar
Sylvain Gugger committed
2046
2047
2048
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.save_pretrained(tmp_dir)
2049
2050
2051

                # We are nuking ALL weights on file, so every parameter should
                # yell on load. We're going to detect if we yell too much, or too little.
2052
2053
                placeholder_dict = {"tensor": torch.tensor([1, 2])}
                safe_save_file(placeholder_dict, os.path.join(tmp_dir, "model.safetensors"), metadata={"format": "pt"})
Sylvain Gugger's avatar
Sylvain Gugger committed
2054
                model_reloaded, infos = model_class.from_pretrained(tmp_dir, output_loading_info=True)
2055
2056
2057
2058

                prefix = f"{model_reloaded.base_model_prefix}."
                params = dict(model_reloaded.named_parameters())
                params.update(dict(model_reloaded.named_buffers()))
2059
                param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()}
2060
2061
2062
2063

                missing_keys = set(infos["missing_keys"])

                extra_missing = missing_keys - param_names
Sylvain Gugger's avatar
Sylvain Gugger committed
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
                # Remove tied weights from extra missing: they are normally not warned as missing if their tied
                # counterpart is present but here there are no weights at all so we do get the warning.
                ptrs = collections.defaultdict(list)
                for name, tensor in model_reloaded.state_dict().items():
                    ptrs[id_tensor_storage(tensor)].append(name)
                tied_params = [names for _, names in ptrs.items() if len(names) > 1]
                for group in tied_params:
                    group = {k[len(prefix) :] if k.startswith(prefix) else k for k in group}
                    # We remove the group from extra_missing if not all weights from group are in it
                    if len(group - extra_missing) > 0:
                        extra_missing = extra_missing - set(group)
2075
2076
2077
2078

                self.assertEqual(
                    extra_missing,
                    set(),
Sylvain Gugger's avatar
Sylvain Gugger committed
2079
2080
                    f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}. "
                    f"For debugging, tied parameters are {tied_params}",
2081
2082
                )

Sylvain Gugger's avatar
Sylvain Gugger committed
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
                missed_missing = param_names - missing_keys
                # Remove nonpersistent buffers from missed_missing
                buffers = [n for n, _ in model_reloaded.named_buffers()]
                nonpersistent_buffers = {n for n in buffers if n not in model_reloaded.state_dict()}
                nonpersistent_buffers = {
                    k[len(prefix) :] if k.startswith(prefix) else k for k in nonpersistent_buffers
                }
                missed_missing = missed_missing - nonpersistent_buffers

                if model_reloaded._keys_to_ignore_on_load_missing is None:
                    expected_missing = set()
                else:
                    expected_missing = set(model_reloaded._keys_to_ignore_on_load_missing)
                self.assertEqual(
                    missed_missing,
                    expected_missing,
                    f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
                    " parameters. If they are non persistent buffers make sure to instantiate them with"
                    " `persistent=False`",
                )
2103

2104
2105
2106
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
2107
2108
2109
2110
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

2111
2112
2113
2114
2115
2116
2117
2118
2119
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
2120
2121
2122
2123
2124
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
2125
2126
2127
2128
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
2129
2130
2131
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
Sylvain Gugger's avatar
Sylvain Gugger committed
2132
2133
2134
2135
2136
2137
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

2163
2164
2165
2166
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
2167

2168
2169
2170
2171
2172
2173
2174
2175
2176
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
2177

2178
2179
2180
2181
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
2182

2183
2184
2185
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
2186

2187
2188
2189
2190
2191
2192
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = torch.cat(
                    [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
                )
2193

2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = torch.cat(
                #     [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
                #     dim=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

2211
2212
        tf_keys = {k for k, v in tf_outputs.items() if v is not None}
        pt_keys = {k for k, v in pt_outputs.items() if v is not None}
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "FlaubertWithLMHeadModel",
            "FunnelForPreTraining",
            "ElectraForPreTraining",
            "XLMWithLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("GPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2239
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
2240

2241
2242
2243
2244
2245
2246
2247
2248
        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """
2249

2250
2251
2252
        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
2253

2254
2255
2256
2257
2258
2259
        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
2260

2261
2262
2263
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
2264

2265
2266
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
2267

2268
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
2269

2270
            # convert to the case of `tuple`
2271
            # appending each key to the current (string) `name`
2272
2273
2274
2275
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
2276

2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
2287
                    f"{name}: The tuple `attributes` should have the same length as `tf_outputs`",
2288
                )
2289
            else:
2290
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
2291
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
2292

2293
2294
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
2295

2296
2297
2298
2299
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
2300

2301
2302
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
2303

2304
2305
2306
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
2307

2308
2309
2310
2311
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])
2312

2313
2314
            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
2315

2316
2317
2318
2319
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
2320

2321
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
2322
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).")
2323
2324
        else:
            raise ValueError(
2325
                "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got"
Sylvain Gugger's avatar
Sylvain Gugger committed
2326
                f" {type(tf_outputs)} instead."
2327
2328
            )

2329
2330
2331
2332
    def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):
        tf_inputs_dict = {}
        for key, tensor in pt_inputs_dict.items():
            # skip key that does not exist in tf
2333
            if isinstance(tensor, bool):
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
                tf_inputs_dict[key] = tensor
            elif key == "input_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "pixel_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "input_features":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            # other general float inputs
            elif tensor.is_floating_point():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            else:
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
2346

2347
        return tf_inputs_dict
2348

2349
2350
    def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
        tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
2351

2352
2353
2354
2355
        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }
2356

2357
2358
        # send pytorch model to the correct device
        pt_model.to(torch_device)
2359

2360
2361
        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()
2362

2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))

    @is_pt_tf_cross_test
Matt's avatar
Matt committed
2377
    def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
2378
        import transformers
2379
2380

        for model_class in self.all_model_classes:
2381
2382
2383
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
2384
            if not hasattr(transformers, tf_model_class_name):
2385
                # transformers does not have this model in TF version yet
2386
2387
                return

2388
2389
2390
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
2391

2392
2393
2394
2395
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
2396
2397

            tf_model_class = getattr(transformers, tf_model_class_name)
2398
2399

            pt_model = model_class(config)
2400
2401
2402
2403
2404
2405
2406
2407
2408
            tf_model = tf_model_class(config)

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_with_labels = self._prepare_for_class(
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
            )
2409
2410
2411
2412
2413
2414
2415
2416
2417

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

2418
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
2419
2420
2421
2422
            pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}

            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
2423
            if not set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
2424
                pt_inputs_dict_with_labels = None
2425
2426

            # Check we can load pt model in tf and vice-versa with model => model functions
2427
2428
            # Here requires `tf_inputs_dict` to build `tf_model`
            tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
Matt's avatar
Matt committed
2429
2430
2431
2432
2433
2434
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
            )
            pt_model = transformers.load_tf2_model_in_pytorch_model(
                pt_model, tf_model, allow_missing_keys=allow_missing_keys
            )
2435

2436
2437
2438
2439
2440
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2441
2442
2443
2444
2445

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
Matt's avatar
Matt committed
2446
2447
2448
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
                    tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2449
2450
2451

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
Matt's avatar
Matt committed
2452
2453
2454
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
                    pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2455

2456
2457
2458
2459
2460
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2461
2462
2463
2464
2465

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

2466
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2467
2468
2469
2470
2471
2472
2473
2474
2475
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(fx_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
            )

            fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")

            # convert to the case of `tuple`
            # appending each key to the current (string) `name`
            attributes = tuple([f"{name}.{k}" for k in fx_keys])
            self.check_pt_flax_outputs(
                fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )

        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(fx_outputs) in [tuple, list]:
            self.assertEqual(
                type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
            )
            self.assertEqual(
                len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
            )

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(fx_outputs),
                    f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
                )
2516
            else:
2517
2518
2519
2520
2521
2522
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])

            for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
                self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)

2523
        elif isinstance(fx_outputs, jnp.ndarray):
2524
2525
2526
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
            )
2527
2528
2529
2530
2531

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

2532
2533
2534
2535
2536
2537
2538
2539
2540
            self.assertEqual(
                fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
            )

            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(fx_outputs):
                fx_outputs = np.array([fx_outputs])
                pt_outputs = np.array([pt_outputs])

2541
2542
2543
2544
2545
2546
2547
2548
            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

2549
2550
2551
2552
            max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
            self.assertLessEqual(
                max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
            )
2553
2554
        else:
            raise ValueError(
2555
2556
                "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
                f" {type(fx_outputs)} instead."
2557
2558
            )

2559
2560
2561
2562
2563
2564
2565
2566
2567
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
2568
                    # no flax model exists for this class
2569
2570
                    return

2571
2572
2573
2574
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2575
2576
                fx_model_class = getattr(transformers, fx_model_class_name)

2577
2578
2579
2580
2581
2582
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2583
2584
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2585

2586
2587
2588
2589
2590
2591
2592
2593
2594
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2595
2596
2597
2598
2599
2600
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
2601
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2602

2603
2604
2605
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

2606
2607
2608
                # send pytorch model to the correct device
                pt_model.to(torch_device)

2609
                with torch.no_grad():
2610
2611
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
2612

2613
2614
2615
2616
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2617
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2618
2619
2620
2621
2622

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

2623
2624
2625
2626
2627
2628
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2629
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

2643
2644
2645
2646
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2647
2648
                fx_model_class = getattr(transformers, fx_model_class_name)

2649
2650
2651
2652
2653
2654
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2655
2656
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2657

2658
2659
2660
2661
2662
2663
2664
2665
2666
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2667
2668
2669
2670
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
2671

2672
                # convert inputs to Flax
2673
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2674

2675
2676
2677
2678
2679
2680
2681
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
2682

2683
2684
2685
2686
2687
2688
2689
2690
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2691
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2692
2693
2694
2695
2696

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

2697
2698
2699
2700
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

2701
                with torch.no_grad():
2702
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
2703

2704
2705
2706
2707
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2708
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
2709

Patrick von Platen's avatar
Patrick von Platen committed
2710
    def test_inputs_embeds(self):
2711
2712
2713
2714
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
2715
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
2716
            model.eval()
2717

2718
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
2719

2720
2721
2722
2723
2724
2725
2726
2727
2728
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

2729
2730
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
2731
                inputs["inputs_embeds"] = wte(input_ids)
2732
            else:
2733
2734
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
2735

thomwolf's avatar
thomwolf committed
2736
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
2737
                model(**inputs)[0]
2738

2739
2740
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
2741
2742
2743
2744
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
2745
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
2760
            model = nn.DataParallel(model)
2761
            with torch.no_grad():
2762
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
2763

2764
2765
2766
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
2767
            return
2768

2769
        # a candidate for testing_utils
2770
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2771
            """returns a list of cuda memory allocations per GPU in MBs"""
2772
2773
2774
2775
2776

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2777
2778
2779
2780
2781
2782
2783
2784
2785

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2786
2787
2788
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2789

2790
2791
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2792
2793
2794
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2795
2796
2797
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2798
            del model
2799
            gc.collect()
2800
2801
            torch.cuda.empty_cache()

2802
2803
2804
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2805
2806

            # Spread model layers over multiple devices
2807
            model = model_class(config)
2808
2809
2810
2811
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
2812
            for n in range(len(model.device_map.keys())):
2813
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2814

2815
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2816
2817
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2818
2819
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2820
2821
2822
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2823
            gc.collect()
2824
2825
2826
2827
2828
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
2829
            return
2830
2831
2832
2833
2834
2835

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2836
            def cast_to_device(dictionary, device):
2837
2838
2839
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2840
                        output[k] = v.to(device)
2841
2842
2843
2844
2845
                    else:
                        output[k] = v

                return output

2846
2847
2848
2849
2850
2851
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2852
2853
2854
2855
2856
2857
2858
2859

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))

Sylvain Gugger's avatar
Sylvain Gugger committed
2874
    @require_accelerate
2875
    @mark.accelerate_tests
Sylvain Gugger's avatar
Sylvain Gugger committed
2876
    @require_torch_gpu
2877
    def test_disk_offload_bin(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
2878
2879
2880
2881
2882
2883
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2884
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2885
2886
            model = model_class(config).eval()
            model = model.to(torch_device)
2887
            torch.manual_seed(0)
2888
            base_output = model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2889
2890
2891

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
2892
                model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
Sylvain Gugger's avatar
Sylvain Gugger committed
2893
2894

                with self.assertRaises(ValueError):
Yih-Dar's avatar
Yih-Dar committed
2895
2896
                    max_size = int(self.model_split_percents[0] * model_size)
                    max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
2897
2898
2899
                    # This errors out cause it's missing an offload folder
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

Yih-Dar's avatar
Yih-Dar committed
2900
2901
                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
2902
2903
2904
2905
2906
                new_model = model_class.from_pretrained(
                    tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
                )

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2907
                torch.manual_seed(0)
2908
                new_output = new_model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2909

2910
2911
2912
2913
                if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                    self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                else:
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
Sylvain Gugger's avatar
Sylvain Gugger committed
2914

2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
    @require_accelerate
    @mark.accelerate_tests
    @require_torch_gpu
    def test_disk_offload_safetensors(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config).eval()
            model = model.to(torch_device)
            torch.manual_seed(0)
            base_output = model(**inputs_dict_class)

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}

                # This doesn't error out as it's in safetensors and doesn't need an offload folder
                new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
                torch.manual_seed(0)
                new_output = new_model(**inputs_dict_class)

2945
2946
2947
2948
                if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                    self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                else:
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
2949

2950
    @require_accelerate
2951
    @mark.accelerate_tests
2952
2953
2954
2955
2956
2957
2958
2959
    @require_torch_gpu
    def test_cpu_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2960
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2961
2962
            model = model_class(config).eval()
            model = model.to(torch_device)
2963
2964

            torch.manual_seed(0)
2965
            base_output = model(**inputs_dict_class)
2966
2967
2968

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
Yih-Dar's avatar
Yih-Dar committed
2969
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2980
2981

                    torch.manual_seed(0)
2982
                    new_output = new_model(**inputs_dict_class)
2983

2984
2985
2986
2987
                    if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                        self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                    else:
                        self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
2988
2989

    @require_accelerate
2990
    @mark.accelerate_tests
2991
2992
2993
2994
2995
2996
2997
2998
    @require_torch_multi_gpu
    def test_model_parallelism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2999
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
3000
3001
            model = model_class(config).eval()
            model = model.to(torch_device)
3002
3003

            torch.manual_seed(0)
3004
            base_output = model(**inputs_dict_class)
3005
3006
3007

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
3008
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
3019
3020

                    torch.manual_seed(0)
3021
                    new_output = new_model(**inputs_dict_class)
3022

3023
3024
3025
3026
                    if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                        self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                    else:
                        self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
3027

3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
3038
3039
3040
            if model_class.__name__ not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
3041
            ]:
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

3060
3061
3062
3063
3064
3065
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
3066
3067
3068
3069
3070
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
3071

3072
3073
                    loss.backward()

3074
    def test_load_with_mismatched_shapes(self):
3075
3076
        if not self.test_mismatched_shapes:
            return
3077
3078
3079
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
3080
            if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
3081
3082
3083
3084
3085
3086
3087
3088
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
3089
                    with self.assertRaises(RuntimeError):
3090
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
3091
3092
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
3093
3094

                    logger = logging.get_logger("transformers.modeling_utils")
3095

3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
    def test_mismatched_shapes_have_properly_initialized_weights(self):
        if not self.test_mismatched_shapes:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)

        for model_class in self.all_model_classes:
            if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(configs_no_init)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(RuntimeError):
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)

                    logger = logging.get_logger("transformers.modeling_utils")

                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    for name, param in new_model.named_parameters():
                        if param.requires_grad:
                            self.assertIn(
                                ((param.data.mean() * 1e9).round() / 1e9).item(),
                                [0.0, 1.0],
                                msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                            )

    def test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist(self):
        # 1. Create a dummy class. Should have buffers as well? To make sure we test __init__
        class MyClass(PreTrainedModel):
            config_class = PretrainedConfig

            def __init__(self, config=None):
                super().__init__(config if config is not None else PretrainedConfig())
                self.linear = nn.Linear(10, config.num_labels, bias=True)
                self.embedding = nn.Embedding(10, 10)
                self.std = 1

            def _init_weights(self, module):
                if isinstance(module, nn.Linear):
                    module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5))
                    if module.bias is not None:
                        module.bias.data = module.bias.data.normal_(mean=0.0, std=self.std)

        # Used to make sure the weights with matched shape are loaded correctly
        config = PretrainedConfig()
        config.num_labels = 3
        model = MyClass(config=config)

        # Used to make sure the weights with mismatched shape are properly initialized
        set_seed(0)
        config = PretrainedConfig()
        config.num_labels = 4
        # not to init. the weights during the creation: to match the logic in `from_pretrained`, so we can keep the
        # same sequence of random ops in the execution path to allow us to compare `target_model` and `new_model` below
        # for `linear` part.
        with ContextManagers([no_init_weights(True)]):
            target_model = MyClass(config=config)
        target_model.apply(target_model._initialize_weights)

        with tempfile.TemporaryDirectory() as tmpdirname:
            state_dict = model.state_dict()
            del state_dict["linear.weight"]

            model.config.save_pretrained(tmpdirname)
            torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

            set_seed(0)
            new_model = MyClass.from_pretrained(tmpdirname, num_labels=4, ignore_mismatched_sizes=True)

            for key in new_model.state_dict().keys():
                # check weight values for weights with matched shapes are identical
                # (i.e. correctly loaded from the checkpoint)
                if key not in ["linear.weight", "linear.bias"]:
                    max_diff = torch.max(torch.abs(model.state_dict()[key] - new_model.state_dict()[key]))
                    self.assertLessEqual(
                        max_diff.item(),
                        1e-6,
                        msg=f"the weight values for `{key}` in `new_model` and `model` are  not identical",
                    )
                else:
                    # check we have some mismatched shapes
                    self.assertNotEqual(
                        model.state_dict()[key].shape,
                        new_model.state_dict()[key].shape,
                        msg=f"the weight shapes for {key} in `model` and `new_model` should differ",
                    )
                    # check the weights with mismatched shape are properly initialized
                    max_diff = torch.max(torch.abs(new_model.state_dict()[key] - target_model.state_dict()[key]))
                    self.assertLessEqual(
                        max_diff.item(),
                        1e-6,
                        msg=f"the weight values for `{key}` in `new_model` and `target_model` are not identical",
                    )

3222
3223
3224
3225
3226
3227
3228
3229
3230
    def test_model_is_small(self):
        # Just a consistency check to make sure we are not running tests on 80M parameter models.
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            num_params = model.num_parameters()
            assert (
                num_params < 1000000
3231
            ), f"{model_class} is too big for the common tests ({num_params})! It should have 1M max."
3232

3233
3234
3235
3236
3237
3238
3239
3240
3241
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_conversion(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3242
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3243
3244
3245
3246
3247
3248

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(
3249
                    tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2"
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
                ).to(torch_device)

                for _, module in model.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        return

                self.assertTrue(False, "FlashAttention2 modules not found in model")

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
3262
    @is_flaky
Yoach Lacombe's avatar
Yoach Lacombe committed
3263
    def test_flash_attn_2_inference_equivalence(self):
3264
3265
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3266
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3267

3268
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3269
3270
3271
3272
3273
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
3274
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
3275
3276
3277
                )
                model_fa.to(torch_device)

Yoach Lacombe's avatar
Yoach Lacombe committed
3278
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
3279
3280
                model.to(torch_device)

3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                dummy_attention_mask = inputs_dict.get("attention_mask", None)

                if dummy_attention_mask is not None:
                    dummy_attention_mask = dummy_attention_mask[:1]
                    dummy_attention_mask[:, 1:] = 1
                    dummy_attention_mask[:, :1] = 0
3291

3292
3293
3294
3295
3296
3297
3298
3299
                if model.config.is_encoder_decoder:
                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]

                    outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                else:
                    outputs = model(dummy_input, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, output_hidden_states=True)
3300

3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3311

3312
                assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)
3313

3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
                if model.config.is_encoder_decoder:
                    other_inputs = {
                        "decoder_input_ids": decoder_input_ids,
                        "decoder_attention_mask": dummy_attention_mask,
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)
                else:
                    other_inputs = {
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3345

3346
                assert torch.allclose(logits_fa[1:], logits[1:], atol=4e-2, rtol=4e-2)
3347

3348
3349
                # check with inference + dropout
                model.train()
3350
                _ = model_fa(dummy_input, **other_inputs)
3351

3352
3353
3354
3355
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
3356
    @is_flaky
Yoach Lacombe's avatar
Yoach Lacombe committed
3357
    def test_flash_attn_2_inference_equivalence_right_padding(self):
3358
3359
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3360
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3361

3362
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3363
3364
3365
3366
3367
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
3368
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
3369
3370
3371
                )
                model_fa.to(torch_device)

Yoach Lacombe's avatar
Yoach Lacombe committed
3372
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
3373
3374
                model.to(torch_device)

3375
3376
3377
3378
3379
                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                dummy_attention_mask = inputs_dict.get("attention_mask", None)
3380

3381
3382
3383
3384
                if dummy_attention_mask is not None:
                    dummy_attention_mask = dummy_attention_mask[:1]
                    dummy_attention_mask[:, :-1] = 1
                    dummy_attention_mask[:, -1:] = 0
3385

3386
3387
                if model.config.is_encoder_decoder:
                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]
3388

3389
3390
3391
3392
3393
                    outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                else:
                    outputs = model(dummy_input, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, output_hidden_states=True)
3394

3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3405

3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
                assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)

                if model.config.is_encoder_decoder:
                    other_inputs = {
                        "decoder_input_ids": decoder_input_ids,
                        "decoder_attention_mask": dummy_attention_mask,
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)
                else:
                    other_inputs = {
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )

                assert torch.allclose(logits_fa[:-1], logits[:-1], atol=4e-2, rtol=4e-2)
3441
3442
3443
3444
3445

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
3446
    @is_flaky
3447
3448
3449
    def test_flash_attn_2_generate_left_padding(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3450
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3451

3452
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3453
3454
3455
3456
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
3457
3458
3459
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
3460

3461
3462
3463
3464
3465
3466
3467
3468
                dummy_input = inputs_dict[model.main_input_name]
                if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                    dummy_input = dummy_input.to(torch.float16)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
                # make sure we do left padding
                dummy_attention_mask[:, :-1] = 0
                dummy_attention_mask[:, -1:] = 1
3469
3470
3471
3472
3473
3474

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
3475
3476
3477
3478
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
3479
3480
3481
3482
3483
3484
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

3485
                self.assertTrue(torch.allclose(out, out_fa))
3486
3487
3488
3489

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
3490
    @is_flaky
3491
3492
3493
3494
    @slow
    def test_flash_attn_2_generate_padding_right(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3495
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3496

3497
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3498
3499
3500
3501
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
3502
3503
3504
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
3505

3506
3507
3508
3509
3510
                dummy_input = inputs_dict[model.main_input_name]
                if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                    dummy_input = dummy_input.to(torch.float16)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
3511
                # make sure we do right padding
3512
3513
                dummy_attention_mask[:, :-1] = 1
                dummy_attention_mask[:, -1:] = 0
3514
3515
3516
3517
3518
3519

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
3520
3521
3522
3523
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
3524
3525
3526
3527
3528
3529
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

3530
                self.assertTrue(torch.allclose(out, out_fa))
3531

3532
3533
3534
3535
3536
3537
3538
    @parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_inference(self, torch_dtype: str):
        if not self.all_model_classes[0]._supports_sdpa:
            self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")

fxmarty's avatar
fxmarty committed
3539
3540
3541
3542
3543
3544
3545
        if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device):
            self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")

        if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device):
            self.skipTest(
                f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
            )
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561

        # Not sure whether it's fine to put torch.XXX in a decorator if torch is not available so hacking it here instead.
        if torch_dtype == "float16":
            torch_dtype = torch.float16
        elif torch_dtype == "bfloat16":
            torch_dtype = torch.bfloat16
        elif torch_dtype == "float32":
            torch_dtype = torch.float32

        atols = {
            ("cpu", False, torch.float32): 1e-6,
            ("cpu", False, torch.bfloat16): 1e-2,
            ("cpu", True, torch.float32): 1e-6,
            ("cpu", True, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float32): 1e-6,
            ("cuda", False, torch.bfloat16): 1e-2,
fxmarty's avatar
fxmarty committed
3562
            ("cuda", False, torch.float16): 5e-3,
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
            ("cuda", True, torch.float32): 1e-6,
            ("cuda", True, torch.bfloat16): 1e-2,
            ("cuda", True, torch.float16): 5e-3,
        }
        rtols = {
            ("cpu", False, torch.float32): 1e-4,
            ("cpu", False, torch.bfloat16): 1e-2,
            ("cpu", True, torch.float32): 1e-4,
            ("cpu", True, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float32): 1e-4,
            ("cuda", False, torch.bfloat16): 1e-2,
fxmarty's avatar
fxmarty committed
3574
            ("cuda", False, torch.float16): 5e-3,
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
            ("cuda", True, torch.float32): 1e-4,
            ("cuda", True, torch.bfloat16): 3e-2,
            ("cuda", True, torch.float16): 5e-3,
        }

        def get_mean_reldiff(failcase, x, ref, atol, rtol):
            return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            is_encoder_decoder = model.config.is_encoder_decoder

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
                model_sdpa = model_sdpa.eval().to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch_dtype,
                    attn_implementation="eager",
                )
                model_eager = model_eager.eval().to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
3606
3607
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
3608
3609
3610
3611
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
3612
3613
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
                        has_sdpa = True
                        break
                if not has_sdpa and model_sdpa.config.model_type != "falcon":
                    raise ValueError("The SDPA model should have SDPA attention layers")

                # We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving 8 times the model,
                # but it would be nicer to have an efficient way to use parameterized.expand
                fail_cases = []
                for padding_side in ["left", "right"]:
                    for use_mask in [False, True]:
                        for batch_size in [1, 5]:
                            dummy_input = inputs_dict[model.main_input_name]

                            if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
                                dummy_input = dummy_input.to(torch_dtype)

                            dummy_input = dummy_input[:batch_size]
                            if dummy_input.shape[0] != batch_size:
                                if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
                                    extension = torch.rand(
                                        batch_size - dummy_input.shape[0],
                                        *dummy_input.shape[1:],
                                        dtype=torch_dtype,
                                        device=torch_device,
                                    )
                                    dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
                                else:
                                    extension = torch.randint(
                                        high=5,
                                        size=(batch_size - dummy_input.shape[0], *dummy_input.shape[1:]),
                                        dtype=dummy_input.dtype,
                                        device=torch_device,
                                    )
                                    dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)

                            if not use_mask:
                                dummy_attention_mask = None
                            else:
                                dummy_attention_mask = inputs_dict.get("attention_mask", None)
                                if dummy_attention_mask is None:
                                    if is_encoder_decoder:
                                        seqlen = inputs_dict.get("decoder_input_ids", dummy_input).shape[-1]
                                    else:
                                        seqlen = dummy_input.shape[-1]
                                    dummy_attention_mask = (
                                        torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device)
                                    )

                                dummy_attention_mask = dummy_attention_mask[:batch_size]
                                if dummy_attention_mask.shape[0] != batch_size:
                                    extension = torch.ones(
                                        batch_size - dummy_attention_mask.shape[0],
                                        *dummy_attention_mask.shape[1:],
                                        dtype=dummy_attention_mask.dtype,
                                        device=torch_device,
                                    )
                                    dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0)
                                    dummy_attention_mask = dummy_attention_mask.to(torch_device)

                                dummy_attention_mask[:] = 1
                                if padding_side == "left":
                                    dummy_attention_mask[-1, :-1] = 1
                                    dummy_attention_mask[-1, -4:] = 0
                                elif padding_side == "right":
                                    dummy_attention_mask[-1, 1:] = 1
                                    dummy_attention_mask[-1, :3] = 0

                            for enable_kernels in [False, True]:
                                failcase = f"padding_side={padding_side}, use_mask={use_mask}, batch_size={batch_size}, enable_kernels={enable_kernels}"
                                if is_encoder_decoder:
                                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:batch_size]
                                    if decoder_input_ids.shape[0] != batch_size:
                                        extension = torch.ones(
                                            batch_size - decoder_input_ids.shape[0],
                                            *decoder_input_ids.shape[1:],
                                            dtype=decoder_input_ids.dtype,
                                            device=torch_device,
                                        )
                                        decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0)
                                        decoder_input_ids = decoder_input_ids.to(torch_device)

                                    # TODO: never an `attention_mask` arg here?
3696
3697
                                    processed_inputs = {
                                        model.main_input_name: dummy_input,
3698
3699
3700
3701
3702
                                        "decoder_input_ids": decoder_input_ids,
                                        "decoder_attention_mask": dummy_attention_mask,
                                        "output_hidden_states": True,
                                    }
                                else:
3703
3704
                                    processed_inputs = {
                                        model.main_input_name: dummy_input,
3705
3706
3707
3708
3709
                                        "output_hidden_states": True,
                                    }

                                    # Otherwise fails for e.g. WhisperEncoderModel
                                    if "attention_mask" in inspect.signature(model_eager.forward).parameters:
3710
                                        processed_inputs["attention_mask"] = dummy_attention_mask
3711
3712
3713
3714
3715
3716
3717
3718

                                # TODO: test gradients as well (& for FA2 as well!)
                                with torch.no_grad():
                                    with torch.backends.cuda.sdp_kernel(
                                        enable_flash=enable_kernels,
                                        enable_math=True,
                                        enable_mem_efficient=enable_kernels,
                                    ):
3719
3720
3721
                                        prepared_inputs = self._prepare_for_class(processed_inputs, model_class)
                                        outputs_eager = model_eager(**prepared_inputs)
                                        outputs_sdpa = model_sdpa(**prepared_inputs)
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791

                                logits_eager = (
                                    outputs_eager.hidden_states[-1]
                                    if not is_encoder_decoder
                                    else outputs_eager.decoder_hidden_states[-1]
                                )
                                logits_sdpa = (
                                    outputs_sdpa.hidden_states[-1]
                                    if not is_encoder_decoder
                                    else outputs_sdpa.decoder_hidden_states[-1]
                                )

                                if torch_device in ["cpu", "cuda"]:
                                    atol = atols[torch_device, enable_kernels, torch_dtype]
                                    rtol = rtols[torch_device, enable_kernels, torch_dtype]
                                else:
                                    atol = 1e-7
                                    rtol = 1e-4

                                # Masked tokens output slightly deviates - we don't mind that.
                                if use_mask:
                                    if padding_side == "left":
                                        sub_sdpa = logits_sdpa[:-1]
                                        sub_eager = logits_eager[:-1]
                                        if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            fail_cases.append(
                                                get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                            )

                                        sub_sdpa = logits_sdpa[-1, :-4]
                                        sub_eager = logits_eager[-1, :-4]
                                        if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            fail_cases.append(
                                                get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                            )

                                        # Testing the padding tokens is not really meaningful but anyway
                                        # sub_sdpa = logits_sdpa[-1, -4:]
                                        # sub_eager = logits_eager[-1, -4:]
                                        # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                        #     fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))
                                    elif padding_side == "right":
                                        sub_sdpa = logits_sdpa[:-1]
                                        sub_eager = logits_eager[:-1]
                                        if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            fail_cases.append(
                                                get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                            )

                                        sub_sdpa = logits_sdpa[-1, 3:]
                                        sub_eager = logits_eager[-1, 3:]
                                        if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            fail_cases.append(
                                                get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                            )

                                        # Testing the padding tokens is not really meaningful but anyway
                                        # sub_sdpa = logits_sdpa[-1, :3]
                                        # sub_eager = logits_eager[-1, :3]
                                        # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                        #     fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))

                                else:
                                    if not torch.allclose(logits_sdpa, logits_eager, atol=atol, rtol=rtol):
                                        fail_cases.append(
                                            get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol)
                                        )

                self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))

3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
    @require_torch_sdpa
    @require_torch_gpu
    @slow
    def test_sdpa_can_dispatch_on_flash(self):
        compute_capability = torch.cuda.get_device_capability()
        major, _ = compute_capability

        if not torch.version.cuda or major < 8:
            self.skipTest("This test requires an NVIDIA GPU with compute capability >= 8.0")

        for model_class in self.all_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3807
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
            if config.model_type in ["llava", "llava_next", "vipllava"]:
                self.skipTest("Llava-like models currently (transformers==4.39.1) requires an attention_mask input")
            if config.model_type in ["idefics"]:
                self.skipTest("Idefics currently (transformers==4.39.1) requires an image_attention_mask input")
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa")
                model.to(torch_device)

                inputs_dict.pop("attention_mask", None)
                inputs_dict.pop("decoder_attention_mask", None)

                for name, inp in inputs_dict.items():
                    if isinstance(inp, torch.Tensor) and inp.dtype in [torch.float32, torch.float16]:
                        inputs_dict[name] = inp.to(torch.float16)

                with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
                    _ = model(**inputs_dict)

3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_generate(self):
        max_new_tokens = 30

        if len(self.all_generative_model_classes) == 0:
            self.skipTest(f"{self.__class__.__name__} tests a model that does support generate: skipping this test")

        for model_class in self.all_generative_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))

                model_sdpa = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                ).to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                    attn_implementation="eager",
                ).to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
3876
3877
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
3878
3879
3880
3881
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
3882
3883
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
                        has_sdpa = True
                        break
                if not has_sdpa:
                    raise ValueError("The SDPA model should have SDPA attention layers")

                # Just test that a large cache works as expected
                res_eager = model_eager.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                res_sdpa = model_sdpa.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                self.assertTrue(torch.allclose(res_eager, res_sdpa))

3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
    @require_torch_sdpa
    def test_sdpa_matches_eager_sliding_window(self):
        WINDOW_ATTENTION_MODELS = ["mistral", "mixtral", "qwen2", "qwen_moe", "starcoder2"]

        if len(self.all_generative_model_classes) == 0:
            self.skipTest(f"No generative model classes for {self.__class__.__name__}")

        for model_class in self.all_generative_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            if config.model_type not in WINDOW_ATTENTION_MODELS:
                self.skipTest(f"{config.model_type} does not use window attention")

            config.sliding_window = 2

            dummy_input = inputs_dict[model_class.main_input_name]
            attention_mask = inputs_dict["attention_mask"]

            self.assertTrue(dummy_input.ndim == 2)
            self.assertTrue(dummy_input.shape[1] > 6)

            with tempfile.TemporaryDirectory() as tmpdir:
                with torch.device(torch_device):
                    model_eager = AutoModelForCausalLM.from_config(
                        config, attn_implementation="eager", torch_dtype=torch.float32
                    )

                model_eager.save_pretrained(tmpdir)

                with torch.device(torch_device):
                    model_sdpa = AutoModelForCausalLM.from_pretrained(
                        tmpdir, attn_implementation="sdpa", torch_dtype=torch.float32
                    )

                model_eager = model_eager.eval()
                model_sdpa = model_sdpa.eval()

                with torch.no_grad():
                    with torch.backends.cuda.sdp_kernel(
                        enable_flash=False,
                        enable_math=True,
                        enable_mem_efficient=False,
                    ):
                        res_eager = model_eager(**inputs_dict, return_dict=False)[0]
                        res_sdpa = model_sdpa(**inputs_dict, return_dict=False)[0]

                # Only non-padding tokens are expected to match.
                self.assertTrue(
3948
                    torch.allclose(res_eager[attention_mask == 1], res_sdpa[attention_mask == 1], rtol=1e-4, atol=1e-4)
3949
3950
                )

3951
3952
3953
3954
3955
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_use_cache(self):
3956
3957
        max_new_tokens = 30

3958
3959
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3960
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3961

3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

3972
3973
3974
3975
3976
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

3977
                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
3978
3979

                model = model_class.from_pretrained(
3980
3981
                    tmpdirname,
                    torch_dtype=torch.float16,
3982
                    attn_implementation="flash_attention_2",
3983
                    low_cpu_mem_usage=True,
3984
3985
3986
3987
                ).to(torch_device)

                # Just test that a large cache works as expected
                _ = model.generate(
3988
3989
3990
3991
3992
                    dummy_input,
                    attention_mask=dummy_attention_mask,
                    max_new_tokens=max_new_tokens,
                    do_sample=False,
                    use_cache=True,
3993
3994
                )

3995
3996
3997
3998
3999
4000
4001
4002
    @require_flash_attn
    @require_torch_gpu
    @require_bitsandbytes
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_fp32_ln(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
4003
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
4004
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
4005
4006
4007
4008
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

4009
4010
                dummy_input = inputs_dict[model.main_input_name]
                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
4011
                batch_size = dummy_attention_mask.shape[0]
4012

4013
4014
4015
4016
4017
                is_padding_right = dummy_attention_mask[:, -1].sum().item() != batch_size

                # To avoid errors with padding_side=="right"
                if is_padding_right:
                    dummy_attention_mask = torch.ones_like(dummy_input)
4018
4019
4020
4021

                model = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
4022
                    attn_implementation="flash_attention_2",
4023
4024
4025
4026
4027
4028
4029
4030
4031
                    low_cpu_mem_usage=True,
                    load_in_4bit=True,
                )

                for _, param in model.named_parameters():
                    # upcast only layer norms
                    if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
                        param.data = param.data.to(torch.float32)

4032
                if model.config.is_encoder_decoder:
4033
4034
4035
                    dummy_decoder_input_ids = inputs_dict["decoder_input_ids"]
                    dummy_decoder_attention_mask = inputs_dict["decoder_attention_mask"]

4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
                    _ = model(dummy_input, decoder_input_ids=dummy_decoder_input_ids)
                    # with attention mask
                    _ = model(
                        dummy_input,
                        attention_mask=dummy_attention_mask,
                        decoder_input_ids=dummy_decoder_input_ids,
                        decoder_attention_mask=dummy_decoder_attention_mask,
                    )
                else:
                    _ = model(dummy_input)
                    # with attention mask
                    _ = model(dummy_input, attention_mask=dummy_attention_mask)
4048

4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
    @is_pt_tf_cross_test
    def test_tf_from_pt_safetensors(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
            if not hasattr(transformers, tf_model_class_name):
                # transformers does not have this model in TF version yet
                return

            tf_model_class = getattr(transformers, tf_model_class_name)

            pt_model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname, safe_serialization=True)
                tf_model_1 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)

                pt_model.save_pretrained(tmpdirname, safe_serialization=False)
                tf_model_2 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)

                # Check models are equal
                for p1, p2 in zip(tf_model_1.weights, tf_model_2.weights):
                    self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))

    @is_pt_flax_cross_test
    def test_flax_from_pt_safetensors(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            flax_model_class_name = "Flax" + model_class.__name__  # Add the "Flax at the beginning
            if not hasattr(transformers, flax_model_class_name):
                # transformers does not have this model in Flax version yet
                return

            flax_model_class = getattr(transformers, flax_model_class_name)

            pt_model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname, safe_serialization=True)
                flax_model_1 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)

                pt_model.save_pretrained(tmpdirname, safe_serialization=False)
                flax_model_2 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)

                # Check models are equal
                self.assertTrue(check_models_equal(flax_model_1, flax_model_2))

4098
4099
4100
4101
4102
4103
4104
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_from_config(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
4105
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
4106
4107
4108
4109

            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
            # TODO: to change it in the future with other relevant auto classes
            fa2_model = AutoModelForCausalLM.from_config(
4110
                config, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
            ).to(torch_device)

            dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
            dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [0, 1, 1, 1]]).to(torch_device)

            fa2_correctly_converted = False

            for _, module in fa2_model.named_modules():
                if "FlashAttention" in module.__class__.__name__:
                    fa2_correctly_converted = True
                    break

            self.assertTrue(fa2_correctly_converted)

            _ = fa2_model(input_ids=dummy_input, attention_mask=dummy_attention_mask)

            with tempfile.TemporaryDirectory() as tmpdirname:
                fa2_model.save_pretrained(tmpdirname)

                model_from_pretrained = AutoModelForCausalLM.from_pretrained(tmpdirname)

4132
                self.assertTrue(model_from_pretrained.config._attn_implementation != "flash_attention_2")
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142

                fa2_correctly_converted = False

                for _, module in model_from_pretrained.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        fa2_correctly_converted = True
                        break

                self.assertFalse(fa2_correctly_converted)

4143

4144
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
4145
4146


thomwolf's avatar
thomwolf committed
4147
def ids_tensor(shape, vocab_size, rng=None, name=None):
4148
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
4149
    if rng is None:
4150
        rng = global_rng
thomwolf's avatar
thomwolf committed
4151

thomwolf's avatar
thomwolf committed
4152
4153
4154
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
4155

thomwolf's avatar
thomwolf committed
4156
4157
4158
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
4159

4160
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
4161
4162


4163
4164
4165
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
4166
4167
    # we choose the 1st token so this property of `at least one being non-zero` still holds after applying causal mask
    attn_mask[:, 0] = 1
4168
4169
4170
    return attn_mask


4171
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
4172
    """Creates a random float32 tensor"""
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

4184
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()