model_management.py 29.4 KB
Newer Older
1
import psutil
2
import logging
3
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
4
from comfy.cli_args import args
5
import torch
comfyanonymous's avatar
comfyanonymous committed
6
import sys
7
import platform
8

9
class VRAMState(Enum):
10
11
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
12
13
14
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
15
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
16
17
18
19
20

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
21

22
23
24
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
25
cpu_state = CPUState.GPU
26

27
total_vram = 0
28

29
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
30
xpu_available = False
31

32
if args.deterministic:
comfyanonymous's avatar
comfyanonymous committed
33
    logging.info("Using deterministic algorithms for pytorch")
34
35
    torch.use_deterministic_algorithms(True, warn_only=True)

36
directml_enabled = False
37
if args.directml is not None:
38
39
    import torch_directml
    directml_enabled = True
40
41
42
43
44
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
comfyanonymous's avatar
comfyanonymous committed
45
    logging.info("Using directml with device: {}".format(torch_directml.device_name(device_index)))
46
    # torch_directml.disable_tiled_resources(True)
47
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
48

49
try:
50
51
52
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
53
54
55
except:
    pass

56
57
58
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
59
        import torch.mps
60
61
62
63
64
65
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

66
67
def is_intel_xpu():
    global cpu_state
68
    global xpu_available
69
70
71
72
73
74
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False

def get_torch_device():
75
    global directml_enabled
76
    global cpu_state
77
78
79
    if directml_enabled:
        global directml_device
        return directml_device
80
    if cpu_state == CPUState.MPS:
81
        return torch.device("mps")
82
    if cpu_state == CPUState.CPU:
83
84
        return torch.device("cpu")
    else:
85
        if is_intel_xpu():
86
            return torch.device("xpu", torch.xpu.current_device())
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
102
        elif is_intel_xpu():
103
104
105
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            mem_total_torch = mem_reserved
106
            mem_total = torch.xpu.get_device_properties(dev).total_memory
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
comfyanonymous's avatar
comfyanonymous committed
121
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
122

comfyanonymous's avatar
comfyanonymous committed
123
124
125
126
127
try:
    logging.info("pytorch version: {}".format(torch.version.__version__))
except:
    pass

128
129
130
131
132
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

133
134
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
135
136
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
137
138
139
140
else:
    try:
        import xformers
        import xformers.ops
141
        XFORMERS_IS_AVAILABLE = True
142
143
144
145
        try:
            XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
        except:
            pass
146
147
        try:
            XFORMERS_VERSION = xformers.version.__version__
comfyanonymous's avatar
comfyanonymous committed
148
            logging.info("xformers version: {}".format(XFORMERS_VERSION))
149
            if XFORMERS_VERSION.startswith("0.0.18"):
150
151
                logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                logging.warning("Please downgrade or upgrade xformers to a different version.\n")
152
153
154
                XFORMERS_ENABLED_VAE = False
        except:
            pass
155
    except:
156
        XFORMERS_IS_AVAILABLE = False
157

158
159
160
161
162
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
163
    return False
164

165
166
167
168
169
ENABLE_PYTORCH_ATTENTION = False
if args.use_pytorch_cross_attention:
    ENABLE_PYTORCH_ATTENTION = True
    XFORMERS_IS_AVAILABLE = False

170
VAE_DTYPES = [torch.float32]
171

172
173
174
175
try:
    if is_nvidia():
        torch_version = torch.version.__version__
        if int(torch_version[0]) >= 2:
176
            if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
177
                ENABLE_PYTORCH_ATTENTION = True
178
            if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
179
                VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES
180
181
182
    if is_intel_xpu():
        if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
            ENABLE_PYTORCH_ATTENTION = True
183
184
185
except:
    pass

186
if is_intel_xpu():
187
    VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES
188

189
if args.cpu_vae:
190
    VAE_DTYPES = [torch.float32]
191

192

193
if ENABLE_PYTORCH_ATTENTION:
194
195
196
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
197

198
199
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
200
    lowvram_available = True
201
202
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
203
elif args.highvram or args.gpu_only:
204
    vram_state = VRAMState.HIGH_VRAM
205

206
FORCE_FP32 = False
207
FORCE_FP16 = False
208
if args.force_fp32:
comfyanonymous's avatar
comfyanonymous committed
209
    logging.info("Forcing FP32, if this improves things please report it.")
210
211
    FORCE_FP32 = True

212
if args.force_fp16:
comfyanonymous's avatar
comfyanonymous committed
213
    logging.info("Forcing FP16.")
214
215
    FORCE_FP16 = True

216
if lowvram_available:
217
218
    if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
        vram_state = set_vram_to
219

220

221
222
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
223

224
225
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
226

comfyanonymous's avatar
comfyanonymous committed
227
logging.info(f"Set vram state to: {vram_state.name}")
228

229
230
231
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
comfyanonymous's avatar
comfyanonymous committed
232
    logging.info("Disabling smart memory management")
233

234
235
def get_torch_device_name(device):
    if hasattr(device, 'type'):
236
        if device.type == "cuda":
237
238
239
240
241
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
242
243
        else:
            return "{}".format(device.type)
244
    elif is_intel_xpu():
245
        return "{} {}".format(device, torch.xpu.get_device_name(device))
246
247
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
248
249

try:
comfyanonymous's avatar
comfyanonymous committed
250
    logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
251
except:
252
    logging.warning("Could not pick default device.")
253

254

comfyanonymous's avatar
comfyanonymous committed
255
current_loaded_models = []
256

257
258
259
260
261
262
263
264
def module_size(module):
    module_mem = 0
    sd = module.state_dict()
    for k in sd:
        t = sd[k]
        module_mem += t.nelement() * t.element_size()
    return module_mem

comfyanonymous's avatar
comfyanonymous committed
265
266
267
268
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.device = model.load_device
269
        self.weights_loaded = False
270
        self.real_model = None
271
        self.currently_used = True
272

comfyanonymous's avatar
comfyanonymous committed
273
274
    def model_memory(self):
        return self.model.model_size()
275

comfyanonymous's avatar
comfyanonymous committed
276
277
278
279
280
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
281

282
    def model_load(self, lowvram_model_memory=0, force_patch_weights=False):
283
        patch_model_to = self.device
284

comfyanonymous's avatar
comfyanonymous committed
285
286
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
287

288
289
        load_weights = not self.weights_loaded

comfyanonymous's avatar
comfyanonymous committed
290
        try:
291
            if lowvram_model_memory > 0 and load_weights:
292
                self.real_model = self.model.patch_model_lowvram(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights)
293
            else:
294
                self.real_model = self.model.patch_model(device_to=patch_model_to, patch_weights=load_weights)
comfyanonymous's avatar
comfyanonymous committed
295
296
297
298
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
299

300
        if is_intel_xpu() and not args.disable_ipex_optimize:
301
            self.real_model = ipex.optimize(self.real_model.eval(), graph_mode=True, concat_linear=True)
302

303
        self.weights_loaded = True
comfyanonymous's avatar
comfyanonymous committed
304
        return self.real_model
305

306
307
308
309
310
    def should_reload_model(self, force_patch_weights=False):
        if force_patch_weights and self.model.lowvram_patch_counter > 0:
            return True
        return False

311
312
    def model_unload(self, unpatch_weights=True):
        self.model.unpatch_model(self.model.offload_device, unpatch_weights=unpatch_weights)
comfyanonymous's avatar
comfyanonymous committed
313
        self.model.model_patches_to(self.model.offload_device)
314
        self.weights_loaded = self.weights_loaded and not unpatch_weights
315
        self.real_model = None
316

comfyanonymous's avatar
comfyanonymous committed
317
318
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
319

comfyanonymous's avatar
comfyanonymous committed
320
321
322
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

323
def unload_model_clones(model, unload_weights_only=True, force_unload=True):
comfyanonymous's avatar
comfyanonymous committed
324
325
326
327
328
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

329
    if len(to_unload) == 0:
330
        return True
331
332

    same_weights = 0
comfyanonymous's avatar
comfyanonymous committed
333
    for i in to_unload:
334
335
336
337
338
339
340
341
        if model.clone_has_same_weights(current_loaded_models[i].model):
            same_weights += 1

    if same_weights == len(to_unload):
        unload_weight = False
    else:
        unload_weight = True

342
343
344
    if not force_unload:
        if unload_weights_only and unload_weight == False:
            return None
345
346
347
348
349

    for i in to_unload:
        logging.debug("unload clone {} {}".format(i, unload_weight))
        current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight)

350
    return unload_weight
comfyanonymous's avatar
comfyanonymous committed
351
352

def free_memory(memory_required, device, keep_loaded=[]):
353
354
355
    unloaded_model = []
    can_unload = []

comfyanonymous's avatar
comfyanonymous committed
356
357
358
359
    for i in range(len(current_loaded_models) -1, -1, -1):
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
360
                can_unload.append((sys.getrefcount(shift_model.model), shift_model.model_memory(), i))
361
                shift_model.currently_used = False
362
363
364
365
366
367
368
369
370
371
372

    for x in sorted(can_unload):
        i = x[-1]
        if not DISABLE_SMART_MEMORY:
            if get_free_memory(device) > memory_required:
                break
        current_loaded_models[i].model_unload()
        unloaded_model.append(i)

    for i in sorted(unloaded_model, reverse=True):
        current_loaded_models.pop(i)
comfyanonymous's avatar
comfyanonymous committed
373

374
    if len(unloaded_model) > 0:
comfyanonymous's avatar
comfyanonymous committed
375
        soft_empty_cache()
376
377
378
379
380
    else:
        if vram_state != VRAMState.HIGH_VRAM:
            mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
            if mem_free_torch > mem_free_total * 0.25:
                soft_empty_cache()
comfyanonymous's avatar
comfyanonymous committed
381

382
def load_models_gpu(models, memory_required=0, force_patch_weights=False):
383
384
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
385
386
387
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

388
389
    models = set(models)

comfyanonymous's avatar
comfyanonymous committed
390
391
392
393
    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)
394
        loaded = None
comfyanonymous's avatar
comfyanonymous committed
395

396
397
398
399
400
401
402
403
404
405
406
        try:
            loaded_model_index = current_loaded_models.index(loaded_model)
        except:
            loaded_model_index = None

        if loaded_model_index is not None:
            loaded = current_loaded_models[loaded_model_index]
            if loaded.should_reload_model(force_patch_weights=force_patch_weights): #TODO: cleanup this model reload logic
                current_loaded_models.pop(loaded_model_index).model_unload(unpatch_weights=True)
                loaded = None
            else:
407
                loaded.currently_used = True
408
409
410
                models_already_loaded.append(loaded)

        if loaded is None:
411
            if hasattr(x, "model"):
comfyanonymous's avatar
comfyanonymous committed
412
                logging.info(f"Requested to load {x.model.__class__.__name__}")
comfyanonymous's avatar
comfyanonymous committed
413
414
415
416
417
418
419
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
420
421
        return

comfyanonymous's avatar
comfyanonymous committed
422
    logging.info(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
423

comfyanonymous's avatar
comfyanonymous committed
424
425
    total_memory_required = {}
    for loaded_model in models_to_load:
426
427
        if unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) == True:#unload clones where the weights are different
            total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
428

comfyanonymous's avatar
comfyanonymous committed
429
430
431
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
432

433
    for loaded_model in models_to_load:
434
435
436
        weights_unloaded = unload_model_clones(loaded_model.model, unload_weights_only=False, force_unload=False) #unload the rest of the clones where the weights can stay loaded
        if weights_unloaded is not None:
            loaded_model.weights_loaded = not weights_unloaded
437

comfyanonymous's avatar
comfyanonymous committed
438
439
440
441
442
443
444
445
446
447
448
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
449
            lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
450
            if model_size <= (current_free_mem - inference_memory): #only switch to lowvram if really necessary
comfyanonymous's avatar
comfyanonymous committed
451
                lowvram_model_memory = 0
452

comfyanonymous's avatar
comfyanonymous committed
453
        if vram_set_state == VRAMState.NO_VRAM:
454
            lowvram_model_memory = 64 * 1024 * 1024
455

456
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory, force_patch_weights=force_patch_weights)
comfyanonymous's avatar
comfyanonymous committed
457
458
459
460
461
462
463
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

464
465
466
467
468
469
470
471
472
473
def loaded_models(only_currently_used=False):
    output = []
    for m in current_loaded_models:
        if only_currently_used:
            if not m.currently_used:
                continue

        output.append(m.model)
    return output

474
def cleanup_models(keep_clone_weights_loaded=False):
comfyanonymous's avatar
comfyanonymous committed
475
476
477
    to_delete = []
    for i in range(len(current_loaded_models)):
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
478
479
480
481
482
            if not keep_clone_weights_loaded:
                to_delete = [i] + to_delete
            #TODO: find a less fragile way to do this.
            elif sys.getrefcount(current_loaded_models[i].real_model) <= 3: #references from .real_model + the .model
                to_delete = [i] + to_delete
comfyanonymous's avatar
comfyanonymous committed
483
484
485
486
487

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
488

489
490
491
492
def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
493
494
495
496
497
498
499
    elif dtype == torch.float32:
        dtype_size = 4
    else:
        try:
            dtype_size = dtype.itemsize
        except: #Old pytorch doesn't have .itemsize
            pass
500
501
    return dtype_size

502
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
503
    if vram_state == VRAMState.HIGH_VRAM:
504
505
506
507
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
508
509
510
511
512
513
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
514
515
516
    if DISABLE_SMART_MEMORY:
        return cpu_dev

517
    model_size = dtype_size(dtype) * parameters
comfyanonymous's avatar
comfyanonymous committed
518
519
520
521
522
523
524
525

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

comfyanonymous's avatar
comfyanonymous committed
526
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
527
528
    if args.bf16_unet:
        return torch.bfloat16
529
530
    if args.fp16_unet:
        return torch.float16
531
532
533
534
    if args.fp8_e4m3fn_unet:
        return torch.float8_e4m3fn
    if args.fp8_e5m2_unet:
        return torch.float8_e5m2
535
    if should_use_fp16(device=device, model_params=model_params, manual_cast=True):
comfyanonymous's avatar
comfyanonymous committed
536
537
        if torch.float16 in supported_dtypes:
            return torch.float16
538
    if should_use_bf16(device, model_params=model_params, manual_cast=True):
comfyanonymous's avatar
comfyanonymous committed
539
540
        if torch.bfloat16 in supported_dtypes:
            return torch.bfloat16
541
542
    return torch.float32

543
# None means no manual cast
comfyanonymous's avatar
comfyanonymous committed
544
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
545
546
547
    if weight_dtype == torch.float32:
        return None

comfyanonymous's avatar
comfyanonymous committed
548
    fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
549
550
551
    if fp16_supported and weight_dtype == torch.float16:
        return None

comfyanonymous's avatar
comfyanonymous committed
552
553
554
555
556
    bf16_supported = should_use_bf16(inference_device)
    if bf16_supported and weight_dtype == torch.bfloat16:
        return None

    if fp16_supported and torch.float16 in supported_dtypes:
557
        return torch.float16
comfyanonymous's avatar
comfyanonymous committed
558
559
560

    elif bf16_supported and torch.bfloat16 in supported_dtypes:
        return torch.bfloat16
561
562
563
    else:
        return torch.float32

564
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
565
    if args.gpu_only:
566
567
568
569
        return get_torch_device()
    else:
        return torch.device("cpu")

570
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
571
    if args.gpu_only:
572
        return get_torch_device()
573
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
574
        if should_use_fp16(prioritize_performance=False):
575
576
577
            return get_torch_device()
        else:
            return torch.device("cpu")
578
579
580
    else:
        return torch.device("cpu")

581
582
583
584
585
586
587
588
589
590
def text_encoder_dtype(device=None):
    if args.fp8_e4m3fn_text_enc:
        return torch.float8_e4m3fn
    elif args.fp8_e5m2_text_enc:
        return torch.float8_e5m2
    elif args.fp16_text_enc:
        return torch.float16
    elif args.fp32_text_enc:
        return torch.float32

591
592
593
    if is_device_cpu(device):
        return torch.float16

594
595
    return torch.float16

596

597
598
599
600
601
602
def intermediate_device():
    if args.gpu_only:
        return get_torch_device()
    else:
        return torch.device("cpu")

603
def vae_device():
604
605
    if args.cpu_vae:
        return torch.device("cpu")
606
607
608
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
609
    if args.gpu_only:
610
611
612
613
        return get_torch_device()
    else:
        return torch.device("cpu")

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
def vae_dtype(device=None, allowed_dtypes=[]):
    global VAE_DTYPES
    if args.fp16_vae:
        return torch.float16
    elif args.bf16_vae:
        return torch.bfloat16
    elif args.fp32_vae:
        return torch.float32

    for d in allowed_dtypes:
        if d == torch.float16 and should_use_fp16(device, prioritize_performance=False):
            return d
        if d in VAE_DTYPES:
            return d

    return VAE_DTYPES[0]
630

631
632
633
634
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
635

636
637
638
def supports_dtype(device, dtype): #TODO
    if dtype == torch.float32:
        return True
639
    if is_device_cpu(device):
640
641
642
643
644
645
646
        return False
    if dtype == torch.float16:
        return True
    if dtype == torch.bfloat16:
        return True
    return False

647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
def supports_cast(device, dtype): #TODO
    if dtype == torch.float32:
        return True
    if dtype == torch.float16:
        return True
    if is_device_mps(device):
        return False
    if directml_enabled: #TODO: test this
        return False
    if dtype == torch.bfloat16:
        return True
    if dtype == torch.float8_e4m3fn:
        return True
    if dtype == torch.float8_e5m2:
        return True
    return False

664
665
666
def device_supports_non_blocking(device):
    if is_device_mps(device):
        return False #pytorch bug? mps doesn't support non blocking
667
668
    if is_intel_xpu():
        return False
669
670
671
672
    if args.deterministic: #TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews)
        return False
    if directml_enabled:
        return False
comfyanonymous's avatar
comfyanonymous committed
673
674
675
676
677
    return True

def device_should_use_non_blocking(device):
    if not device_supports_non_blocking(device):
        return False
678
    return False
comfyanonymous's avatar
comfyanonymous committed
679
680
    # return True #TODO: figure out why this causes memory issues on Nvidia and possibly others

681
682
683
684
685
686
def force_channels_last():
    if args.force_channels_last:
        return True

    #TODO
    return False
687

688
689
690
691
692
693
694
def cast_to_device(tensor, device, dtype, copy=False):
    device_supports_cast = False
    if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
        device_supports_cast = True
    elif tensor.dtype == torch.bfloat16:
        if hasattr(device, 'type') and device.type.startswith("cuda"):
            device_supports_cast = True
695
696
        elif is_intel_xpu():
            device_supports_cast = True
697

comfyanonymous's avatar
comfyanonymous committed
698
    non_blocking = device_should_use_non_blocking(device)
comfyanonymous's avatar
comfyanonymous committed
699

700
701
702
    if device_supports_cast:
        if copy:
            if tensor.device == device:
comfyanonymous's avatar
comfyanonymous committed
703
704
                return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
            return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
705
        else:
comfyanonymous's avatar
comfyanonymous committed
706
            return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
707
    else:
comfyanonymous's avatar
comfyanonymous committed
708
        return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
709

710
def xformers_enabled():
711
    global directml_enabled
712
713
    global cpu_state
    if cpu_state != CPUState.GPU:
714
        return False
715
    if is_intel_xpu():
716
717
718
        return False
    if directml_enabled:
        return False
719
    return XFORMERS_IS_AVAILABLE
720

721
722
723
724
725

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
726
727

    return XFORMERS_ENABLED_VAE
728

729
def pytorch_attention_enabled():
730
    global ENABLE_PYTORCH_ATTENTION
731
732
    return ENABLE_PYTORCH_ATTENTION

733
734
735
736
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
737
        if is_nvidia(): #pytorch flash attention only works on Nvidia
738
            return True
739
740
        if is_intel_xpu():
            return True
741
742
    return False

743
744
745
746
747
748
749
750
751
752
753
754
def force_upcast_attention_dtype():
    upcast = args.force_upcast_attention
    try:
        if platform.mac_ver()[0] in ['14.5']: #black image bug on OSX Sonoma 14.5
            upcast = True
    except:
        pass
    if upcast:
        return torch.float32
    else:
        return None

755
def get_free_memory(dev=None, torch_free_too=False):
756
    global directml_enabled
757
    if dev is None:
758
        dev = get_torch_device()
759

Yurii Mazurevich's avatar
Yurii Mazurevich committed
760
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
761
762
763
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
764
765
766
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
767
        elif is_intel_xpu():
768
769
770
771
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
772
773
            mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved
            mem_free_total = mem_free_xpu + mem_free_torch
774
775
776
777
778
779
780
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
781
782
783
784
785

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
786

787
def cpu_mode():
788
789
    global cpu_state
    return cpu_state == CPUState.CPU
790

Yurii Mazurevich's avatar
Yurii Mazurevich committed
791
def mps_mode():
792
793
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
794

795
def is_device_type(device, type):
796
    if hasattr(device, 'type'):
797
        if (device.type == type):
comfyanonymous's avatar
comfyanonymous committed
798
799
800
            return True
    return False

801
802
803
def is_device_cpu(device):
    return is_device_type(device, 'cpu')

comfyanonymous's avatar
comfyanonymous committed
804
def is_device_mps(device):
805
806
807
808
    return is_device_type(device, 'mps')

def is_device_cuda(device):
    return is_device_type(device, 'cuda')
809

810
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
811
812
    global directml_enabled

813
814
815
816
    if device is not None:
        if is_device_cpu(device):
            return False

817
818
819
    if FORCE_FP16:
        return True

820
    if device is not None:
821
        if is_device_mps(device):
822
            return True
823

824
825
826
    if FORCE_FP32:
        return False

827
828
829
    if directml_enabled:
        return False

830
831
832
833
834
    if mps_mode():
        return True

    if cpu_mode():
        return False
835

836
    if is_intel_xpu():
comfyanonymous's avatar
comfyanonymous committed
837
838
        return True

839
    if torch.version.hip:
840
841
        return True

comfyanonymous's avatar
comfyanonymous committed
842
    props = torch.cuda.get_device_properties("cuda")
843
844
845
    if props.major >= 8:
        return True

846
847
848
849
850
851
852
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
853
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"]
854
855
856
857
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

858
    if fp16_works or manual_cast:
859
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
860
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
861
862
            return True

863
864
865
    if props.major < 7:
        return False

866
    #FP16 is just broken on these cards
867
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
868
869
870
871
872
873
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

874
875
876
877
878
879
880
881
882
def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
    if device is not None:
        if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow
            return False

    if device is not None: #TODO not sure about mps bf16 support
        if is_device_mps(device):
            return False

883
884
885
    if FORCE_FP32:
        return False

886
887
888
889
890
891
    if directml_enabled:
        return False

    if cpu_mode() or mps_mode():
        return False

comfyanonymous's avatar
comfyanonymous committed
892
893
894
895
896
897
898
899
900
901
    if is_intel_xpu():
        return True

    if device is None:
        device = torch.device("cuda")

    props = torch.cuda.get_device_properties(device)
    if props.major >= 8:
        return True

902
903
904
905
906
907
908
    bf16_works = torch.cuda.is_bf16_supported()

    if bf16_works or manual_cast:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
            return True

comfyanonymous's avatar
comfyanonymous committed
909
910
    return False

911
def soft_empty_cache(force=False):
912
913
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
914
        torch.mps.empty_cache()
915
    elif is_intel_xpu():
916
917
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
918
        if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
919
920
921
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

922
923
924
925
def unload_all_models():
    free_memory(1e30, get_torch_device())


926
def resolve_lowvram_weight(weight, model, key): #TODO: remove
927
    print("WARNING: The comfy.model_management.resolve_lowvram_weight function will be removed soon, please stop using it.")
comfyanonymous's avatar
comfyanonymous committed
928
929
    return weight

930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()