test_modeling_common.py 172 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
import collections
16
import copy
17
import gc
18
import inspect
19
import os
20
import os.path
21
import pickle
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
23
import re
24
import tempfile
25
import warnings
26
from collections import defaultdict
NielsRogge's avatar
NielsRogge committed
27
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
28

29
import numpy as np
30
from parameterized import parameterized
31
from pytest import mark
32
33

import transformers
34
35
from transformers import (
    AutoModel,
36
    AutoModelForCausalLM,
37
38
    AutoModelForSequenceClassification,
    PretrainedConfig,
39
    PreTrainedModel,
40
41
    is_torch_available,
    logging,
42
    set_seed,
43
)
44
from transformers.models.auto import get_values
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
    MODEL_FOR_BACKBONE_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_MAPPING_NAMES,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
65
66
from transformers.testing_utils import (
    CaptureLogger,
67
68
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
69
    require_accelerate,
70
    require_bitsandbytes,
71
    require_flash_attn,
72
    require_safetensors,
Sylvain Gugger's avatar
Sylvain Gugger committed
73
    require_torch,
74
    require_torch_gpu,
Sylvain Gugger's avatar
Sylvain Gugger committed
75
    require_torch_multi_gpu,
76
    require_torch_sdpa,
Sylvain Gugger's avatar
Sylvain Gugger committed
77
78
79
    slow,
    torch_device,
)
80
from transformers.utils import (
81
82
    CONFIG_NAME,
    GENERATION_CONFIG_NAME,
83
    SAFE_WEIGHTS_NAME,
84
    is_accelerate_available,
85
86
87
    is_flax_available,
    is_tf_available,
    is_torch_fx_available,
88
    is_torch_sdpa_available,
89
)
90
from transformers.utils.generic import ContextManagers, ModelOutput
91

Aymeric Augustin's avatar
Aymeric Augustin committed
92

93
94
95
96
if is_accelerate_available():
    from accelerate.utils import compute_module_sizes


97
if is_torch_available():
98
    import torch
99
    from safetensors.torch import load_file as safe_load_file
100
    from safetensors.torch import save_file as safe_save_file
101
    from torch import nn
thomwolf's avatar
thomwolf committed
102

103
    from transformers import MODEL_MAPPING, AdaptiveEmbedding
104
    from transformers.modeling_utils import no_init_weights
Sylvain Gugger's avatar
Sylvain Gugger committed
105
    from transformers.pytorch_utils import id_tensor_storage
thomwolf's avatar
thomwolf committed
106

Sylvain Gugger's avatar
Sylvain Gugger committed
107

108
109
110
if is_tf_available():
    import tensorflow as tf

111
112
if is_flax_available():
    import jax.numpy as jnp
113

114
    from tests.test_modeling_flax_utils import check_models_equal
115
116
117
118
119
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

120
if is_torch_fx_available():
121
    from transformers.utils.fx import symbolic_trace
122

123

124
125
126
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
127
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
128
            setattr(configs_no_init, key, 1e-10)
129
130
131
        if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
            no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
            setattr(configs_no_init, key, no_init_subconfig)
132
133
    return configs_no_init

thomwolf's avatar
thomwolf committed
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
def _mock_init_weights(self, module):
    for name, param in module.named_parameters(recurse=False):
        # Use the first letter of the name to get a value and go from a <> -13 to z <> 12
        value = ord(name[0].lower()) - 110
        param.data.fill_(value)


def _mock_all_init_weights(self):
    # Prune heads if needed
    if self.config.pruned_heads:
        self.prune_heads(self.config.pruned_heads)

    import transformers.modeling_utils

    if transformers.modeling_utils._init_weights:
        for module in self.modules():
            module._is_hf_initialized = False
        # Initialize weights
        self.apply(self._initialize_weights)

        # Tie weights should be skipped when not initializing all weights
        # since from_pretrained(...) calls tie weights anyways
        self.tie_weights()


160
161
162
163
@require_torch
class ModelTesterMixin:
    model_tester = None
    all_model_classes = ()
164
    all_generative_model_classes = ()
165
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
166
167
168
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
169
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
170
    test_head_masking = True
171
    test_mismatched_shapes = True
172
    test_missing_keys = True
173
    test_model_parallel = False
174
    is_encoder_decoder = False
175
    has_attentions = True
176
    model_split_percents = [0.5, 0.7, 0.9]
177

178
179
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
180
        if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
181
            inputs_dict = {
182
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
183
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
184
                else v
185
186
                for k, v in inputs_dict.items()
            }
187
        elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES):
188
            inputs_dict.pop("attention_mask")
189
190

        if return_labels:
191
            if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
192
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
193
194
195
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
196
            ]:
197
198
199
200
201
202
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
203
204
205
206
207
208
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
209
            ]:
210
211
212
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
213
214
215
216
217
218
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
219
220
221
222
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
223
            elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
224
225
226
227
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
228
            elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
229
230
231
232
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
233

234
235
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
236
    def test_save_load(self):
237
238
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

239
240
241
242
243
244
245
246
247
248
        def check_save_load(out1, out2):
            # make sure we don't have nans
            out_2 = out2.cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            out_1 = out1.cpu().numpy()
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

249
250
251
252
253
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
254
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
255

256
            with tempfile.TemporaryDirectory() as tmpdirname:
257
                model.save_pretrained(tmpdirname)
258
259
260
261
262
263
264

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

265
                model = model_class.from_pretrained(tmpdirname)
266
                model.to(torch_device)
267
                with torch.no_grad():
268
                    second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
thomwolf's avatar
thomwolf committed
269

270
271
272
273
274
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_save_load(tensor1, tensor2)
            else:
                check_save_load(first, second)
275

276
277
278
279
280
281
282
283
284
285
286
287
    def test_from_pretrained_no_checkpoint(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            state_dict = model.state_dict()

            new_model = model_class.from_pretrained(
                pretrained_model_name_or_path=None, config=config, state_dict=state_dict
            )
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    def test_keep_in_fp32_modules(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            if model_class._keep_in_fp32_modules is None:
                return

            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16)

                for name, param in model.named_parameters():
                    if any(n in model_class._keep_in_fp32_modules for n in name.split(".")):
                        self.assertTrue(param.dtype == torch.float32)
                    else:
                        self.assertTrue(param.dtype == torch.float16, name)

306
    def test_save_load_keys_to_ignore_on_save(self):
307
308
309
310
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
311
312
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
313
314
315
                continue

            # check the keys are in the original state_dict
316
            for k in _keys_to_ignore_on_save:
317
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
318
319
320
321

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
322
323
324
                output_model_file = os.path.join(tmpdirname, SAFE_WEIGHTS_NAME)
                state_dict_saved = safe_load_file(output_model_file)

325
                for k in _keys_to_ignore_on_save:
326
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
327

Sylvain Gugger's avatar
Sylvain Gugger committed
328
329
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
330
331
332
333
334
335
                keys_to_ignore = set(model._keys_to_ignore_on_save)

                if hasattr(model, "_tied_weights_keys"):
                    keys_to_ignore.update(set(model._tied_weights_keys))

                self.assertTrue(len(load_result.missing_keys) == 0 or set(load_result.missing_keys) == keys_to_ignore)
Sylvain Gugger's avatar
Sylvain Gugger committed
336
337
                self.assertTrue(len(load_result.unexpected_keys) == 0)

338
339
340
341
342
343
344
345
346
347
348
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

364
365
366
367
368
369
370
            # Loop over all modules and check that relevant modules have gradient_checkpointing set to True
            for n, m in model.named_modules():
                if hasattr(m, "gradient_checkpointing"):
                    self.assertTrue(
                        m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to True"
                    )

371
372
373
374
            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

375
376
377
378
379
380
381
            # Loop over all modules and check that relevant modules have gradient_checkpointing set to False
            for n, m in model.named_modules():
                if hasattr(m, "gradient_checkpointing"):
                    self.assertFalse(
                        m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to False"
                    )

382
383
    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
384
385
        if config.__class__ not in MODEL_MAPPING:
            return
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
407
408
            model_class_copy._init_weights = _mock_init_weights
            model_class_copy.init_weights = _mock_all_init_weights
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)
425
                # Before we test anything
426
427

                for key in model_fast_init.state_dict().keys():
428
429
430
431
432
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item()
                    else:
                        max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
433

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
    def test_fast_init_context_manager(self):
        # 1. Create a dummy class. Should have buffers as well? To make sure we test __init__
        class MyClass(PreTrainedModel):
            config_class = PretrainedConfig

            def __init__(self, config=None):
                super().__init__(config if config is not None else PretrainedConfig())
                self.linear = nn.Linear(10, 10, bias=True)
                self.embedding = nn.Embedding(10, 10)
                self.std = 1

            def _init_weights(self, module):
                if isinstance(module, nn.Linear):
                    module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5))
                    if module.bias is not None:
                        module.bias.data.normal_(mean=0.0, std=self.std)

        # 2. Make sure a linear layer's reset params is properly skipped:
        with ContextManagers([no_init_weights(True)]):
            no_init_instance = MyClass()

        set_seed(0)
        expected_bias = torch.tensor(
            ([0.2975, 0.2131, -0.1379, -0.0796, -0.3012, -0.0057, -0.2381, -0.2439, -0.0174, 0.0475])
        )
        init_instance = MyClass()
        torch.testing.assert_allclose(init_instance.linear.bias, expected_bias, rtol=1e-3, atol=1e-4)

        set_seed(0)
        torch.testing.assert_allclose(
            init_instance.linear.weight, nn.init.kaiming_uniform_(no_init_instance.linear.weight, np.sqrt(5))
        )

        # 3. Make sure weights that are not present use init_weight_ and get expected values
        with tempfile.TemporaryDirectory() as tmpdirname:
            state_dict = init_instance.state_dict()
            del state_dict["linear.weight"]

            init_instance.config.save_pretrained(tmpdirname)
            torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))
            set_seed(0)
            model_fast_init = MyClass.from_pretrained(tmpdirname)

            set_seed(0)
            model_slow_init = MyClass.from_pretrained(tmpdirname, _fast_init=False)

            for key in model_fast_init.state_dict().keys():
                max_diff = torch.max(torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]))
                self.assertLessEqual(max_diff.item(), 1e-3, msg=f"{key} not identical")

484
485
    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
486
487
        if config.__class__ not in MODEL_MAPPING:
            return
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
509
510
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
529
530
531
532
533
534
535
536
537
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = torch.max(
                            model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]
                        ).item()
                    else:
                        max_diff = torch.max(
                            torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])
                        ).item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
538

Patrick von Platen's avatar
Patrick von Platen committed
539
    def test_initialization(self):
540
541
542
543
544
545
546
547
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
548
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
549
                        [0.0, 1.0],
550
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
551
                    )
thomwolf's avatar
thomwolf committed
552

Patrick von Platen's avatar
Patrick von Platen committed
553
    def test_determinism(self):
554
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
555
556
557
558
559
560
561
562
563

        def check_determinism(first, second):
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

564
565
566
567
568
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
569
570
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
571

572
573
574
575
576
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_determinism(tensor1, tensor2)
            else:
                check_determinism(first, second)
577

578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
594
                expected_arg_names.extend(
595
596
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
597
598
599
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
600
601
602
603
604
605
            elif model_class.__name__ in [*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] and self.has_attentions:
                expected_arg_names = ["pixel_values", "output_hidden_states", "output_attentions", "return_dict"]
                self.assertListEqual(arg_names, expected_arg_names)
            elif model_class.__name__ in [*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] and not self.has_attentions:
                expected_arg_names = ["pixel_values", "output_hidden_states", "return_dict"]
                self.assertListEqual(arg_names, expected_arg_names)
606
            else:
607
                expected_arg_names = [model.main_input_name]
608
609
                self.assertListEqual(arg_names[:1], expected_arg_names)

610
    def check_training_gradient_checkpointing(self, gradient_checkpointing_kwargs=None):
611
612
613
614
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
615
616
617
618
619
            if (
                model_class.__name__
                in [*get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)]
                or not model_class.supports_gradient_checkpointing
            ):
620
                continue
621

622
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
623
624
            config.use_cache = False
            config.return_dict = True
625
            model = model_class(config)
626

627
            model.to(torch_device)
628
            model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)
629
            model.train()
630
631
632
633
634
635
636

            # unfreeze additional layers
            for p in model.parameters():
                p.requires_grad_(True)

            optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

637
638
639
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()
640
            optimizer.step()
641

642
643
644
645
646
            for k, v in model.named_parameters():
                if v.requires_grad:
                    self.assertTrue(v.grad is not None, f"{k} in {model_class.__name__} has no gradient!")

    def test_training(self):
647
        if not self.model_tester.is_training:
648
649
650
            return

        for model_class in self.all_model_classes:
651
652
653
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

654
655
656
657
            if model_class.__name__ in [
                *get_values(MODEL_MAPPING_NAMES),
                *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
            ]:
658
                continue
659

660
661
662
663
664
665
666
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

667
668
669
670
671
672
673
674
675
676
677
678
679
    def test_training_gradient_checkpointing(self):
        # Scenario - 1 default behaviour
        self.check_training_gradient_checkpointing()

    def test_training_gradient_checkpointing_use_reentrant(self):
        # Scenario - 2 with `use_reentrant=True` - this is the default value that is used in pytorch's
        # torch.utils.checkpoint.checkpoint
        self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": True})

    def test_training_gradient_checkpointing_use_reentrant_false(self):
        # Scenario - 3 with `use_reentrant=False` pytorch suggests users to use this value for
        # future releases: https://pytorch.org/docs/stable/checkpoint.html
        self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": False})
680

Patrick von Platen's avatar
Patrick von Platen committed
681
    def test_attention_outputs(self):
682
683
684
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

685
686
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
687

688
689
690
691
692
693
694
695
696
697
698
699
        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
700
            config.return_dict = True
701
702
703
704
705
706
707
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
708

709
710
711
712
713
714
715
716
717
718
            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
719

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
            out_len = len(outputs)

            if self.is_encoder_decoder:
                correct_outlen = 5

                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
739
740
741
                if model_class.__name__ in [
                    *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                    *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
742
                ]:
743
744
745
746
747
748
749
750
751
752
753
754
755
756
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )
757

758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
801

802
    @slow
803
    def test_torchscript_simple(self):
804
805
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
806

807
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
808
    def test_torchscript_output_attentions(self):
809
810
811
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
812

813
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
814
    def test_torchscript_output_hidden_state(self):
815
816
817
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
818

819
820
821
822
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):
        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
823
824
825
        # torch 1.8 has no `_clear_class_state` in `torch.jit._state`
        if hasattr(torch.jit._state, "_clear_class_state"):
            torch.jit._state._clear_class_state()
826

827
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
828
        if not self.test_torchscript:
829
            return
830

831
832
833
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
834
            for attn_implementation in ["eager", "sdpa"]:
835
                if attn_implementation == "sdpa" and (not model_class._supports_sdpa or not is_torch_sdpa_available()):
836
                    continue
837

838
839
840
841
842
                configs_no_init._attn_implementation = attn_implementation
                model = model_class(config=configs_no_init)
                model.to(torch_device)
                model.eval()
                inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
843

844
                main_input_name = model_class.main_input_name
thomwolf's avatar
thomwolf committed
845

846
                try:
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
                    if model.config.is_encoder_decoder:
                        model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                        main_input = inputs[main_input_name]
                        attention_mask = inputs["attention_mask"]
                        decoder_input_ids = inputs["decoder_input_ids"]
                        decoder_attention_mask = inputs["decoder_attention_mask"]
                        model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
                        traced_model = torch.jit.trace(
                            model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
                        )
                    elif "bbox" in inputs and "image" in inputs:  # LayoutLMv2 requires additional inputs
                        input_ids = inputs["input_ids"]
                        bbox = inputs["bbox"]
                        image = inputs["image"].tensor
                        model(input_ids, bbox, image)
                        traced_model = torch.jit.trace(
                            model, (input_ids, bbox, image), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
                    elif "bbox" in inputs:  # Bros requires additional inputs (bbox)
                        input_ids = inputs["input_ids"]
                        bbox = inputs["bbox"]
                        model(input_ids, bbox)
                        traced_model = torch.jit.trace(
                            model, (input_ids, bbox), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
                    else:
                        main_input = inputs[main_input_name]

                        if model.config._attn_implementation == "sdpa":
                            trace_input = {main_input_name: main_input}

                            if "attention_mask" in inputs:
                                trace_input["attention_mask"] = inputs["attention_mask"]
                            else:
                                self.skipTest("testing SDPA without attention_mask is not supported")

                            model(main_input, attention_mask=inputs["attention_mask"])
                            # example_kwarg_inputs was introduced in torch==2.0, but it is fine here since SDPA has a requirement on torch>=2.1.
                            traced_model = torch.jit.trace(model, example_kwarg_inputs=trace_input)
                        else:
                            model(main_input)
                            traced_model = torch.jit.trace(model, (main_input,))
                except RuntimeError:
                    self.fail("Couldn't trace module.")

                with tempfile.TemporaryDirectory() as tmp_dir_name:
                    pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                    try:
                        torch.jit.save(traced_model, pt_file_name)
                    except Exception:
                        self.fail("Couldn't save module.")

                    try:
                        loaded_model = torch.jit.load(pt_file_name)
                    except Exception:
                        self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
904

905
906
                model.to(torch_device)
                model.eval()
thomwolf's avatar
thomwolf committed
907

908
909
                loaded_model.to(torch_device)
                loaded_model.eval()
thomwolf's avatar
thomwolf committed
910

911
912
                model_state_dict = model.state_dict()
                loaded_model_state_dict = loaded_model.state_dict()
913

914
915
916
917
                non_persistent_buffers = {}
                for key in loaded_model_state_dict.keys():
                    if key not in model_state_dict.keys():
                        non_persistent_buffers[key] = loaded_model_state_dict[key]
918

919
920
921
                loaded_model_state_dict = {
                    key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
                }
922

923
                self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
924

925
926
927
928
929
930
931
                model_buffers = list(model.buffers())
                for non_persistent_buffer in non_persistent_buffers.values():
                    found_buffer = False
                    for i, model_buffer in enumerate(model_buffers):
                        if torch.equal(non_persistent_buffer, model_buffer):
                            found_buffer = True
                            break
932

933
934
                    self.assertTrue(found_buffer)
                    model_buffers.pop(i)
935

936
937
938
939
940
941
                models_equal = True
                for layer_name, p1 in model_state_dict.items():
                    if layer_name in loaded_model_state_dict:
                        p2 = loaded_model_state_dict[layer_name]
                        if p1.data.ne(p2.data).sum() > 0:
                            models_equal = False
thomwolf's avatar
thomwolf committed
942

943
                self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
944

945
946
947
                # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
                # (Even with this call, there are still memory leak by ~0.04MB)
                self.clear_torch_jit_class_registry()
948

949
950
951
952
953
954
955
956
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

957
958
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
959
960
961
962
963
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

964
        for model_class in self.all_model_classes:
965
966
967
968
969
970
971
972
973
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    labels = inputs.get("labels", None)
974
975
976
                    input_names = [
                        "attention_mask",
                        "decoder_attention_mask",
977
                        "decoder_input_ids",
978
                        "input_features",
979
980
                        "input_ids",
                        "input_values",
981
                    ]
982
983
                    if labels is not None:
                        input_names.append("labels")
984

985
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
986
                    input_names = list(filtered_inputs.keys())
987

988
                    model_output = model(**filtered_inputs)
989

990
                    traced_model = symbolic_trace(model, input_names)
991
                    traced_output = traced_model(**filtered_inputs)
992
                else:
993
994
995
996
                    input_names = [
                        "attention_mask",
                        "bbox",
                        "input_features",
997
998
999
1000
1001
1002
                        "input_ids",
                        "input_values",
                        "pixel_values",
                        "token_type_ids",
                        "visual_feats",
                        "visual_pos",
1003
                    ]
1004

1005
                    labels = inputs.get("labels", None)
1006
1007
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
1008
1009
                    if labels is not None:
                        input_names.append("labels")
1010
1011
1012
1013
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")
1014

1015
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
1016
                    input_names = list(filtered_inputs.keys())
1017

1018
                    if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
1019
                        not hasattr(model.config, "problem_type") or model.config.problem_type is None
1020
1021
1022
                    ):
                        model.config.problem_type = "single_label_classification"

1023
                    traced_model = symbolic_trace(model, input_names)
1024
                    traced_output = traced_model(**filtered_inputs)
1025
                    model_output = model(**filtered_inputs)
1026

1027
            except Exception as e:
1028
                self.fail(f"Couldn't trace module: {e}")
1029

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
1043
            num_outputs = len(model_output)
1044
1045
1046
1047
1048
1049

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )
1050

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
            # Test that the model can be serialized and restored properly
            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
                try:
                    with open(pkl_file_name, "wb") as f:
                        pickle.dump(traced_model, f)
                    with open(pkl_file_name, "rb") as f:
                        loaded = pickle.load(f)
                except Exception as e:
                    self.fail(f"Couldn't serialize / deserialize the traced model: {e}")

                loaded_output = loaded(**filtered_inputs)
                loaded_output = flatten_output(loaded_output)

                for i in range(num_outputs):
                    self.assertTrue(
                        torch.allclose(model_output[i], loaded_output[i]),
                        f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
                    )

1071
1072
1073
1074
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

Patrick von Platen's avatar
Patrick von Platen committed
1075
1076
    def test_headmasking(self):
        if not self.test_head_masking:
1077
            return
1078

1079
1080
1081
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
1082

1083
        inputs_dict["output_attentions"] = True
1084
1085
1086
1087
1088
1089
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
1090

1091
1092
1093
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
1094
1095
1096
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
1097
1098
1099
1100
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
1101
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
1102
            inputs["head_mask"] = head_mask
1103
1104
1105
1106
1107
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
1108
1109
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
1110
            outputs = model(**inputs, return_dict=True)
1111
1112
1113
1114
1115
1116
1117
1118
1119

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
1141
                check_attentions_validity(outputs.cross_attentions)
1142
1143
            else:
                check_attentions_validity(outputs.attentions)
1144

Patrick von Platen's avatar
Patrick von Platen committed
1145
1146
    def test_head_pruning(self):
        if not self.test_pruning:
1147
1148
1149
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1150
1151
1152
1153
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1154

1155
1156
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1157

1158
            inputs_dict["output_attentions"] = True
1159
1160
1161
1162
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1163
1164
1165
1166
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1167
1168
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
1169
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1170

1171
            attentions = outputs[-1]
1172

1173
            self.assertEqual(attentions[0].shape[-3], 1)
1174
1175
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1176
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
1177

Patrick von Platen's avatar
Patrick von Platen committed
1178
1179
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
1180
            return
LysandreJik's avatar
LysandreJik committed
1181

1182
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1183
1184
1185
1186
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1187
1188
1189

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1190

1191
            inputs_dict["output_attentions"] = True
1192
1193
1194
1195
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1196
1197
1198
1199
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1200
            model.prune_heads(heads_to_prune)
1201

1202
            with tempfile.TemporaryDirectory() as temp_dir_name:
1203
1204
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1205
                model.to(torch_device)
1206

1207
            with torch.no_grad():
1208
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1209
1210
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
1211
1212
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1213
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1214

Patrick von Platen's avatar
Patrick von Platen committed
1215
1216
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
1217
            return
1218

1219
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1220
1221
1222
1223
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1224

1225
1226
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1227

1228
            inputs_dict["output_attentions"] = True
1229
            config.output_hidden_states = False
1230

1231
1232
1233
1234
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1235
            config.pruned_heads = heads_to_prune
1236

1237
1238
1239
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1240

1241
            with torch.no_grad():
1242
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1243
            attentions = outputs[-1]
1244

1245
            self.assertEqual(attentions[0].shape[-3], 1)
1246
1247
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1248
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1249

Patrick von Platen's avatar
Patrick von Platen committed
1250
1251
    def test_head_pruning_integration(self):
        if not self.test_pruning:
1252
            return
1253

1254
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1255
1256
1257
1258
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1259

1260
1261
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1262

1263
            inputs_dict["output_attentions"] = True
1264
            config.output_hidden_states = False
1265

1266
            heads_to_prune = {1: [1, 2]}
1267
            config.pruned_heads = heads_to_prune
1268

1269
1270
1271
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1272

1273
            with torch.no_grad():
1274
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1275
            attentions = outputs[-1]
1276

1277
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1278
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1279

1280
            with tempfile.TemporaryDirectory() as temp_dir_name:
1281
1282
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1283
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
1284

1285
            with torch.no_grad():
1286
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1287
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
1288

1289
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1290
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1291

1292
            heads_to_prune = {0: [0], 1: [1, 2]}
1293
            model.prune_heads(heads_to_prune)
1294

1295
            with torch.no_grad():
1296
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1297
            attentions = outputs[-1]
1298

1299
1300
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
1301

1302
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2]})
thomwolf's avatar
thomwolf committed
1303

Patrick von Platen's avatar
Patrick von Platen committed
1304
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1305
        def check_hidden_states_output(inputs_dict, config, model_class):
1306
            model = model_class(config)
1307
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1308
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1309

thomwolf's avatar
thomwolf committed
1310
            with torch.no_grad():
1311
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1312
1313

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1314

Sylvain Gugger's avatar
Sylvain Gugger committed
1315
1316
1317
1318
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1319

Patrick von Platen's avatar
Patrick von Platen committed
1320
1321
1322
1323
1324
1325
1326
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1327
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1328
1329
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1330
            )
thomwolf's avatar
thomwolf committed
1331

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1357
1358
1359
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1360
        config.output_attentions = self.has_attentions
1361
1362
1363
1364
1365
1366
1367
1368
1369

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1370

1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1381
1382
1383
1384
1385
1386
1387
1388
1389
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1390
1391
1392
1393
1394

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1395
1396
1397
1398
1399

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1400
1401
1402
1403
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1404
1405
1406
1407

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1408
1409
1410
1411

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1412
1413
1414

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1415

Pradhy729's avatar
Pradhy729 committed
1416
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1417
1418
1419
1420
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1518
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1519
1520
1521
1522
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1523
        if not self.test_resize_embeddings:
1524
1525
1526
1527
1528
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1529
            model.to(torch_device)
1530

Patrick von Platen's avatar
Patrick von Platen committed
1531
1532
1533
            if self.model_tester.is_training is False:
                model.eval()

1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1544
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1545
            model(**self._prepare_for_class(inputs_dict, model_class))
1546
1547
1548
1549
1550
1551
1552

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1553
1554
1555
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1556
1557
1558
1559

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1560
            model(**self._prepare_for_class(inputs_dict, model_class))
1561

1562
1563
1564
1565
1566
1567
1568
1569
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
            self.assertTrue(model.config.vocab_size + 10, model_vocab_size)

            model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

Arthur's avatar
Arthur committed
1581
1582
1583
            self.assertTrue(model_embed.weight.shape[0], model.config.vocab_size)
            self.assertTrue(model.config.vocab_size, model.vocab_size)

1584
1585
1586
            model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

1587
1588
1589
1590
1591
            # Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
            target_dimension = 128
            model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0], target_dimension)

1592
1593
1594
1595
1596
1597
            with self.assertRaisesRegex(
                ValueError,
                "Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
            ):
                model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)

1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1649
    def test_model_common_attributes(self):
1650
1651
1652
1653
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1654
1655
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1656
            x = model.get_output_embeddings()
1657
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1658

1659
1660
1661
1662
1663
1664
1665
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1666
    def test_correct_missing_keys(self):
1667
1668
        if not self.test_missing_keys:
            return
1669
1670
1671
1672
1673
1674
1675
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
                extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
                extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
                # Some models define this as None
                if model._keys_to_ignore_on_load_missing:
                    for key in model._keys_to_ignore_on_load_missing:
                        extra_params.pop(key, None)

                if not extra_params:
                    # In that case, we *are* on a head model, but every
                    # single key is not actual parameters and this is
                    # tested in `test_tied_model_weights_key_ignore` test.
                    continue

1689
1690
1691
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1692
                    self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
1693

1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1742
1743
    @require_safetensors
    def test_can_use_safetensors(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
1744
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
        for model_class in self.all_model_classes:
            model_tied = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                try:
                    model_tied.save_pretrained(d, safe_serialization=True)
                except Exception as e:
                    raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}")

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model_tied.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
1761
1762
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778

                # Checking the tensor sharing are correct
                ptrs = defaultdict(list)
                for k, v in model_tied.state_dict().items():
                    ptrs[v.data_ptr()].append(k)

                shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1}

                for _, shared_names in shared_ptrs.items():
                    reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names}
                    self.assertEqual(
                        len(reloaded_ptrs),
                        1,
                        f"The shared pointers are incorrect, found different pointers for keys {shared_names}",
                    )

Sylvain Gugger's avatar
Sylvain Gugger committed
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
    def test_load_save_without_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = False
        for model_class in self.all_model_classes:
            model = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                model.save_pretrained(d)

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])

Sylvain Gugger's avatar
Sylvain Gugger committed
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
    def test_tied_weights_keys(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = True
        for model_class in self.all_model_classes:
            model_tied = model_class(config)

            ptrs = collections.defaultdict(list)
            for name, tensor in model_tied.state_dict().items():
                ptrs[id_tensor_storage(tensor)].append(name)

            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]

            tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else []
            # Detect we get a hit for each key
            for key in tied_weight_keys:
                if not any(re.search(key, p) for group in tied_params for p in group):
                    raise ValueError(f"{key} is not a tied weight key for {model_class}.")

            # Removed tied weights found from tied params -> there should only be one left after
            for key in tied_weight_keys:
                for i in range(len(tied_params)):
                    tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None]

            tied_params = [group for group in tied_params if len(group) > 1]
Sylvain Gugger's avatar
Sylvain Gugger committed
1823
1824
1825
1826
1827
            self.assertListEqual(
                tied_params,
                [],
                f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.",
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
1828

Sylvain Gugger's avatar
Sylvain Gugger committed
1829
1830
    def test_model_weights_reload_no_missing_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
1831
        for model_class in self.all_model_classes:
Sylvain Gugger's avatar
Sylvain Gugger committed
1832
1833
1834
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.save_pretrained(tmp_dir)
1835
1836
1837

                # We are nuking ALL weights on file, so every parameter should
                # yell on load. We're going to detect if we yell too much, or too little.
1838
1839
                placeholder_dict = {"tensor": torch.tensor([1, 2])}
                safe_save_file(placeholder_dict, os.path.join(tmp_dir, "model.safetensors"), metadata={"format": "pt"})
Sylvain Gugger's avatar
Sylvain Gugger committed
1840
                model_reloaded, infos = model_class.from_pretrained(tmp_dir, output_loading_info=True)
1841
1842
1843
1844

                prefix = f"{model_reloaded.base_model_prefix}."
                params = dict(model_reloaded.named_parameters())
                params.update(dict(model_reloaded.named_buffers()))
1845
                param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()}
1846
1847
1848
1849

                missing_keys = set(infos["missing_keys"])

                extra_missing = missing_keys - param_names
Sylvain Gugger's avatar
Sylvain Gugger committed
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
                # Remove tied weights from extra missing: they are normally not warned as missing if their tied
                # counterpart is present but here there are no weights at all so we do get the warning.
                ptrs = collections.defaultdict(list)
                for name, tensor in model_reloaded.state_dict().items():
                    ptrs[id_tensor_storage(tensor)].append(name)
                tied_params = [names for _, names in ptrs.items() if len(names) > 1]
                for group in tied_params:
                    group = {k[len(prefix) :] if k.startswith(prefix) else k for k in group}
                    # We remove the group from extra_missing if not all weights from group are in it
                    if len(group - extra_missing) > 0:
                        extra_missing = extra_missing - set(group)
1861
1862
1863
1864

                self.assertEqual(
                    extra_missing,
                    set(),
Sylvain Gugger's avatar
Sylvain Gugger committed
1865
1866
                    f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}. "
                    f"For debugging, tied parameters are {tied_params}",
1867
1868
                )

Sylvain Gugger's avatar
Sylvain Gugger committed
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
                missed_missing = param_names - missing_keys
                # Remove nonpersistent buffers from missed_missing
                buffers = [n for n, _ in model_reloaded.named_buffers()]
                nonpersistent_buffers = {n for n in buffers if n not in model_reloaded.state_dict()}
                nonpersistent_buffers = {
                    k[len(prefix) :] if k.startswith(prefix) else k for k in nonpersistent_buffers
                }
                missed_missing = missed_missing - nonpersistent_buffers

                if model_reloaded._keys_to_ignore_on_load_missing is None:
                    expected_missing = set()
                else:
                    expected_missing = set(model_reloaded._keys_to_ignore_on_load_missing)
                self.assertEqual(
                    missed_missing,
                    expected_missing,
                    f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
                    " parameters. If they are non persistent buffers make sure to instantiate them with"
                    " `persistent=False`",
                )
1889

1890
1891
1892
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1893
1894
1895
1896
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1897
1898
1899
1900
1901
1902
1903
1904
1905
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
1906
1907
1908
1909
1910
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
1911
1912
1913
1914
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1915
1916
1917
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
Sylvain Gugger's avatar
Sylvain Gugger committed
1918
1919
1920
1921
1922
1923
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

1949
1950
1951
1952
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1953

1954
1955
1956
1957
1958
1959
1960
1961
1962
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
1963

1964
1965
1966
1967
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
1968

1969
1970
1971
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
1972

1973
1974
1975
1976
1977
1978
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = torch.cat(
                    [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
                )
1979

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = torch.cat(
                #     [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
                #     dim=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

1997
1998
        tf_keys = {k for k, v in tf_outputs.items() if v is not None}
        pt_keys = {k for k, v in pt_outputs.items() if v is not None}
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "FlaubertWithLMHeadModel",
            "FunnelForPreTraining",
            "ElectraForPreTraining",
            "XLMWithLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("GPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2025
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
2026

2027
2028
2029
2030
2031
2032
2033
2034
        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """
2035

2036
2037
2038
        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
2039

2040
2041
2042
2043
2044
2045
        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
2046

2047
2048
2049
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
2050

2051
2052
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
2053

2054
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
2055

2056
            # convert to the case of `tuple`
2057
            # appending each key to the current (string) `name`
2058
2059
2060
2061
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
2062

2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
2073
                    f"{name}: The tuple `attributes` should have the same length as `tf_outputs`",
2074
                )
2075
            else:
2076
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
2077
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
2078

2079
2080
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
2081

2082
2083
2084
2085
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
2086

2087
2088
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
2089

2090
2091
2092
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
2093

2094
2095
2096
2097
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])
2098

2099
2100
            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
2101

2102
2103
2104
2105
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
2106

2107
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
2108
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).")
2109
2110
        else:
            raise ValueError(
2111
                "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got"
Sylvain Gugger's avatar
Sylvain Gugger committed
2112
                f" {type(tf_outputs)} instead."
2113
2114
            )

2115
2116
2117
2118
    def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):
        tf_inputs_dict = {}
        for key, tensor in pt_inputs_dict.items():
            # skip key that does not exist in tf
2119
            if isinstance(tensor, bool):
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
                tf_inputs_dict[key] = tensor
            elif key == "input_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "pixel_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "input_features":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            # other general float inputs
            elif tensor.is_floating_point():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            else:
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
2132

2133
        return tf_inputs_dict
2134

2135
2136
    def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
        tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
2137

2138
2139
2140
2141
        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }
2142

2143
2144
        # send pytorch model to the correct device
        pt_model.to(torch_device)
2145

2146
2147
        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()
2148

2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))

    @is_pt_tf_cross_test
Matt's avatar
Matt committed
2163
    def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
2164
        import transformers
2165
2166

        for model_class in self.all_model_classes:
2167
2168
2169
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
2170
            if not hasattr(transformers, tf_model_class_name):
2171
                # transformers does not have this model in TF version yet
2172
2173
                return

2174
2175
2176
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
2177

2178
2179
2180
2181
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
2182
2183

            tf_model_class = getattr(transformers, tf_model_class_name)
2184
2185

            pt_model = model_class(config)
2186
2187
2188
2189
2190
2191
2192
2193
2194
            tf_model = tf_model_class(config)

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_with_labels = self._prepare_for_class(
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
            )
2195
2196
2197
2198
2199
2200
2201
2202
2203

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

2204
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
2205
2206
2207
2208
            pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}

            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
2209
            if not set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
2210
                pt_inputs_dict_with_labels = None
2211
2212

            # Check we can load pt model in tf and vice-versa with model => model functions
2213
2214
            # Here requires `tf_inputs_dict` to build `tf_model`
            tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
Matt's avatar
Matt committed
2215
2216
2217
2218
2219
2220
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
            )
            pt_model = transformers.load_tf2_model_in_pytorch_model(
                pt_model, tf_model, allow_missing_keys=allow_missing_keys
            )
2221

2222
2223
2224
2225
2226
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2227
2228
2229
2230
2231

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
Matt's avatar
Matt committed
2232
2233
2234
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
                    tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2235
2236
2237

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
Matt's avatar
Matt committed
2238
2239
2240
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
                    pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2241

2242
2243
2244
2245
2246
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2247
2248
2249
2250
2251

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

2252
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2253
2254
2255
2256
2257
2258
2259
2260
2261
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(fx_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
            )

            fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")

            # convert to the case of `tuple`
            # appending each key to the current (string) `name`
            attributes = tuple([f"{name}.{k}" for k in fx_keys])
            self.check_pt_flax_outputs(
                fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )

        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(fx_outputs) in [tuple, list]:
            self.assertEqual(
                type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
            )
            self.assertEqual(
                len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
            )

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(fx_outputs),
                    f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
                )
2302
            else:
2303
2304
2305
2306
2307
2308
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])

            for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
                self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)

2309
        elif isinstance(fx_outputs, jnp.ndarray):
2310
2311
2312
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
            )
2313
2314
2315
2316
2317

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

2318
2319
2320
2321
2322
2323
2324
2325
2326
            self.assertEqual(
                fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
            )

            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(fx_outputs):
                fx_outputs = np.array([fx_outputs])
                pt_outputs = np.array([pt_outputs])

2327
2328
2329
2330
2331
2332
2333
2334
            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

2335
2336
2337
2338
            max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
            self.assertLessEqual(
                max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
            )
2339
2340
        else:
            raise ValueError(
2341
2342
                "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
                f" {type(fx_outputs)} instead."
2343
2344
            )

2345
2346
2347
2348
2349
2350
2351
2352
2353
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
2354
                    # no flax model exists for this class
2355
2356
                    return

2357
2358
2359
2360
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2361
2362
                fx_model_class = getattr(transformers, fx_model_class_name)

2363
2364
2365
2366
2367
2368
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2369
2370
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2371

2372
2373
2374
2375
2376
2377
2378
2379
2380
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2381
2382
2383
2384
2385
2386
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
2387
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2388

2389
2390
2391
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

2392
2393
2394
                # send pytorch model to the correct device
                pt_model.to(torch_device)

2395
                with torch.no_grad():
2396
2397
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
2398

2399
2400
2401
2402
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2403
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2404
2405
2406
2407
2408

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

2409
2410
2411
2412
2413
2414
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2415
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

2429
2430
2431
2432
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2433
2434
                fx_model_class = getattr(transformers, fx_model_class_name)

2435
2436
2437
2438
2439
2440
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2441
2442
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2443

2444
2445
2446
2447
2448
2449
2450
2451
2452
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2453
2454
2455
2456
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
2457

2458
                # convert inputs to Flax
2459
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2460

2461
2462
2463
2464
2465
2466
2467
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
2468

2469
2470
2471
2472
2473
2474
2475
2476
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2477
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2478
2479
2480
2481
2482

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

2483
2484
2485
2486
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

2487
                with torch.no_grad():
2488
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
2489

2490
2491
2492
2493
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2494
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
2495

Patrick von Platen's avatar
Patrick von Platen committed
2496
    def test_inputs_embeds(self):
2497
2498
2499
2500
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
2501
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
2502
            model.eval()
2503

2504
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
2505

2506
2507
2508
2509
2510
2511
2512
2513
2514
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

2515
2516
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
2517
                inputs["inputs_embeds"] = wte(input_ids)
2518
            else:
2519
2520
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
2521

thomwolf's avatar
thomwolf committed
2522
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
2523
                model(**inputs)[0]
2524

2525
2526
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
2527
2528
2529
2530
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
2531
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
2546
            model = nn.DataParallel(model)
2547
            with torch.no_grad():
2548
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
2549

2550
2551
2552
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
2553
            return
2554

2555
        # a candidate for testing_utils
2556
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2557
            """returns a list of cuda memory allocations per GPU in MBs"""
2558
2559
2560
2561
2562

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2563
2564
2565
2566
2567
2568
2569
2570
2571

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2572
2573
2574
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2575

2576
2577
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2578
2579
2580
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2581
2582
2583
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2584
            del model
2585
            gc.collect()
2586
2587
            torch.cuda.empty_cache()

2588
2589
2590
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2591
2592

            # Spread model layers over multiple devices
2593
            model = model_class(config)
2594
2595
2596
2597
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
2598
            for n in range(len(model.device_map.keys())):
2599
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2600

2601
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2602
2603
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2604
2605
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2606
2607
2608
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2609
            gc.collect()
2610
2611
2612
2613
2614
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
2615
            return
2616
2617
2618
2619
2620
2621

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2622
            def cast_to_device(dictionary, device):
2623
2624
2625
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2626
                        output[k] = v.to(device)
2627
2628
2629
2630
2631
                    else:
                        output[k] = v

                return output

2632
2633
2634
2635
2636
2637
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2638
2639
2640
2641
2642
2643
2644
2645

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))

Sylvain Gugger's avatar
Sylvain Gugger committed
2660
    @require_accelerate
2661
    @mark.accelerate_tests
Sylvain Gugger's avatar
Sylvain Gugger committed
2662
    @require_torch_gpu
2663
    def test_disk_offload_bin(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
2664
2665
2666
2667
2668
2669
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2670
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2671
2672
            model = model_class(config).eval()
            model = model.to(torch_device)
2673
            torch.manual_seed(0)
2674
            base_output = model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2675
2676
2677

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
2678
                model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
Sylvain Gugger's avatar
Sylvain Gugger committed
2679
2680

                with self.assertRaises(ValueError):
Yih-Dar's avatar
Yih-Dar committed
2681
2682
                    max_size = int(self.model_split_percents[0] * model_size)
                    max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
2683
2684
2685
                    # This errors out cause it's missing an offload folder
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

Yih-Dar's avatar
Yih-Dar committed
2686
2687
                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
2688
2689
2690
2691
2692
                new_model = model_class.from_pretrained(
                    tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
                )

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2693
                torch.manual_seed(0)
2694
                new_output = new_model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2695

2696
                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
Sylvain Gugger's avatar
Sylvain Gugger committed
2697

2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
    @require_accelerate
    @mark.accelerate_tests
    @require_torch_gpu
    def test_disk_offload_safetensors(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config).eval()
            model = model.to(torch_device)
            torch.manual_seed(0)
            base_output = model(**inputs_dict_class)

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}

                # This doesn't error out as it's in safetensors and doesn't need an offload folder
                new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
                torch.manual_seed(0)
                new_output = new_model(**inputs_dict_class)

                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

2730
    @require_accelerate
2731
    @mark.accelerate_tests
2732
2733
2734
2735
2736
2737
2738
2739
    @require_torch_gpu
    def test_cpu_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2740
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2741
2742
            model = model_class(config).eval()
            model = model.to(torch_device)
2743
2744

            torch.manual_seed(0)
2745
            base_output = model(**inputs_dict_class)
2746
2747
2748

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
Yih-Dar's avatar
Yih-Dar committed
2749
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2760
2761

                    torch.manual_seed(0)
2762
                    new_output = new_model(**inputs_dict_class)
2763

2764
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
2765
2766

    @require_accelerate
2767
    @mark.accelerate_tests
2768
2769
2770
2771
2772
2773
2774
2775
    @require_torch_multi_gpu
    def test_model_parallelism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2776
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2777
2778
            model = model_class(config).eval()
            model = model.to(torch_device)
2779
2780

            torch.manual_seed(0)
2781
            base_output = model(**inputs_dict_class)
2782
2783
2784

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
2785
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2796
2797

                    torch.manual_seed(0)
2798
                    new_output = new_model(**inputs_dict_class)
2799

2800
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
2801

2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
2812
2813
2814
            if model_class.__name__ not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
2815
            ]:
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

2834
2835
2836
2837
2838
2839
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
2840
2841
2842
2843
2844
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
2845

2846
2847
                    loss.backward()

2848
    def test_load_with_mismatched_shapes(self):
2849
2850
        if not self.test_mismatched_shapes:
            return
2851
2852
2853
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
2854
            if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
2855
2856
2857
2858
2859
2860
2861
2862
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
2863
                    with self.assertRaises(RuntimeError):
2864
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
2865
2866
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
2867
2868

                    logger = logging.get_logger("transformers.modeling_utils")
2869

2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

2892
2893
2894
2895
2896
2897
2898
2899
2900
    def test_model_is_small(self):
        # Just a consistency check to make sure we are not running tests on 80M parameter models.
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            num_params = model.num_parameters()
            assert (
                num_params < 1000000
2901
            ), f"{model_class} is too big for the common tests ({num_params})! It should have 1M max."
2902

2903
2904
2905
2906
2907
2908
2909
2910
2911
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_conversion(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
2912
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
2913
2914
2915
2916
2917
2918

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(
2919
                    tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2"
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
                ).to(torch_device)

                for _, module in model.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        return

                self.assertTrue(False, "FlashAttention2 modules not found in model")

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_inference(self):
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
2935
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
2936

2937
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
2938
2939
2940
2941
2942
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
2943
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
2944
2945
2946
2947
                )
                model_fa.to(torch_device)

                model = model_class.from_pretrained(
2948
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
2949
2950
2951
                )
                model.to(torch_device)

2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                dummy_attention_mask = inputs_dict.get("attention_mask", None)

                if dummy_attention_mask is not None:
                    dummy_attention_mask = dummy_attention_mask[:1]
                    dummy_attention_mask[:, 1:] = 1
                    dummy_attention_mask[:, :1] = 0
2962

2963
2964
2965
2966
2967
2968
2969
2970
                if model.config.is_encoder_decoder:
                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]

                    outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                else:
                    outputs = model(dummy_input, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, output_hidden_states=True)
2971

2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
2982

2983
                assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)
2984

2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
                if model.config.is_encoder_decoder:
                    other_inputs = {
                        "decoder_input_ids": decoder_input_ids,
                        "decoder_attention_mask": dummy_attention_mask,
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)
                else:
                    other_inputs = {
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3016

3017
                assert torch.allclose(logits_fa[1:], logits[1:], atol=4e-2, rtol=4e-2)
3018

3019
3020
                # check with inference + dropout
                model.train()
3021
                _ = model_fa(dummy_input, **other_inputs)
3022

3023
3024
3025
3026
3027
3028
3029
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_inference_padding_right(self):
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3030
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3031

3032
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3033
3034
3035
3036
3037
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
3038
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
3039
3040
3041
3042
                )
                model_fa.to(torch_device)

                model = model_class.from_pretrained(
3043
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
3044
3045
3046
                )
                model.to(torch_device)

3047
3048
3049
3050
3051
                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                dummy_attention_mask = inputs_dict.get("attention_mask", None)
3052

3053
3054
3055
3056
                if dummy_attention_mask is not None:
                    dummy_attention_mask = dummy_attention_mask[:1]
                    dummy_attention_mask[:, :-1] = 1
                    dummy_attention_mask[:, -1:] = 0
3057

3058
3059
                if model.config.is_encoder_decoder:
                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]
3060

3061
3062
3063
3064
3065
                    outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                else:
                    outputs = model(dummy_input, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, output_hidden_states=True)
3066

3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3077

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
                assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)

                if model.config.is_encoder_decoder:
                    other_inputs = {
                        "decoder_input_ids": decoder_input_ids,
                        "decoder_attention_mask": dummy_attention_mask,
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)
                else:
                    other_inputs = {
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )

                assert torch.allclose(logits_fa[:-1], logits[:-1], atol=4e-2, rtol=4e-2)
3113
3114
3115
3116
3117
3118
3119
3120

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_left_padding(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3121
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3122

3123
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3124
3125
3126
3127
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
3128
3129
3130
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
3131

3132
3133
3134
3135
3136
3137
3138
3139
                dummy_input = inputs_dict[model.main_input_name]
                if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                    dummy_input = dummy_input.to(torch.float16)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
                # make sure we do left padding
                dummy_attention_mask[:, :-1] = 0
                dummy_attention_mask[:, -1:] = 1
3140
3141
3142
3143
3144
3145

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
3146
3147
3148
3149
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
3150
3151
3152
3153
3154
3155
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

3156
                self.assertTrue(torch.allclose(out, out_fa))
3157
3158
3159
3160
3161
3162
3163
3164

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_padding_right(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3165
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3166

3167
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3168
3169
3170
3171
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
3172
3173
3174
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
3175

3176
3177
3178
3179
3180
                dummy_input = inputs_dict[model.main_input_name]
                if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                    dummy_input = dummy_input.to(torch.float16)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
3181
                # make sure we do right padding
3182
3183
                dummy_attention_mask[:, :-1] = 1
                dummy_attention_mask[:, -1:] = 0
3184
3185
3186
3187
3188
3189

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
3190
3191
3192
3193
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
3194
3195
3196
3197
3198
3199
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

3200
                self.assertTrue(torch.allclose(out, out_fa))
3201

3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
    @parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_inference(self, torch_dtype: str):
        if not self.all_model_classes[0]._supports_sdpa:
            self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")

        if torch_device == "cpu" and torch_dtype == "float16":
            self.skipTest("float16 not supported on cpu")

        # Not sure whether it's fine to put torch.XXX in a decorator if torch is not available so hacking it here instead.
        if torch_dtype == "float16":
            torch_dtype = torch.float16
        elif torch_dtype == "bfloat16":
            torch_dtype = torch.bfloat16
        elif torch_dtype == "float32":
            torch_dtype = torch.float32

        atols = {
            ("cpu", False, torch.float32): 1e-6,
            ("cpu", False, torch.bfloat16): 1e-2,
            ("cpu", True, torch.float32): 1e-6,
            ("cpu", True, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float32): 1e-6,
            ("cuda", False, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float16): 1e-3,
            ("cuda", True, torch.float32): 1e-6,
            ("cuda", True, torch.bfloat16): 1e-2,
            ("cuda", True, torch.float16): 5e-3,
        }
        rtols = {
            ("cpu", False, torch.float32): 1e-4,
            ("cpu", False, torch.bfloat16): 1e-2,
            ("cpu", True, torch.float32): 1e-4,
            ("cpu", True, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float32): 1e-4,
            ("cuda", False, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float16): 1e-3,
            ("cuda", True, torch.float32): 1e-4,
            ("cuda", True, torch.bfloat16): 3e-2,
            ("cuda", True, torch.float16): 5e-3,
        }

        def get_mean_reldiff(failcase, x, ref, atol, rtol):
            return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            is_encoder_decoder = model.config.is_encoder_decoder

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
                model_sdpa = model_sdpa.eval().to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch_dtype,
                    attn_implementation="eager",
                )
                model_eager = model_eager.eval().to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
                    if "SdpaAttention" in submodule.__class__.__name__:
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
                    if "SdpaAttention" in submodule.__class__.__name__:
                        has_sdpa = True
                        break
                if not has_sdpa and model_sdpa.config.model_type != "falcon":
                    raise ValueError("The SDPA model should have SDPA attention layers")

                # We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving 8 times the model,
                # but it would be nicer to have an efficient way to use parameterized.expand
                fail_cases = []
                for padding_side in ["left", "right"]:
                    for use_mask in [False, True]:
                        for batch_size in [1, 5]:
                            dummy_input = inputs_dict[model.main_input_name]

                            if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
                                dummy_input = dummy_input.to(torch_dtype)

                            dummy_input = dummy_input[:batch_size]
                            if dummy_input.shape[0] != batch_size:
                                if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
                                    extension = torch.rand(
                                        batch_size - dummy_input.shape[0],
                                        *dummy_input.shape[1:],
                                        dtype=torch_dtype,
                                        device=torch_device,
                                    )
                                    dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
                                else:
                                    extension = torch.randint(
                                        high=5,
                                        size=(batch_size - dummy_input.shape[0], *dummy_input.shape[1:]),
                                        dtype=dummy_input.dtype,
                                        device=torch_device,
                                    )
                                    dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)

                            if not use_mask:
                                dummy_attention_mask = None
                            else:
                                dummy_attention_mask = inputs_dict.get("attention_mask", None)
                                if dummy_attention_mask is None:
                                    if is_encoder_decoder:
                                        seqlen = inputs_dict.get("decoder_input_ids", dummy_input).shape[-1]
                                    else:
                                        seqlen = dummy_input.shape[-1]
                                    dummy_attention_mask = (
                                        torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device)
                                    )

                                dummy_attention_mask = dummy_attention_mask[:batch_size]
                                if dummy_attention_mask.shape[0] != batch_size:
                                    extension = torch.ones(
                                        batch_size - dummy_attention_mask.shape[0],
                                        *dummy_attention_mask.shape[1:],
                                        dtype=dummy_attention_mask.dtype,
                                        device=torch_device,
                                    )
                                    dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0)
                                    dummy_attention_mask = dummy_attention_mask.to(torch_device)

                                dummy_attention_mask[:] = 1
                                if padding_side == "left":
                                    dummy_attention_mask[-1, :-1] = 1
                                    dummy_attention_mask[-1, -4:] = 0
                                elif padding_side == "right":
                                    dummy_attention_mask[-1, 1:] = 1
                                    dummy_attention_mask[-1, :3] = 0

                            for enable_kernels in [False, True]:
                                failcase = f"padding_side={padding_side}, use_mask={use_mask}, batch_size={batch_size}, enable_kernels={enable_kernels}"
                                if is_encoder_decoder:
                                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:batch_size]
                                    if decoder_input_ids.shape[0] != batch_size:
                                        extension = torch.ones(
                                            batch_size - decoder_input_ids.shape[0],
                                            *decoder_input_ids.shape[1:],
                                            dtype=decoder_input_ids.dtype,
                                            device=torch_device,
                                        )
                                        decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0)
                                        decoder_input_ids = decoder_input_ids.to(torch_device)

                                    # TODO: never an `attention_mask` arg here?
                                    other_inputs = {
                                        "decoder_input_ids": decoder_input_ids,
                                        "decoder_attention_mask": dummy_attention_mask,
                                        "output_hidden_states": True,
                                    }
                                else:
                                    other_inputs = {
                                        "output_hidden_states": True,
                                    }

                                    # Otherwise fails for e.g. WhisperEncoderModel
                                    if "attention_mask" in inspect.signature(model_eager.forward).parameters:
                                        other_inputs["attention_mask"] = dummy_attention_mask

                                # TODO: test gradients as well (& for FA2 as well!)
                                with torch.no_grad():
                                    with torch.backends.cuda.sdp_kernel(
                                        enable_flash=enable_kernels,
                                        enable_math=True,
                                        enable_mem_efficient=enable_kernels,
                                    ):
                                        outputs_eager = model_eager(dummy_input, **other_inputs)
                                        outputs_sdpa = model_sdpa(dummy_input, **other_inputs)

                                logits_eager = (
                                    outputs_eager.hidden_states[-1]
                                    if not is_encoder_decoder
                                    else outputs_eager.decoder_hidden_states[-1]
                                )
                                logits_sdpa = (
                                    outputs_sdpa.hidden_states[-1]
                                    if not is_encoder_decoder
                                    else outputs_sdpa.decoder_hidden_states[-1]
                                )

                                if torch_device in ["cpu", "cuda"]:
                                    atol = atols[torch_device, enable_kernels, torch_dtype]
                                    rtol = rtols[torch_device, enable_kernels, torch_dtype]
                                else:
                                    atol = 1e-7
                                    rtol = 1e-4

                                # Masked tokens output slightly deviates - we don't mind that.
                                if use_mask:
                                    if padding_side == "left":
                                        sub_sdpa = logits_sdpa[:-1]
                                        sub_eager = logits_eager[:-1]
                                        if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            fail_cases.append(
                                                get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                            )

                                        sub_sdpa = logits_sdpa[-1, :-4]
                                        sub_eager = logits_eager[-1, :-4]
                                        if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            fail_cases.append(
                                                get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                            )

                                        # Testing the padding tokens is not really meaningful but anyway
                                        # sub_sdpa = logits_sdpa[-1, -4:]
                                        # sub_eager = logits_eager[-1, -4:]
                                        # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                        #     fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))
                                    elif padding_side == "right":
                                        sub_sdpa = logits_sdpa[:-1]
                                        sub_eager = logits_eager[:-1]
                                        if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            fail_cases.append(
                                                get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                            )

                                        sub_sdpa = logits_sdpa[-1, 3:]
                                        sub_eager = logits_eager[-1, 3:]
                                        if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            fail_cases.append(
                                                get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                            )

                                        # Testing the padding tokens is not really meaningful but anyway
                                        # sub_sdpa = logits_sdpa[-1, :3]
                                        # sub_eager = logits_eager[-1, :3]
                                        # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                        #     fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))

                                else:
                                    if not torch.allclose(logits_sdpa, logits_eager, atol=atol, rtol=rtol):
                                        fail_cases.append(
                                            get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol)
                                        )

                self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))

    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_generate(self):
        max_new_tokens = 30

        if len(self.all_generative_model_classes) == 0:
            self.skipTest(f"{self.__class__.__name__} tests a model that does support generate: skipping this test")

        for model_class in self.all_generative_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))

                model_sdpa = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                ).to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                    attn_implementation="eager",
                ).to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
                    if "SdpaAttention" in submodule.__class__.__name__:
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
                    if "SdpaAttention" in submodule.__class__.__name__:
                        has_sdpa = True
                        break
                if not has_sdpa:
                    raise ValueError("The SDPA model should have SDPA attention layers")

                # Just test that a large cache works as expected
                res_eager = model_eager.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                res_sdpa = model_sdpa.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                self.assertTrue(torch.allclose(res_eager, res_sdpa))

3521
3522
3523
3524
3525
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_use_cache(self):
3526
3527
        max_new_tokens = 30

3528
3529
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3530
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3531

3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

3542
3543
3544
3545
3546
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

3547
                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
3548
3549

                model = model_class.from_pretrained(
3550
3551
                    tmpdirname,
                    torch_dtype=torch.float16,
3552
                    attn_implementation="flash_attention_2",
3553
                    low_cpu_mem_usage=True,
3554
3555
3556
3557
                ).to(torch_device)

                # Just test that a large cache works as expected
                _ = model.generate(
3558
3559
3560
3561
3562
                    dummy_input,
                    attention_mask=dummy_attention_mask,
                    max_new_tokens=max_new_tokens,
                    do_sample=False,
                    use_cache=True,
3563
3564
                )

3565
3566
3567
3568
3569
3570
3571
3572
    @require_flash_attn
    @require_torch_gpu
    @require_bitsandbytes
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_fp32_ln(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3573
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3574

3575
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3576
3577
3578
3579
3580
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

3581
3582
3583
3584
3585
3586
                dummy_input = inputs_dict[model.main_input_name]
                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))

                if model.config.is_encoder_decoder:
                    dummy_decoder_input_ids = inputs_dict["decoder_input_ids"]
                    dummy_decoder_attention_mask = inputs_dict["decoder_attention_mask"]
3587
3588
3589
3590

                model = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
3591
                    attn_implementation="flash_attention_2",
3592
3593
3594
3595
3596
3597
3598
3599
3600
                    low_cpu_mem_usage=True,
                    load_in_4bit=True,
                )

                for _, param in model.named_parameters():
                    # upcast only layer norms
                    if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
                        param.data = param.data.to(torch.float32)

3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
                if model.config.is_encoder_decoder:
                    _ = model(dummy_input, decoder_input_ids=dummy_decoder_input_ids)
                    # with attention mask
                    _ = model(
                        dummy_input,
                        attention_mask=dummy_attention_mask,
                        decoder_input_ids=dummy_decoder_input_ids,
                        decoder_attention_mask=dummy_decoder_attention_mask,
                    )
                else:
                    _ = model(dummy_input)
                    # with attention mask
                    _ = model(dummy_input, attention_mask=dummy_attention_mask)
3614

3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
    @is_pt_tf_cross_test
    def test_tf_from_pt_safetensors(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
            if not hasattr(transformers, tf_model_class_name):
                # transformers does not have this model in TF version yet
                return

            tf_model_class = getattr(transformers, tf_model_class_name)

            pt_model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname, safe_serialization=True)
                tf_model_1 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)

                pt_model.save_pretrained(tmpdirname, safe_serialization=False)
                tf_model_2 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)

                # Check models are equal
                for p1, p2 in zip(tf_model_1.weights, tf_model_2.weights):
                    self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))

    @is_pt_flax_cross_test
    def test_flax_from_pt_safetensors(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            flax_model_class_name = "Flax" + model_class.__name__  # Add the "Flax at the beginning
            if not hasattr(transformers, flax_model_class_name):
                # transformers does not have this model in Flax version yet
                return

            flax_model_class = getattr(transformers, flax_model_class_name)

            pt_model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname, safe_serialization=True)
                flax_model_1 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)

                pt_model.save_pretrained(tmpdirname, safe_serialization=False)
                flax_model_2 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)

                # Check models are equal
                self.assertTrue(check_models_equal(flax_model_1, flax_model_2))

3664
3665
3666
3667
3668
3669
3670
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_from_config(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3671
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3672
3673
3674
3675

            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
            # TODO: to change it in the future with other relevant auto classes
            fa2_model = AutoModelForCausalLM.from_config(
3676
                config, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
            ).to(torch_device)

            dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
            dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [0, 1, 1, 1]]).to(torch_device)

            fa2_correctly_converted = False

            for _, module in fa2_model.named_modules():
                if "FlashAttention" in module.__class__.__name__:
                    fa2_correctly_converted = True
                    break

            self.assertTrue(fa2_correctly_converted)

            _ = fa2_model(input_ids=dummy_input, attention_mask=dummy_attention_mask)

            with tempfile.TemporaryDirectory() as tmpdirname:
                fa2_model.save_pretrained(tmpdirname)

                model_from_pretrained = AutoModelForCausalLM.from_pretrained(tmpdirname)

3698
                self.assertTrue(model_from_pretrained.config._attn_implementation != "flash_attention_2")
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708

                fa2_correctly_converted = False

                for _, module in model_from_pretrained.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        fa2_correctly_converted = True
                        break

                self.assertFalse(fa2_correctly_converted)

3709

3710
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
3711
3712


thomwolf's avatar
thomwolf committed
3713
def ids_tensor(shape, vocab_size, rng=None, name=None):
3714
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
3715
    if rng is None:
3716
        rng = global_rng
thomwolf's avatar
thomwolf committed
3717

thomwolf's avatar
thomwolf committed
3718
3719
3720
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
3721

thomwolf's avatar
thomwolf committed
3722
3723
3724
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
3725

3726
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
3727
3728


3729
3730
3731
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
3732
3733
    # we choose the 1st token so this property of `at least one being non-zero` still holds after applying causal mask
    attn_mask[:, 0] = 1
3734
3735
3736
    return attn_mask


3737
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
3738
    """Creates a random float32 tensor"""
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

3750
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()