test_modeling_common.py 169 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
import collections
16
import copy
17
import gc
18
import inspect
19
import os
20
import os.path
21
import pickle
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
23
import re
24
import tempfile
25
import warnings
26
from collections import defaultdict
NielsRogge's avatar
NielsRogge committed
27
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
28

29
import numpy as np
30
from parameterized import parameterized
31
from pytest import mark
32
33

import transformers
34
35
from transformers import (
    AutoModel,
36
    AutoModelForCausalLM,
37
38
39
40
41
    AutoModelForSequenceClassification,
    PretrainedConfig,
    is_torch_available,
    logging,
)
42
from transformers.models.auto import get_values
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
    MODEL_FOR_BACKBONE_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_MAPPING_NAMES,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
63
64
from transformers.testing_utils import (
    CaptureLogger,
65
66
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
67
    require_accelerate,
68
    require_bitsandbytes,
69
    require_flash_attn,
70
    require_safetensors,
Sylvain Gugger's avatar
Sylvain Gugger committed
71
    require_torch,
72
    require_torch_gpu,
Sylvain Gugger's avatar
Sylvain Gugger committed
73
    require_torch_multi_gpu,
74
    require_torch_sdpa,
Sylvain Gugger's avatar
Sylvain Gugger committed
75
76
77
    slow,
    torch_device,
)
78
from transformers.utils import (
79
80
    CONFIG_NAME,
    GENERATION_CONFIG_NAME,
81
    SAFE_WEIGHTS_NAME,
82
    is_accelerate_available,
83
84
85
86
87
    is_flax_available,
    is_tf_available,
    is_torch_fx_available,
)
from transformers.utils.generic import ModelOutput
88

Aymeric Augustin's avatar
Aymeric Augustin committed
89

90
91
92
93
if is_accelerate_available():
    from accelerate.utils import compute_module_sizes


94
if is_torch_available():
95
    import torch
96
    from safetensors.torch import load_file as safe_load_file
97
    from safetensors.torch import save_file as safe_save_file
98
    from torch import nn
thomwolf's avatar
thomwolf committed
99

100
    from transformers import MODEL_MAPPING, AdaptiveEmbedding
Sylvain Gugger's avatar
Sylvain Gugger committed
101
    from transformers.pytorch_utils import id_tensor_storage
thomwolf's avatar
thomwolf committed
102

Sylvain Gugger's avatar
Sylvain Gugger committed
103

104
105
106
if is_tf_available():
    import tensorflow as tf

107
108
if is_flax_available():
    import jax.numpy as jnp
109

110
    from tests.test_modeling_flax_utils import check_models_equal
111
112
113
114
115
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

116
if is_torch_fx_available():
117
    from transformers.utils.fx import symbolic_trace
118

119

120
121
122
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
123
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
124
            setattr(configs_no_init, key, 1e-10)
125
126
127
        if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
            no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
            setattr(configs_no_init, key, no_init_subconfig)
128
129
    return configs_no_init

thomwolf's avatar
thomwolf committed
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
def _mock_init_weights(self, module):
    for name, param in module.named_parameters(recurse=False):
        # Use the first letter of the name to get a value and go from a <> -13 to z <> 12
        value = ord(name[0].lower()) - 110
        param.data.fill_(value)


def _mock_all_init_weights(self):
    # Prune heads if needed
    if self.config.pruned_heads:
        self.prune_heads(self.config.pruned_heads)

    import transformers.modeling_utils

    if transformers.modeling_utils._init_weights:
        for module in self.modules():
            module._is_hf_initialized = False
        # Initialize weights
        self.apply(self._initialize_weights)

        # Tie weights should be skipped when not initializing all weights
        # since from_pretrained(...) calls tie weights anyways
        self.tie_weights()


156
157
158
159
@require_torch
class ModelTesterMixin:
    model_tester = None
    all_model_classes = ()
160
    all_generative_model_classes = ()
161
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
162
163
164
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
165
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
166
    test_head_masking = True
167
    test_mismatched_shapes = True
168
    test_missing_keys = True
169
    test_model_parallel = False
170
    is_encoder_decoder = False
171
    has_attentions = True
172
    model_split_percents = [0.5, 0.7, 0.9]
173

174
175
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
176
        if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
177
            inputs_dict = {
178
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
179
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
180
                else v
181
182
                for k, v in inputs_dict.items()
            }
183
        elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES):
184
            inputs_dict.pop("attention_mask")
185
186

        if return_labels:
187
            if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
188
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
189
190
191
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
192
            ]:
193
194
195
196
197
198
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
199
200
201
202
203
204
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
205
            ]:
206
207
208
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
209
210
211
212
213
214
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
215
216
217
218
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
219
            elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
220
221
222
223
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
224
            elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
225
226
227
228
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
229

230
231
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
232
    def test_save_load(self):
233
234
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

235
236
237
238
239
240
241
242
243
244
        def check_save_load(out1, out2):
            # make sure we don't have nans
            out_2 = out2.cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            out_1 = out1.cpu().numpy()
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

245
246
247
248
249
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
250
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
251

252
            with tempfile.TemporaryDirectory() as tmpdirname:
253
                model.save_pretrained(tmpdirname)
254
255
256
257
258
259
260

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

261
                model = model_class.from_pretrained(tmpdirname)
262
                model.to(torch_device)
263
                with torch.no_grad():
264
                    second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
thomwolf's avatar
thomwolf committed
265

266
267
268
269
270
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_save_load(tensor1, tensor2)
            else:
                check_save_load(first, second)
271

272
273
274
275
276
277
278
279
280
281
282
283
    def test_from_pretrained_no_checkpoint(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            state_dict = model.state_dict()

            new_model = model_class.from_pretrained(
                pretrained_model_name_or_path=None, config=config, state_dict=state_dict
            )
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    def test_keep_in_fp32_modules(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            if model_class._keep_in_fp32_modules is None:
                return

            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16)

                for name, param in model.named_parameters():
                    if any(n in model_class._keep_in_fp32_modules for n in name.split(".")):
                        self.assertTrue(param.dtype == torch.float32)
                    else:
                        self.assertTrue(param.dtype == torch.float16, name)

302
    def test_save_load_keys_to_ignore_on_save(self):
303
304
305
306
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
307
308
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
309
310
311
                continue

            # check the keys are in the original state_dict
312
            for k in _keys_to_ignore_on_save:
313
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
314
315
316
317

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
318
319
320
                output_model_file = os.path.join(tmpdirname, SAFE_WEIGHTS_NAME)
                state_dict_saved = safe_load_file(output_model_file)

321
                for k in _keys_to_ignore_on_save:
322
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
323

Sylvain Gugger's avatar
Sylvain Gugger committed
324
325
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
326
327
328
329
330
331
                keys_to_ignore = set(model._keys_to_ignore_on_save)

                if hasattr(model, "_tied_weights_keys"):
                    keys_to_ignore.update(set(model._tied_weights_keys))

                self.assertTrue(len(load_result.missing_keys) == 0 or set(load_result.missing_keys) == keys_to_ignore)
Sylvain Gugger's avatar
Sylvain Gugger committed
332
333
                self.assertTrue(len(load_result.unexpected_keys) == 0)

334
335
336
337
338
339
340
341
342
343
344
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

360
361
362
363
364
365
366
            # Loop over all modules and check that relevant modules have gradient_checkpointing set to True
            for n, m in model.named_modules():
                if hasattr(m, "gradient_checkpointing"):
                    self.assertTrue(
                        m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to True"
                    )

367
368
369
370
            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

371
372
373
374
375
376
377
            # Loop over all modules and check that relevant modules have gradient_checkpointing set to False
            for n, m in model.named_modules():
                if hasattr(m, "gradient_checkpointing"):
                    self.assertFalse(
                        m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to False"
                    )

378
379
    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
380
381
        if config.__class__ not in MODEL_MAPPING:
            return
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
403
404
            model_class_copy._init_weights = _mock_init_weights
            model_class_copy.init_weights = _mock_all_init_weights
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)
421
                # Before we test anything
422
423

                for key in model_fast_init.state_dict().keys():
424
425
426
427
428
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item()
                    else:
                        max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
429
430
431

    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
432
433
        if config.__class__ not in MODEL_MAPPING:
            return
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
455
456
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
475
476
477
478
479
480
481
482
483
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = torch.max(
                            model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]
                        ).item()
                    else:
                        max_diff = torch.max(
                            torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])
                        ).item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
484

Patrick von Platen's avatar
Patrick von Platen committed
485
    def test_initialization(self):
486
487
488
489
490
491
492
493
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
494
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
495
                        [0.0, 1.0],
496
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
497
                    )
thomwolf's avatar
thomwolf committed
498

Patrick von Platen's avatar
Patrick von Platen committed
499
    def test_determinism(self):
500
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
501
502
503
504
505
506
507
508
509

        def check_determinism(first, second):
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

510
511
512
513
514
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
515
516
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
517

518
519
520
521
522
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_determinism(tensor1, tensor2)
            else:
                check_determinism(first, second)
523

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
540
                expected_arg_names.extend(
541
542
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
543
544
545
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
546
547
548
549
550
551
            elif model_class.__name__ in [*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] and self.has_attentions:
                expected_arg_names = ["pixel_values", "output_hidden_states", "output_attentions", "return_dict"]
                self.assertListEqual(arg_names, expected_arg_names)
            elif model_class.__name__ in [*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] and not self.has_attentions:
                expected_arg_names = ["pixel_values", "output_hidden_states", "return_dict"]
                self.assertListEqual(arg_names, expected_arg_names)
552
            else:
553
                expected_arg_names = [model.main_input_name]
554
555
                self.assertListEqual(arg_names[:1], expected_arg_names)

556
    def check_training_gradient_checkpointing(self, gradient_checkpointing_kwargs=None):
557
558
559
560
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
561
562
563
564
565
            if (
                model_class.__name__
                in [*get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)]
                or not model_class.supports_gradient_checkpointing
            ):
566
                continue
567

568
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
569
570
            config.use_cache = False
            config.return_dict = True
571
            model = model_class(config)
572

573
            model.to(torch_device)
574
            model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)
575
            model.train()
576
577
578
579
580
581
582

            # unfreeze additional layers
            for p in model.parameters():
                p.requires_grad_(True)

            optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

583
584
585
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()
586
            optimizer.step()
587

588
589
590
591
592
            for k, v in model.named_parameters():
                if v.requires_grad:
                    self.assertTrue(v.grad is not None, f"{k} in {model_class.__name__} has no gradient!")

    def test_training(self):
593
        if not self.model_tester.is_training:
594
595
596
            return

        for model_class in self.all_model_classes:
597
598
599
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

600
601
602
603
            if model_class.__name__ in [
                *get_values(MODEL_MAPPING_NAMES),
                *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
            ]:
604
                continue
605

606
607
608
609
610
611
612
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

613
614
615
616
617
618
619
620
621
622
623
624
625
    def test_training_gradient_checkpointing(self):
        # Scenario - 1 default behaviour
        self.check_training_gradient_checkpointing()

    def test_training_gradient_checkpointing_use_reentrant(self):
        # Scenario - 2 with `use_reentrant=True` - this is the default value that is used in pytorch's
        # torch.utils.checkpoint.checkpoint
        self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": True})

    def test_training_gradient_checkpointing_use_reentrant_false(self):
        # Scenario - 3 with `use_reentrant=False` pytorch suggests users to use this value for
        # future releases: https://pytorch.org/docs/stable/checkpoint.html
        self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": False})
626

Patrick von Platen's avatar
Patrick von Platen committed
627
    def test_attention_outputs(self):
628
629
630
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

631
632
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
633

634
635
636
637
638
639
640
641
642
643
644
645
        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
646
            config.return_dict = True
647
648
649
650
651
652
653
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
654

655
656
657
658
659
660
661
662
663
664
            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
665

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
            out_len = len(outputs)

            if self.is_encoder_decoder:
                correct_outlen = 5

                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
685
686
687
                if model_class.__name__ in [
                    *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                    *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
688
                ]:
689
690
691
692
693
694
695
696
697
698
699
700
701
702
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )
703

704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
747

748
    @slow
749
    def test_torchscript_simple(self):
750
751
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
752

753
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
754
    def test_torchscript_output_attentions(self):
755
756
757
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
758

759
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
760
    def test_torchscript_output_hidden_state(self):
761
762
763
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
764

765
766
767
768
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):
        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
769
770
771
        # torch 1.8 has no `_clear_class_state` in `torch.jit._state`
        if hasattr(torch.jit._state, "_clear_class_state"):
            torch.jit._state._clear_class_state()
772

773
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
774
        if not self.test_torchscript:
775
            return
776

777
778
779
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
780
781
782
            for attn_implementation in ["eager", "sdpa"]:
                if attn_implementation == "sdpa" and not model_class._supports_sdpa:
                    continue
783

784
785
786
787
788
                configs_no_init._attn_implementation = attn_implementation
                model = model_class(config=configs_no_init)
                model.to(torch_device)
                model.eval()
                inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
789

790
                main_input_name = model_class.main_input_name
thomwolf's avatar
thomwolf committed
791

792
                try:
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
                    if model.config.is_encoder_decoder:
                        model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                        main_input = inputs[main_input_name]
                        attention_mask = inputs["attention_mask"]
                        decoder_input_ids = inputs["decoder_input_ids"]
                        decoder_attention_mask = inputs["decoder_attention_mask"]
                        model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
                        traced_model = torch.jit.trace(
                            model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
                        )
                    elif "bbox" in inputs and "image" in inputs:  # LayoutLMv2 requires additional inputs
                        input_ids = inputs["input_ids"]
                        bbox = inputs["bbox"]
                        image = inputs["image"].tensor
                        model(input_ids, bbox, image)
                        traced_model = torch.jit.trace(
                            model, (input_ids, bbox, image), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
                    elif "bbox" in inputs:  # Bros requires additional inputs (bbox)
                        input_ids = inputs["input_ids"]
                        bbox = inputs["bbox"]
                        model(input_ids, bbox)
                        traced_model = torch.jit.trace(
                            model, (input_ids, bbox), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
                    else:
                        main_input = inputs[main_input_name]

                        if model.config._attn_implementation == "sdpa":
                            trace_input = {main_input_name: main_input}

                            if "attention_mask" in inputs:
                                trace_input["attention_mask"] = inputs["attention_mask"]
                            else:
                                self.skipTest("testing SDPA without attention_mask is not supported")

                            model(main_input, attention_mask=inputs["attention_mask"])
                            # example_kwarg_inputs was introduced in torch==2.0, but it is fine here since SDPA has a requirement on torch>=2.1.
                            traced_model = torch.jit.trace(model, example_kwarg_inputs=trace_input)
                        else:
                            model(main_input)
                            traced_model = torch.jit.trace(model, (main_input,))
                except RuntimeError:
                    self.fail("Couldn't trace module.")

                with tempfile.TemporaryDirectory() as tmp_dir_name:
                    pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                    try:
                        torch.jit.save(traced_model, pt_file_name)
                    except Exception:
                        self.fail("Couldn't save module.")

                    try:
                        loaded_model = torch.jit.load(pt_file_name)
                    except Exception:
                        self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
850

851
852
                model.to(torch_device)
                model.eval()
thomwolf's avatar
thomwolf committed
853

854
855
                loaded_model.to(torch_device)
                loaded_model.eval()
thomwolf's avatar
thomwolf committed
856

857
858
                model_state_dict = model.state_dict()
                loaded_model_state_dict = loaded_model.state_dict()
859

860
861
862
863
                non_persistent_buffers = {}
                for key in loaded_model_state_dict.keys():
                    if key not in model_state_dict.keys():
                        non_persistent_buffers[key] = loaded_model_state_dict[key]
864

865
866
867
                loaded_model_state_dict = {
                    key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
                }
868

869
                self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
870

871
872
873
874
875
876
877
                model_buffers = list(model.buffers())
                for non_persistent_buffer in non_persistent_buffers.values():
                    found_buffer = False
                    for i, model_buffer in enumerate(model_buffers):
                        if torch.equal(non_persistent_buffer, model_buffer):
                            found_buffer = True
                            break
878

879
880
                    self.assertTrue(found_buffer)
                    model_buffers.pop(i)
881

882
883
884
885
886
887
                models_equal = True
                for layer_name, p1 in model_state_dict.items():
                    if layer_name in loaded_model_state_dict:
                        p2 = loaded_model_state_dict[layer_name]
                        if p1.data.ne(p2.data).sum() > 0:
                            models_equal = False
thomwolf's avatar
thomwolf committed
888

889
                self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
890

891
892
893
                # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
                # (Even with this call, there are still memory leak by ~0.04MB)
                self.clear_torch_jit_class_registry()
894

895
896
897
898
899
900
901
902
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

903
904
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
905
906
907
908
909
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

910
        for model_class in self.all_model_classes:
911
912
913
914
915
916
917
918
919
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    labels = inputs.get("labels", None)
920
921
922
                    input_names = [
                        "attention_mask",
                        "decoder_attention_mask",
923
                        "decoder_input_ids",
924
                        "input_features",
925
926
                        "input_ids",
                        "input_values",
927
                    ]
928
929
                    if labels is not None:
                        input_names.append("labels")
930

931
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
932
                    input_names = list(filtered_inputs.keys())
933

934
                    model_output = model(**filtered_inputs)
935

936
                    traced_model = symbolic_trace(model, input_names)
937
                    traced_output = traced_model(**filtered_inputs)
938
                else:
939
940
941
942
                    input_names = [
                        "attention_mask",
                        "bbox",
                        "input_features",
943
944
945
946
947
948
                        "input_ids",
                        "input_values",
                        "pixel_values",
                        "token_type_ids",
                        "visual_feats",
                        "visual_pos",
949
                    ]
950

951
                    labels = inputs.get("labels", None)
952
953
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
954
955
                    if labels is not None:
                        input_names.append("labels")
956
957
958
959
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")
960

961
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
962
                    input_names = list(filtered_inputs.keys())
963

964
                    if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
965
                        not hasattr(model.config, "problem_type") or model.config.problem_type is None
966
967
968
                    ):
                        model.config.problem_type = "single_label_classification"

969
                    traced_model = symbolic_trace(model, input_names)
970
                    traced_output = traced_model(**filtered_inputs)
971
                    model_output = model(**filtered_inputs)
972

973
            except Exception as e:
974
                self.fail(f"Couldn't trace module: {e}")
975

976
977
978
979
980
981
982
983
984
985
986
987
988
            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
989
            num_outputs = len(model_output)
990
991
992
993
994
995

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )
996

997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
            # Test that the model can be serialized and restored properly
            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
                try:
                    with open(pkl_file_name, "wb") as f:
                        pickle.dump(traced_model, f)
                    with open(pkl_file_name, "rb") as f:
                        loaded = pickle.load(f)
                except Exception as e:
                    self.fail(f"Couldn't serialize / deserialize the traced model: {e}")

                loaded_output = loaded(**filtered_inputs)
                loaded_output = flatten_output(loaded_output)

                for i in range(num_outputs):
                    self.assertTrue(
                        torch.allclose(model_output[i], loaded_output[i]),
                        f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
                    )

1017
1018
1019
1020
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

Patrick von Platen's avatar
Patrick von Platen committed
1021
1022
    def test_headmasking(self):
        if not self.test_head_masking:
1023
            return
1024

1025
1026
1027
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
1028

1029
        inputs_dict["output_attentions"] = True
1030
1031
1032
1033
1034
1035
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
1036

1037
1038
1039
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
1040
1041
1042
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
1043
1044
1045
1046
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
1047
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
1048
            inputs["head_mask"] = head_mask
1049
1050
1051
1052
1053
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
1054
1055
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
1056
            outputs = model(**inputs, return_dict=True)
1057
1058
1059
1060
1061
1062
1063
1064
1065

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
1087
                check_attentions_validity(outputs.cross_attentions)
1088
1089
            else:
                check_attentions_validity(outputs.attentions)
1090

Patrick von Platen's avatar
Patrick von Platen committed
1091
1092
    def test_head_pruning(self):
        if not self.test_pruning:
1093
1094
1095
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1096
1097
1098
1099
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1100

1101
1102
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1103

1104
            inputs_dict["output_attentions"] = True
1105
1106
1107
1108
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1109
1110
1111
1112
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1113
1114
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
1115
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1116

1117
            attentions = outputs[-1]
1118

1119
            self.assertEqual(attentions[0].shape[-3], 1)
1120
1121
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1122
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
1123

Patrick von Platen's avatar
Patrick von Platen committed
1124
1125
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
1126
            return
LysandreJik's avatar
LysandreJik committed
1127

1128
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1129
1130
1131
1132
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1133
1134
1135

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1136

1137
            inputs_dict["output_attentions"] = True
1138
1139
1140
1141
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1142
1143
1144
1145
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1146
            model.prune_heads(heads_to_prune)
1147

1148
            with tempfile.TemporaryDirectory() as temp_dir_name:
1149
1150
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1151
                model.to(torch_device)
1152

1153
            with torch.no_grad():
1154
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1155
1156
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
1157
1158
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1159
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1160

Patrick von Platen's avatar
Patrick von Platen committed
1161
1162
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
1163
            return
1164

1165
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1166
1167
1168
1169
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1170

1171
1172
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1173

1174
            inputs_dict["output_attentions"] = True
1175
            config.output_hidden_states = False
1176

1177
1178
1179
1180
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1181
            config.pruned_heads = heads_to_prune
1182

1183
1184
1185
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1186

1187
            with torch.no_grad():
1188
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1189
            attentions = outputs[-1]
1190

1191
            self.assertEqual(attentions[0].shape[-3], 1)
1192
1193
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1194
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1195

Patrick von Platen's avatar
Patrick von Platen committed
1196
1197
    def test_head_pruning_integration(self):
        if not self.test_pruning:
1198
            return
1199

1200
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1201
1202
1203
1204
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1205

1206
1207
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1208

1209
            inputs_dict["output_attentions"] = True
1210
            config.output_hidden_states = False
1211

1212
            heads_to_prune = {1: [1, 2]}
1213
            config.pruned_heads = heads_to_prune
1214

1215
1216
1217
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1218

1219
            with torch.no_grad():
1220
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1221
            attentions = outputs[-1]
1222

1223
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1224
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1225

1226
            with tempfile.TemporaryDirectory() as temp_dir_name:
1227
1228
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1229
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
1230

1231
            with torch.no_grad():
1232
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1233
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
1234

1235
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1236
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1237

1238
            heads_to_prune = {0: [0], 1: [1, 2]}
1239
            model.prune_heads(heads_to_prune)
1240

1241
            with torch.no_grad():
1242
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1243
            attentions = outputs[-1]
1244

1245
1246
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
1247

1248
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2]})
thomwolf's avatar
thomwolf committed
1249

Patrick von Platen's avatar
Patrick von Platen committed
1250
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1251
        def check_hidden_states_output(inputs_dict, config, model_class):
1252
            model = model_class(config)
1253
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1254
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1255

thomwolf's avatar
thomwolf committed
1256
            with torch.no_grad():
1257
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1258
1259

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1260

Sylvain Gugger's avatar
Sylvain Gugger committed
1261
1262
1263
1264
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1265

Patrick von Platen's avatar
Patrick von Platen committed
1266
1267
1268
1269
1270
1271
1272
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1273
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1274
1275
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1276
            )
thomwolf's avatar
thomwolf committed
1277

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1303
1304
1305
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1306
        config.output_attentions = self.has_attentions
1307
1308
1309
1310
1311
1312
1313
1314
1315

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1316

1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1327
1328
1329
1330
1331
1332
1333
1334
1335
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1336
1337
1338
1339
1340

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1341
1342
1343
1344
1345

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1346
1347
1348
1349
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1350
1351
1352
1353

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1354
1355
1356
1357

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1358
1359
1360

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1361

Pradhy729's avatar
Pradhy729 committed
1362
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1363
1364
1365
1366
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1464
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1465
1466
1467
1468
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1469
        if not self.test_resize_embeddings:
1470
1471
1472
1473
1474
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1475
            model.to(torch_device)
1476

Patrick von Platen's avatar
Patrick von Platen committed
1477
1478
1479
            if self.model_tester.is_training is False:
                model.eval()

1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1490
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1491
            model(**self._prepare_for_class(inputs_dict, model_class))
1492
1493
1494
1495
1496
1497
1498

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1499
1500
1501
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1502
1503
1504
1505

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1506
            model(**self._prepare_for_class(inputs_dict, model_class))
1507

1508
1509
1510
1511
1512
1513
1514
1515
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
            self.assertTrue(model.config.vocab_size + 10, model_vocab_size)

            model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

Arthur's avatar
Arthur committed
1527
1528
1529
            self.assertTrue(model_embed.weight.shape[0], model.config.vocab_size)
            self.assertTrue(model.config.vocab_size, model.vocab_size)

1530
1531
1532
            model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

1533
1534
1535
1536
1537
            # Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
            target_dimension = 128
            model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0], target_dimension)

1538
1539
1540
1541
1542
1543
            with self.assertRaisesRegex(
                ValueError,
                "Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
            ):
                model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)

1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1595
    def test_model_common_attributes(self):
1596
1597
1598
1599
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1600
1601
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1602
            x = model.get_output_embeddings()
1603
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1604

1605
1606
1607
1608
1609
1610
1611
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1612
    def test_correct_missing_keys(self):
1613
1614
        if not self.test_missing_keys:
            return
1615
1616
1617
1618
1619
1620
1621
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
                extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
                extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
                # Some models define this as None
                if model._keys_to_ignore_on_load_missing:
                    for key in model._keys_to_ignore_on_load_missing:
                        extra_params.pop(key, None)

                if not extra_params:
                    # In that case, we *are* on a head model, but every
                    # single key is not actual parameters and this is
                    # tested in `test_tied_model_weights_key_ignore` test.
                    continue

1635
1636
1637
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1638
                    self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
1639

1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1688
1689
    @require_safetensors
    def test_can_use_safetensors(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
1690
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
        for model_class in self.all_model_classes:
            model_tied = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                try:
                    model_tied.save_pretrained(d, safe_serialization=True)
                except Exception as e:
                    raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}")

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model_tied.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
1707
1708
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724

                # Checking the tensor sharing are correct
                ptrs = defaultdict(list)
                for k, v in model_tied.state_dict().items():
                    ptrs[v.data_ptr()].append(k)

                shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1}

                for _, shared_names in shared_ptrs.items():
                    reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names}
                    self.assertEqual(
                        len(reloaded_ptrs),
                        1,
                        f"The shared pointers are incorrect, found different pointers for keys {shared_names}",
                    )

Sylvain Gugger's avatar
Sylvain Gugger committed
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
    def test_load_save_without_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = False
        for model_class in self.all_model_classes:
            model = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                model.save_pretrained(d)

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])

Sylvain Gugger's avatar
Sylvain Gugger committed
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
    def test_tied_weights_keys(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = True
        for model_class in self.all_model_classes:
            model_tied = model_class(config)

            ptrs = collections.defaultdict(list)
            for name, tensor in model_tied.state_dict().items():
                ptrs[id_tensor_storage(tensor)].append(name)

            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]

            tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else []
            # Detect we get a hit for each key
            for key in tied_weight_keys:
                if not any(re.search(key, p) for group in tied_params for p in group):
                    raise ValueError(f"{key} is not a tied weight key for {model_class}.")

            # Removed tied weights found from tied params -> there should only be one left after
            for key in tied_weight_keys:
                for i in range(len(tied_params)):
                    tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None]

            tied_params = [group for group in tied_params if len(group) > 1]
Sylvain Gugger's avatar
Sylvain Gugger committed
1769
1770
1771
1772
1773
            self.assertListEqual(
                tied_params,
                [],
                f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.",
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
1774

Sylvain Gugger's avatar
Sylvain Gugger committed
1775
1776
    def test_model_weights_reload_no_missing_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
1777
        for model_class in self.all_model_classes:
Sylvain Gugger's avatar
Sylvain Gugger committed
1778
1779
1780
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.save_pretrained(tmp_dir)
1781
1782
1783

                # We are nuking ALL weights on file, so every parameter should
                # yell on load. We're going to detect if we yell too much, or too little.
1784
1785
                placeholder_dict = {"tensor": torch.tensor([1, 2])}
                safe_save_file(placeholder_dict, os.path.join(tmp_dir, "model.safetensors"), metadata={"format": "pt"})
Sylvain Gugger's avatar
Sylvain Gugger committed
1786
                model_reloaded, infos = model_class.from_pretrained(tmp_dir, output_loading_info=True)
1787
1788
1789
1790

                prefix = f"{model_reloaded.base_model_prefix}."
                params = dict(model_reloaded.named_parameters())
                params.update(dict(model_reloaded.named_buffers()))
1791
                param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()}
1792
1793
1794
1795

                missing_keys = set(infos["missing_keys"])

                extra_missing = missing_keys - param_names
Sylvain Gugger's avatar
Sylvain Gugger committed
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
                # Remove tied weights from extra missing: they are normally not warned as missing if their tied
                # counterpart is present but here there are no weights at all so we do get the warning.
                ptrs = collections.defaultdict(list)
                for name, tensor in model_reloaded.state_dict().items():
                    ptrs[id_tensor_storage(tensor)].append(name)
                tied_params = [names for _, names in ptrs.items() if len(names) > 1]
                for group in tied_params:
                    group = {k[len(prefix) :] if k.startswith(prefix) else k for k in group}
                    # We remove the group from extra_missing if not all weights from group are in it
                    if len(group - extra_missing) > 0:
                        extra_missing = extra_missing - set(group)
1807
1808
1809
1810

                self.assertEqual(
                    extra_missing,
                    set(),
Sylvain Gugger's avatar
Sylvain Gugger committed
1811
1812
                    f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}. "
                    f"For debugging, tied parameters are {tied_params}",
1813
1814
                )

Sylvain Gugger's avatar
Sylvain Gugger committed
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
                missed_missing = param_names - missing_keys
                # Remove nonpersistent buffers from missed_missing
                buffers = [n for n, _ in model_reloaded.named_buffers()]
                nonpersistent_buffers = {n for n in buffers if n not in model_reloaded.state_dict()}
                nonpersistent_buffers = {
                    k[len(prefix) :] if k.startswith(prefix) else k for k in nonpersistent_buffers
                }
                missed_missing = missed_missing - nonpersistent_buffers

                if model_reloaded._keys_to_ignore_on_load_missing is None:
                    expected_missing = set()
                else:
                    expected_missing = set(model_reloaded._keys_to_ignore_on_load_missing)
                self.assertEqual(
                    missed_missing,
                    expected_missing,
                    f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
                    " parameters. If they are non persistent buffers make sure to instantiate them with"
                    " `persistent=False`",
                )
1835

1836
1837
1838
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1839
1840
1841
1842
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1843
1844
1845
1846
1847
1848
1849
1850
1851
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
1852
1853
1854
1855
1856
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
1857
1858
1859
1860
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1861
1862
1863
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
Sylvain Gugger's avatar
Sylvain Gugger committed
1864
1865
1866
1867
1868
1869
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

1895
1896
1897
1898
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1899

1900
1901
1902
1903
1904
1905
1906
1907
1908
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
1909

1910
1911
1912
1913
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
1914

1915
1916
1917
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
1918

1919
1920
1921
1922
1923
1924
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = torch.cat(
                    [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
                )
1925

1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = torch.cat(
                #     [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
                #     dim=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

1943
1944
        tf_keys = {k for k, v in tf_outputs.items() if v is not None}
        pt_keys = {k for k, v in pt_outputs.items() if v is not None}
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "FlaubertWithLMHeadModel",
            "FunnelForPreTraining",
            "ElectraForPreTraining",
            "XLMWithLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("GPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
1971
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
1972

1973
1974
1975
1976
1977
1978
1979
1980
        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """
1981

1982
1983
1984
        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
1985

1986
1987
1988
1989
1990
1991
        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
1992

1993
1994
1995
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
1996

1997
1998
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
1999

2000
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
2001

2002
            # convert to the case of `tuple`
2003
            # appending each key to the current (string) `name`
2004
2005
2006
2007
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
2008

2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
2019
                    f"{name}: The tuple `attributes` should have the same length as `tf_outputs`",
2020
                )
2021
            else:
2022
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
2023
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
2024

2025
2026
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
2027

2028
2029
2030
2031
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
2032

2033
2034
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
2035

2036
2037
2038
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
2039

2040
2041
2042
2043
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])
2044

2045
2046
            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
2047

2048
2049
2050
2051
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
2052

2053
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
2054
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).")
2055
2056
        else:
            raise ValueError(
2057
                "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got"
Sylvain Gugger's avatar
Sylvain Gugger committed
2058
                f" {type(tf_outputs)} instead."
2059
2060
            )

2061
2062
2063
2064
    def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):
        tf_inputs_dict = {}
        for key, tensor in pt_inputs_dict.items():
            # skip key that does not exist in tf
2065
            if isinstance(tensor, bool):
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
                tf_inputs_dict[key] = tensor
            elif key == "input_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "pixel_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "input_features":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            # other general float inputs
            elif tensor.is_floating_point():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            else:
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
2078

2079
        return tf_inputs_dict
2080

2081
2082
    def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
        tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
2083

2084
2085
2086
2087
        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }
2088

2089
2090
        # send pytorch model to the correct device
        pt_model.to(torch_device)
2091

2092
2093
        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()
2094

2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))

    @is_pt_tf_cross_test
Matt's avatar
Matt committed
2109
    def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
2110
        import transformers
2111
2112

        for model_class in self.all_model_classes:
2113
2114
2115
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
2116
            if not hasattr(transformers, tf_model_class_name):
2117
                # transformers does not have this model in TF version yet
2118
2119
                return

2120
2121
2122
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
2123

2124
2125
2126
2127
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
2128
2129

            tf_model_class = getattr(transformers, tf_model_class_name)
2130
2131

            pt_model = model_class(config)
2132
2133
2134
2135
2136
2137
2138
2139
2140
            tf_model = tf_model_class(config)

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_with_labels = self._prepare_for_class(
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
            )
2141
2142
2143
2144
2145
2146
2147
2148
2149

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

2150
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
2151
2152
2153
2154
            pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}

            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
2155
            if not set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
2156
                pt_inputs_dict_with_labels = None
2157
2158

            # Check we can load pt model in tf and vice-versa with model => model functions
2159
2160
            # Here requires `tf_inputs_dict` to build `tf_model`
            tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
Matt's avatar
Matt committed
2161
2162
2163
2164
2165
2166
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
            )
            pt_model = transformers.load_tf2_model_in_pytorch_model(
                pt_model, tf_model, allow_missing_keys=allow_missing_keys
            )
2167

2168
2169
2170
2171
2172
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2173
2174
2175
2176
2177

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
Matt's avatar
Matt committed
2178
2179
2180
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
                    tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2181
2182
2183

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
Matt's avatar
Matt committed
2184
2185
2186
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
                    pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2187

2188
2189
2190
2191
2192
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2193
2194
2195
2196
2197

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

2198
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2199
2200
2201
2202
2203
2204
2205
2206
2207
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(fx_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
            )

            fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")

            # convert to the case of `tuple`
            # appending each key to the current (string) `name`
            attributes = tuple([f"{name}.{k}" for k in fx_keys])
            self.check_pt_flax_outputs(
                fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )

        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(fx_outputs) in [tuple, list]:
            self.assertEqual(
                type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
            )
            self.assertEqual(
                len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
            )

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(fx_outputs),
                    f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
                )
2248
            else:
2249
2250
2251
2252
2253
2254
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])

            for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
                self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)

2255
        elif isinstance(fx_outputs, jnp.ndarray):
2256
2257
2258
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
            )
2259
2260
2261
2262
2263

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

2264
2265
2266
2267
2268
2269
2270
2271
2272
            self.assertEqual(
                fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
            )

            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(fx_outputs):
                fx_outputs = np.array([fx_outputs])
                pt_outputs = np.array([pt_outputs])

2273
2274
2275
2276
2277
2278
2279
2280
            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

2281
2282
2283
2284
            max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
            self.assertLessEqual(
                max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
            )
2285
2286
        else:
            raise ValueError(
2287
2288
                "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
                f" {type(fx_outputs)} instead."
2289
2290
            )

2291
2292
2293
2294
2295
2296
2297
2298
2299
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
2300
                    # no flax model exists for this class
2301
2302
                    return

2303
2304
2305
2306
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2307
2308
                fx_model_class = getattr(transformers, fx_model_class_name)

2309
2310
2311
2312
2313
2314
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2315
2316
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2317

2318
2319
2320
2321
2322
2323
2324
2325
2326
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2327
2328
2329
2330
2331
2332
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
2333
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2334

2335
2336
2337
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

2338
2339
2340
                # send pytorch model to the correct device
                pt_model.to(torch_device)

2341
                with torch.no_grad():
2342
2343
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
2344

2345
2346
2347
2348
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2349
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2350
2351
2352
2353
2354

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

2355
2356
2357
2358
2359
2360
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2361
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

2375
2376
2377
2378
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2379
2380
                fx_model_class = getattr(transformers, fx_model_class_name)

2381
2382
2383
2384
2385
2386
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2387
2388
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2389

2390
2391
2392
2393
2394
2395
2396
2397
2398
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2399
2400
2401
2402
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
2403

2404
                # convert inputs to Flax
2405
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2406

2407
2408
2409
2410
2411
2412
2413
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
2414

2415
2416
2417
2418
2419
2420
2421
2422
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2423
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2424
2425
2426
2427
2428

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

2429
2430
2431
2432
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

2433
                with torch.no_grad():
2434
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
2435

2436
2437
2438
2439
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2440
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
2441

Patrick von Platen's avatar
Patrick von Platen committed
2442
    def test_inputs_embeds(self):
2443
2444
2445
2446
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
2447
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
2448
            model.eval()
2449

2450
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
2451

2452
2453
2454
2455
2456
2457
2458
2459
2460
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

2461
2462
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
2463
                inputs["inputs_embeds"] = wte(input_ids)
2464
            else:
2465
2466
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
2467

thomwolf's avatar
thomwolf committed
2468
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
2469
                model(**inputs)[0]
2470

2471
2472
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
2473
2474
2475
2476
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
2477
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
2492
            model = nn.DataParallel(model)
2493
            with torch.no_grad():
2494
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
2495

2496
2497
2498
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
2499
            return
2500

2501
        # a candidate for testing_utils
2502
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2503
            """returns a list of cuda memory allocations per GPU in MBs"""
2504
2505
2506
2507
2508

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2509
2510
2511
2512
2513
2514
2515
2516
2517

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2518
2519
2520
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2521

2522
2523
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2524
2525
2526
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2527
2528
2529
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2530
            del model
2531
            gc.collect()
2532
2533
            torch.cuda.empty_cache()

2534
2535
2536
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2537
2538

            # Spread model layers over multiple devices
2539
            model = model_class(config)
2540
2541
2542
2543
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
2544
            for n in range(len(model.device_map.keys())):
2545
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2546

2547
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2548
2549
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2550
2551
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2552
2553
2554
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2555
            gc.collect()
2556
2557
2558
2559
2560
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
2561
            return
2562
2563
2564
2565
2566
2567

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2568
            def cast_to_device(dictionary, device):
2569
2570
2571
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2572
                        output[k] = v.to(device)
2573
2574
2575
2576
2577
                    else:
                        output[k] = v

                return output

2578
2579
2580
2581
2582
2583
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2584
2585
2586
2587
2588
2589
2590
2591

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))

Sylvain Gugger's avatar
Sylvain Gugger committed
2606
    @require_accelerate
2607
    @mark.accelerate_tests
Sylvain Gugger's avatar
Sylvain Gugger committed
2608
    @require_torch_gpu
2609
    def test_disk_offload_bin(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
2610
2611
2612
2613
2614
2615
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2616
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2617
2618
            model = model_class(config).eval()
            model = model.to(torch_device)
2619
            torch.manual_seed(0)
2620
            base_output = model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2621
2622
2623

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
2624
                model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
Sylvain Gugger's avatar
Sylvain Gugger committed
2625
2626

                with self.assertRaises(ValueError):
Yih-Dar's avatar
Yih-Dar committed
2627
2628
                    max_size = int(self.model_split_percents[0] * model_size)
                    max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
2629
2630
2631
                    # This errors out cause it's missing an offload folder
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

Yih-Dar's avatar
Yih-Dar committed
2632
2633
                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
2634
2635
2636
2637
2638
                new_model = model_class.from_pretrained(
                    tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
                )

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2639
                torch.manual_seed(0)
2640
                new_output = new_model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2641

2642
                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
Sylvain Gugger's avatar
Sylvain Gugger committed
2643

2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
    @require_accelerate
    @mark.accelerate_tests
    @require_torch_gpu
    def test_disk_offload_safetensors(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config).eval()
            model = model.to(torch_device)
            torch.manual_seed(0)
            base_output = model(**inputs_dict_class)

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}

                # This doesn't error out as it's in safetensors and doesn't need an offload folder
                new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
                torch.manual_seed(0)
                new_output = new_model(**inputs_dict_class)

                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

2676
    @require_accelerate
2677
    @mark.accelerate_tests
2678
2679
2680
2681
2682
2683
2684
2685
    @require_torch_gpu
    def test_cpu_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2686
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2687
2688
            model = model_class(config).eval()
            model = model.to(torch_device)
2689
2690

            torch.manual_seed(0)
2691
            base_output = model(**inputs_dict_class)
2692
2693
2694

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
Yih-Dar's avatar
Yih-Dar committed
2695
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2706
2707

                    torch.manual_seed(0)
2708
                    new_output = new_model(**inputs_dict_class)
2709

2710
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
2711
2712

    @require_accelerate
2713
    @mark.accelerate_tests
2714
2715
2716
2717
2718
2719
2720
2721
    @require_torch_multi_gpu
    def test_model_parallelism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2722
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2723
2724
            model = model_class(config).eval()
            model = model.to(torch_device)
2725
2726

            torch.manual_seed(0)
2727
            base_output = model(**inputs_dict_class)
2728
2729
2730

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
2731
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2742
2743

                    torch.manual_seed(0)
2744
                    new_output = new_model(**inputs_dict_class)
2745

2746
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
2747

2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
2758
2759
2760
            if model_class.__name__ not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
2761
            ]:
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

2780
2781
2782
2783
2784
2785
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
2786
2787
2788
2789
2790
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
2791

2792
2793
                    loss.backward()

2794
    def test_load_with_mismatched_shapes(self):
2795
2796
        if not self.test_mismatched_shapes:
            return
2797
2798
2799
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
2800
            if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
2801
2802
2803
2804
2805
2806
2807
2808
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
2809
                    with self.assertRaises(RuntimeError):
2810
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
2811
2812
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
2813
2814

                    logger = logging.get_logger("transformers.modeling_utils")
2815

2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

2838
2839
2840
2841
2842
2843
2844
2845
2846
    def test_model_is_small(self):
        # Just a consistency check to make sure we are not running tests on 80M parameter models.
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            num_params = model.num_parameters()
            assert (
                num_params < 1000000
2847
            ), f"{model_class} is too big for the common tests ({num_params})! It should have 1M max."
2848

2849
2850
2851
2852
2853
2854
2855
2856
2857
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_conversion(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
2858
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
2859
2860
2861
2862
2863
2864

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(
2865
                    tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2"
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
                ).to(torch_device)

                for _, module in model.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        return

                self.assertTrue(False, "FlashAttention2 modules not found in model")

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_inference(self):
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
2881
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
2882

2883
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
2884
2885
2886
2887
2888
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
2889
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
2890
2891
2892
2893
                )
                model_fa.to(torch_device)

                model = model_class.from_pretrained(
2894
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
2895
2896
2897
                )
                model.to(torch_device)

2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                dummy_attention_mask = inputs_dict.get("attention_mask", None)

                if dummy_attention_mask is not None:
                    dummy_attention_mask = dummy_attention_mask[:1]
                    dummy_attention_mask[:, 1:] = 1
                    dummy_attention_mask[:, :1] = 0
2908

2909
2910
2911
2912
2913
2914
2915
2916
                if model.config.is_encoder_decoder:
                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]

                    outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                else:
                    outputs = model(dummy_input, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, output_hidden_states=True)
2917

2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
2928

2929
                assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)
2930

2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
                if model.config.is_encoder_decoder:
                    other_inputs = {
                        "decoder_input_ids": decoder_input_ids,
                        "decoder_attention_mask": dummy_attention_mask,
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)
                else:
                    other_inputs = {
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
2962

2963
                assert torch.allclose(logits_fa[1:], logits[1:], atol=4e-2, rtol=4e-2)
2964

2965
2966
                # check with inference + dropout
                model.train()
2967
                _ = model_fa(dummy_input, **other_inputs)
2968

2969
2970
2971
2972
2973
2974
2975
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_inference_padding_right(self):
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
2976
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
2977

2978
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
2979
2980
2981
2982
2983
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
2984
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
2985
2986
2987
2988
                )
                model_fa.to(torch_device)

                model = model_class.from_pretrained(
2989
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
2990
2991
2992
                )
                model.to(torch_device)

2993
2994
2995
2996
2997
                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                dummy_attention_mask = inputs_dict.get("attention_mask", None)
2998

2999
3000
3001
3002
                if dummy_attention_mask is not None:
                    dummy_attention_mask = dummy_attention_mask[:1]
                    dummy_attention_mask[:, :-1] = 1
                    dummy_attention_mask[:, -1:] = 0
3003

3004
3005
                if model.config.is_encoder_decoder:
                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]
3006

3007
3008
3009
3010
3011
                    outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                else:
                    outputs = model(dummy_input, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, output_hidden_states=True)
3012

3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3023

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
                assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)

                if model.config.is_encoder_decoder:
                    other_inputs = {
                        "decoder_input_ids": decoder_input_ids,
                        "decoder_attention_mask": dummy_attention_mask,
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)
                else:
                    other_inputs = {
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )

                assert torch.allclose(logits_fa[:-1], logits[:-1], atol=4e-2, rtol=4e-2)
3059
3060
3061
3062
3063
3064
3065
3066

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_left_padding(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3067
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3068

3069
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3070
3071
3072
3073
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
3074
3075
3076
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
3077

3078
3079
3080
3081
3082
3083
3084
3085
                dummy_input = inputs_dict[model.main_input_name]
                if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                    dummy_input = dummy_input.to(torch.float16)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
                # make sure we do left padding
                dummy_attention_mask[:, :-1] = 0
                dummy_attention_mask[:, -1:] = 1
3086
3087
3088
3089
3090
3091

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
3092
3093
3094
3095
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
3096
3097
3098
3099
3100
3101
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

3102
                self.assertTrue(torch.allclose(out, out_fa))
3103
3104
3105
3106
3107
3108
3109
3110

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_padding_right(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3111
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3112

3113
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3114
3115
3116
3117
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
3118
3119
3120
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
3121

3122
3123
3124
3125
3126
                dummy_input = inputs_dict[model.main_input_name]
                if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                    dummy_input = dummy_input.to(torch.float16)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
3127
                # make sure we do right padding
3128
3129
                dummy_attention_mask[:, :-1] = 1
                dummy_attention_mask[:, -1:] = 0
3130
3131
3132
3133
3134
3135

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
3136
3137
3138
3139
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
3140
3141
3142
3143
3144
3145
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

3146
                self.assertTrue(torch.allclose(out, out_fa))
3147

3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
    @parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_inference(self, torch_dtype: str):
        if not self.all_model_classes[0]._supports_sdpa:
            self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")

        if torch_device == "cpu" and torch_dtype == "float16":
            self.skipTest("float16 not supported on cpu")

        # Not sure whether it's fine to put torch.XXX in a decorator if torch is not available so hacking it here instead.
        if torch_dtype == "float16":
            torch_dtype = torch.float16
        elif torch_dtype == "bfloat16":
            torch_dtype = torch.bfloat16
        elif torch_dtype == "float32":
            torch_dtype = torch.float32

        atols = {
            ("cpu", False, torch.float32): 1e-6,
            ("cpu", False, torch.bfloat16): 1e-2,
            ("cpu", True, torch.float32): 1e-6,
            ("cpu", True, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float32): 1e-6,
            ("cuda", False, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float16): 1e-3,
            ("cuda", True, torch.float32): 1e-6,
            ("cuda", True, torch.bfloat16): 1e-2,
            ("cuda", True, torch.float16): 5e-3,
        }
        rtols = {
            ("cpu", False, torch.float32): 1e-4,
            ("cpu", False, torch.bfloat16): 1e-2,
            ("cpu", True, torch.float32): 1e-4,
            ("cpu", True, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float32): 1e-4,
            ("cuda", False, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float16): 1e-3,
            ("cuda", True, torch.float32): 1e-4,
            ("cuda", True, torch.bfloat16): 3e-2,
            ("cuda", True, torch.float16): 5e-3,
        }

        def get_mean_reldiff(failcase, x, ref, atol, rtol):
            return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            is_encoder_decoder = model.config.is_encoder_decoder

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
                model_sdpa = model_sdpa.eval().to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch_dtype,
                    attn_implementation="eager",
                )
                model_eager = model_eager.eval().to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
                    if "SdpaAttention" in submodule.__class__.__name__:
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
                    if "SdpaAttention" in submodule.__class__.__name__:
                        has_sdpa = True
                        break
                if not has_sdpa and model_sdpa.config.model_type != "falcon":
                    raise ValueError("The SDPA model should have SDPA attention layers")

                # We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving 8 times the model,
                # but it would be nicer to have an efficient way to use parameterized.expand
                fail_cases = []
                for padding_side in ["left", "right"]:
                    for use_mask in [False, True]:
                        for batch_size in [1, 5]:
                            dummy_input = inputs_dict[model.main_input_name]

                            if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
                                dummy_input = dummy_input.to(torch_dtype)

                            dummy_input = dummy_input[:batch_size]
                            if dummy_input.shape[0] != batch_size:
                                if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
                                    extension = torch.rand(
                                        batch_size - dummy_input.shape[0],
                                        *dummy_input.shape[1:],
                                        dtype=torch_dtype,
                                        device=torch_device,
                                    )
                                    dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
                                else:
                                    extension = torch.randint(
                                        high=5,
                                        size=(batch_size - dummy_input.shape[0], *dummy_input.shape[1:]),
                                        dtype=dummy_input.dtype,
                                        device=torch_device,
                                    )
                                    dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)

                            if not use_mask:
                                dummy_attention_mask = None
                            else:
                                dummy_attention_mask = inputs_dict.get("attention_mask", None)
                                if dummy_attention_mask is None:
                                    if is_encoder_decoder:
                                        seqlen = inputs_dict.get("decoder_input_ids", dummy_input).shape[-1]
                                    else:
                                        seqlen = dummy_input.shape[-1]
                                    dummy_attention_mask = (
                                        torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device)
                                    )

                                dummy_attention_mask = dummy_attention_mask[:batch_size]
                                if dummy_attention_mask.shape[0] != batch_size:
                                    extension = torch.ones(
                                        batch_size - dummy_attention_mask.shape[0],
                                        *dummy_attention_mask.shape[1:],
                                        dtype=dummy_attention_mask.dtype,
                                        device=torch_device,
                                    )
                                    dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0)
                                    dummy_attention_mask = dummy_attention_mask.to(torch_device)

                                dummy_attention_mask[:] = 1
                                if padding_side == "left":
                                    dummy_attention_mask[-1, :-1] = 1
                                    dummy_attention_mask[-1, -4:] = 0
                                elif padding_side == "right":
                                    dummy_attention_mask[-1, 1:] = 1
                                    dummy_attention_mask[-1, :3] = 0

                            for enable_kernels in [False, True]:
                                failcase = f"padding_side={padding_side}, use_mask={use_mask}, batch_size={batch_size}, enable_kernels={enable_kernels}"
                                if is_encoder_decoder:
                                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:batch_size]
                                    if decoder_input_ids.shape[0] != batch_size:
                                        extension = torch.ones(
                                            batch_size - decoder_input_ids.shape[0],
                                            *decoder_input_ids.shape[1:],
                                            dtype=decoder_input_ids.dtype,
                                            device=torch_device,
                                        )
                                        decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0)
                                        decoder_input_ids = decoder_input_ids.to(torch_device)

                                    # TODO: never an `attention_mask` arg here?
                                    other_inputs = {
                                        "decoder_input_ids": decoder_input_ids,
                                        "decoder_attention_mask": dummy_attention_mask,
                                        "output_hidden_states": True,
                                    }
                                else:
                                    other_inputs = {
                                        "output_hidden_states": True,
                                    }

                                    # Otherwise fails for e.g. WhisperEncoderModel
                                    if "attention_mask" in inspect.signature(model_eager.forward).parameters:
                                        other_inputs["attention_mask"] = dummy_attention_mask

                                # TODO: test gradients as well (& for FA2 as well!)
                                with torch.no_grad():
                                    with torch.backends.cuda.sdp_kernel(
                                        enable_flash=enable_kernels,
                                        enable_math=True,
                                        enable_mem_efficient=enable_kernels,
                                    ):
                                        outputs_eager = model_eager(dummy_input, **other_inputs)
                                        outputs_sdpa = model_sdpa(dummy_input, **other_inputs)

                                logits_eager = (
                                    outputs_eager.hidden_states[-1]
                                    if not is_encoder_decoder
                                    else outputs_eager.decoder_hidden_states[-1]
                                )
                                logits_sdpa = (
                                    outputs_sdpa.hidden_states[-1]
                                    if not is_encoder_decoder
                                    else outputs_sdpa.decoder_hidden_states[-1]
                                )

                                if torch_device in ["cpu", "cuda"]:
                                    atol = atols[torch_device, enable_kernels, torch_dtype]
                                    rtol = rtols[torch_device, enable_kernels, torch_dtype]
                                else:
                                    atol = 1e-7
                                    rtol = 1e-4

                                # Masked tokens output slightly deviates - we don't mind that.
                                if use_mask:
                                    if padding_side == "left":
                                        sub_sdpa = logits_sdpa[:-1]
                                        sub_eager = logits_eager[:-1]
                                        if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            fail_cases.append(
                                                get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                            )

                                        sub_sdpa = logits_sdpa[-1, :-4]
                                        sub_eager = logits_eager[-1, :-4]
                                        if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            fail_cases.append(
                                                get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                            )

                                        # Testing the padding tokens is not really meaningful but anyway
                                        # sub_sdpa = logits_sdpa[-1, -4:]
                                        # sub_eager = logits_eager[-1, -4:]
                                        # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                        #     fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))
                                    elif padding_side == "right":
                                        sub_sdpa = logits_sdpa[:-1]
                                        sub_eager = logits_eager[:-1]
                                        if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            fail_cases.append(
                                                get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                            )

                                        sub_sdpa = logits_sdpa[-1, 3:]
                                        sub_eager = logits_eager[-1, 3:]
                                        if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            fail_cases.append(
                                                get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                            )

                                        # Testing the padding tokens is not really meaningful but anyway
                                        # sub_sdpa = logits_sdpa[-1, :3]
                                        # sub_eager = logits_eager[-1, :3]
                                        # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                        #     fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))

                                else:
                                    if not torch.allclose(logits_sdpa, logits_eager, atol=atol, rtol=rtol):
                                        fail_cases.append(
                                            get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol)
                                        )

                self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))

    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_generate(self):
        max_new_tokens = 30

        if len(self.all_generative_model_classes) == 0:
            self.skipTest(f"{self.__class__.__name__} tests a model that does support generate: skipping this test")

        for model_class in self.all_generative_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))

                model_sdpa = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                ).to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                    attn_implementation="eager",
                ).to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
                    if "SdpaAttention" in submodule.__class__.__name__:
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
                    if "SdpaAttention" in submodule.__class__.__name__:
                        has_sdpa = True
                        break
                if not has_sdpa:
                    raise ValueError("The SDPA model should have SDPA attention layers")

                # Just test that a large cache works as expected
                res_eager = model_eager.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                res_sdpa = model_sdpa.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                self.assertTrue(torch.allclose(res_eager, res_sdpa))

3467
3468
3469
3470
3471
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_use_cache(self):
3472
3473
        max_new_tokens = 30

3474
3475
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3476
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3477

3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

3488
3489
3490
3491
3492
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

3493
                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
3494
3495

                model = model_class.from_pretrained(
3496
3497
                    tmpdirname,
                    torch_dtype=torch.float16,
3498
                    attn_implementation="flash_attention_2",
3499
                    low_cpu_mem_usage=True,
3500
3501
3502
3503
                ).to(torch_device)

                # Just test that a large cache works as expected
                _ = model.generate(
3504
3505
3506
3507
3508
                    dummy_input,
                    attention_mask=dummy_attention_mask,
                    max_new_tokens=max_new_tokens,
                    do_sample=False,
                    use_cache=True,
3509
3510
                )

3511
3512
3513
3514
3515
3516
3517
3518
    @require_flash_attn
    @require_torch_gpu
    @require_bitsandbytes
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_fp32_ln(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3519
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3520

3521
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3522
3523
3524
3525
3526
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

3527
3528
3529
3530
3531
3532
                dummy_input = inputs_dict[model.main_input_name]
                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))

                if model.config.is_encoder_decoder:
                    dummy_decoder_input_ids = inputs_dict["decoder_input_ids"]
                    dummy_decoder_attention_mask = inputs_dict["decoder_attention_mask"]
3533
3534
3535
3536

                model = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
3537
                    attn_implementation="flash_attention_2",
3538
3539
3540
3541
3542
3543
3544
3545
3546
                    low_cpu_mem_usage=True,
                    load_in_4bit=True,
                )

                for _, param in model.named_parameters():
                    # upcast only layer norms
                    if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
                        param.data = param.data.to(torch.float32)

3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
                if model.config.is_encoder_decoder:
                    _ = model(dummy_input, decoder_input_ids=dummy_decoder_input_ids)
                    # with attention mask
                    _ = model(
                        dummy_input,
                        attention_mask=dummy_attention_mask,
                        decoder_input_ids=dummy_decoder_input_ids,
                        decoder_attention_mask=dummy_decoder_attention_mask,
                    )
                else:
                    _ = model(dummy_input)
                    # with attention mask
                    _ = model(dummy_input, attention_mask=dummy_attention_mask)
3560

3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
    @is_pt_tf_cross_test
    def test_tf_from_pt_safetensors(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
            if not hasattr(transformers, tf_model_class_name):
                # transformers does not have this model in TF version yet
                return

            tf_model_class = getattr(transformers, tf_model_class_name)

            pt_model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname, safe_serialization=True)
                tf_model_1 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)

                pt_model.save_pretrained(tmpdirname, safe_serialization=False)
                tf_model_2 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)

                # Check models are equal
                for p1, p2 in zip(tf_model_1.weights, tf_model_2.weights):
                    self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))

    @is_pt_flax_cross_test
    def test_flax_from_pt_safetensors(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            flax_model_class_name = "Flax" + model_class.__name__  # Add the "Flax at the beginning
            if not hasattr(transformers, flax_model_class_name):
                # transformers does not have this model in Flax version yet
                return

            flax_model_class = getattr(transformers, flax_model_class_name)

            pt_model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname, safe_serialization=True)
                flax_model_1 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)

                pt_model.save_pretrained(tmpdirname, safe_serialization=False)
                flax_model_2 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)

                # Check models are equal
                self.assertTrue(check_models_equal(flax_model_1, flax_model_2))

3610
3611
3612
3613
3614
3615
3616
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_from_config(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3617
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3618
3619
3620
3621

            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
            # TODO: to change it in the future with other relevant auto classes
            fa2_model = AutoModelForCausalLM.from_config(
3622
                config, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
            ).to(torch_device)

            dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
            dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [0, 1, 1, 1]]).to(torch_device)

            fa2_correctly_converted = False

            for _, module in fa2_model.named_modules():
                if "FlashAttention" in module.__class__.__name__:
                    fa2_correctly_converted = True
                    break

            self.assertTrue(fa2_correctly_converted)

            _ = fa2_model(input_ids=dummy_input, attention_mask=dummy_attention_mask)

            with tempfile.TemporaryDirectory() as tmpdirname:
                fa2_model.save_pretrained(tmpdirname)

                model_from_pretrained = AutoModelForCausalLM.from_pretrained(tmpdirname)

3644
                self.assertTrue(model_from_pretrained.config._attn_implementation != "flash_attention_2")
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654

                fa2_correctly_converted = False

                for _, module in model_from_pretrained.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        fa2_correctly_converted = True
                        break

                self.assertFalse(fa2_correctly_converted)

3655

3656
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
3657
3658


thomwolf's avatar
thomwolf committed
3659
def ids_tensor(shape, vocab_size, rng=None, name=None):
3660
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
3661
    if rng is None:
3662
        rng = global_rng
thomwolf's avatar
thomwolf committed
3663

thomwolf's avatar
thomwolf committed
3664
3665
3666
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
3667

thomwolf's avatar
thomwolf committed
3668
3669
3670
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
3671

3672
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
3673
3674


3675
3676
3677
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
3678
3679
    # we choose the 1st token so this property of `at least one being non-zero` still holds after applying causal mask
    attn_mask[:, 0] = 1
3680
3681
3682
    return attn_mask


3683
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
3684
    """Creates a random float32 tensor"""
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

3696
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()