model_management.py 22.1 KB
Newer Older
1
2
import psutil
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
3
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
4
import comfy.utils
5
import torch
comfyanonymous's avatar
comfyanonymous committed
6
import sys
7

8
class VRAMState(Enum):
9
10
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
11
12
13
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
14
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
15
16
17
18
19

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
20

21
22
23
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
24
cpu_state = CPUState.GPU
25

26
total_vram = 0
27

28
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
29
xpu_available = False
30

31
directml_enabled = False
32
if args.directml is not None:
33
34
    import torch_directml
    directml_enabled = True
35
36
37
38
39
40
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
    print("Using directml with device:", torch_directml.device_name(device_index))
41
    # torch_directml.disable_tiled_resources(True)
42
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
43

44
try:
45
46
47
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
48
49
50
except:
    pass

51
52
53
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
54
        import torch.mps
55
56
57
58
59
60
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

61
62
def is_intel_xpu():
    global cpu_state
63
    global xpu_available
64
65
66
67
68
69
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False

def get_torch_device():
70
    global directml_enabled
71
    global cpu_state
72
73
74
    if directml_enabled:
        global directml_device
        return directml_device
75
    if cpu_state == CPUState.MPS:
76
        return torch.device("mps")
77
    if cpu_state == CPUState.CPU:
78
79
        return torch.device("cpu")
    else:
80
        if is_intel_xpu():
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
            return torch.device("xpu")
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
97
        elif is_intel_xpu():
98
99
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
100
            mem_total = torch.xpu.get_device_properties(dev).total_memory
101
            mem_total_torch = mem_reserved
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
    if lowvram_available and total_vram <= 4096:
        print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
        set_vram_to = VRAMState.LOW_VRAM

122
123
124
125
126
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

127
128
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
129
130
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
131
132
133
134
else:
    try:
        import xformers
        import xformers.ops
135
        XFORMERS_IS_AVAILABLE = True
136
137
138
139
140
141
142
143
144
145
146
        try:
            XFORMERS_VERSION = xformers.version.__version__
            print("xformers version:", XFORMERS_VERSION)
            if XFORMERS_VERSION.startswith("0.0.18"):
                print()
                print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                print("Please downgrade or upgrade xformers to a different version.")
                print()
                XFORMERS_ENABLED_VAE = False
        except:
            pass
147
    except:
148
        XFORMERS_IS_AVAILABLE = False
149

150
151
152
153
154
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
155
    return False
156

157
ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention
158
VAE_DTYPE = torch.float32
159

160
161
162
163
164
try:
    if is_nvidia():
        torch_version = torch.version.__version__
        if int(torch_version[0]) >= 2:
            if ENABLE_PYTORCH_ATTENTION == False and XFORMERS_IS_AVAILABLE == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
165
                ENABLE_PYTORCH_ATTENTION = True
166
167
            if torch.cuda.is_bf16_supported():
                VAE_DTYPE = torch.bfloat16
168
169
170
    if is_intel_xpu():
        if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
            ENABLE_PYTORCH_ATTENTION = True
171
172
173
except:
    pass

174
175
176
if is_intel_xpu():
    VAE_DTYPE = torch.bfloat16

177
178
179
180
181
182
183
if args.fp16_vae:
    VAE_DTYPE = torch.float16
elif args.bf16_vae:
    VAE_DTYPE = torch.bfloat16
elif args.fp32_vae:
    VAE_DTYPE = torch.float32

184

185
if ENABLE_PYTORCH_ATTENTION:
186
187
188
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
189
    XFORMERS_IS_AVAILABLE = False
190

191
192
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
193
    lowvram_available = True
194
195
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
196
elif args.highvram or args.gpu_only:
197
    vram_state = VRAMState.HIGH_VRAM
198

199
FORCE_FP32 = False
200
FORCE_FP16 = False
201
202
203
204
if args.force_fp32:
    print("Forcing FP32, if this improves things please report it.")
    FORCE_FP32 = True

205
206
207
208
if args.force_fp16:
    print("Forcing FP16.")
    FORCE_FP16 = True

209
if lowvram_available:
210
211
    try:
        import accelerate
212
213
        if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
            vram_state = set_vram_to
214
215
216
    except Exception as e:
        import traceback
        print(traceback.format_exc())
217
218
        print("ERROR: LOW VRAM MODE NEEDS accelerate.")
        lowvram_available = False
219

220

221
222
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
223

224
225
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
226

227
print(f"Set vram state to: {vram_state.name}")
228

229
230
231
232
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
    print("Disabling smart memory management")
233

234
235
def get_torch_device_name(device):
    if hasattr(device, 'type'):
236
        if device.type == "cuda":
237
238
239
240
241
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
242
243
        else:
            return "{}".format(device.type)
244
    elif is_intel_xpu():
245
        return "{} {}".format(device, torch.xpu.get_device_name(device))
246
247
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
248
249

try:
250
    print("Device:", get_torch_device_name(get_torch_device()))
251
252
253
except:
    print("Could not pick default device.")

254
print("VAE dtype:", VAE_DTYPE)
255

comfyanonymous's avatar
comfyanonymous committed
256
current_loaded_models = []
257

comfyanonymous's avatar
comfyanonymous committed
258
259
260
261
262
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.model_accelerated = False
        self.device = model.load_device
263

comfyanonymous's avatar
comfyanonymous committed
264
265
    def model_memory(self):
        return self.model.model_size()
266

comfyanonymous's avatar
comfyanonymous committed
267
268
269
270
271
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
272

comfyanonymous's avatar
comfyanonymous committed
273
274
275
276
    def model_load(self, lowvram_model_memory=0):
        patch_model_to = None
        if lowvram_model_memory == 0:
            patch_model_to = self.device
277

comfyanonymous's avatar
comfyanonymous committed
278
279
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
280

comfyanonymous's avatar
comfyanonymous committed
281
282
283
284
285
286
        try:
            self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
287

comfyanonymous's avatar
comfyanonymous committed
288
289
290
291
292
        if lowvram_model_memory > 0:
            print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
            device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
            accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
            self.model_accelerated = True
293

294
        if is_intel_xpu() and not args.disable_ipex_optimize:
295
            self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
296

comfyanonymous's avatar
comfyanonymous committed
297
        return self.real_model
298

comfyanonymous's avatar
comfyanonymous committed
299
300
301
302
    def model_unload(self):
        if self.model_accelerated:
            accelerate.hooks.remove_hook_from_submodules(self.real_model)
            self.model_accelerated = False
303

comfyanonymous's avatar
comfyanonymous committed
304
305
        self.model.unpatch_model(self.model.offload_device)
        self.model.model_patches_to(self.model.offload_device)
306

comfyanonymous's avatar
comfyanonymous committed
307
308
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
309

comfyanonymous's avatar
comfyanonymous committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

def unload_model_clones(model):
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

    for i in to_unload:
        print("unload clone", i)
        current_loaded_models.pop(i).model_unload()

def free_memory(memory_required, device, keep_loaded=[]):
    unloaded_model = False
    for i in range(len(current_loaded_models) -1, -1, -1):
comfyanonymous's avatar
comfyanonymous committed
326
327
328
        if not DISABLE_SMART_MEMORY:
            if get_free_memory(device) > memory_required:
                break
comfyanonymous's avatar
comfyanonymous committed
329
330
331
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
comfyanonymous's avatar
comfyanonymous committed
332
333
334
                m = current_loaded_models.pop(i)
                m.model_unload()
                del m
comfyanonymous's avatar
comfyanonymous committed
335
336
337
338
339
340
341
                unloaded_model = True

    if unloaded_model:
        soft_empty_cache()


def load_models_gpu(models, memory_required=0):
342
343
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)

        if loaded_model in current_loaded_models:
            index = current_loaded_models.index(loaded_model)
            current_loaded_models.insert(0, current_loaded_models.pop(index))
            models_already_loaded.append(loaded_model)
        else:
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
364
365
        return

comfyanonymous's avatar
comfyanonymous committed
366
    print("loading new")
367

comfyanonymous's avatar
comfyanonymous committed
368
369
370
371
    total_memory_required = {}
    for loaded_model in models_to_load:
        unload_model_clones(loaded_model.model)
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
372

comfyanonymous's avatar
comfyanonymous committed
373
374
375
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
376

comfyanonymous's avatar
comfyanonymous committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
            lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
            if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
                vram_set_state = VRAMState.LOW_VRAM
            else:
                lowvram_model_memory = 0
393

comfyanonymous's avatar
comfyanonymous committed
394
395
        if vram_set_state == VRAMState.NO_VRAM:
            lowvram_model_memory = 256 * 1024 * 1024
396

comfyanonymous's avatar
comfyanonymous committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

def cleanup_models():
    to_delete = []
    for i in range(len(current_loaded_models)):
        print(sys.getrefcount(current_loaded_models[i].model))
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
416

417
418
419
420
421
422
def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
    return dtype_size

423
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
424
    if vram_state == VRAMState.HIGH_VRAM:
425
426
427
428
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
429
430
431
432
433
434
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
435
436
437
    if DISABLE_SMART_MEMORY:
        return cpu_dev

438
    model_size = dtype_size(dtype) * parameters
comfyanonymous's avatar
comfyanonymous committed
439
440
441
442
443
444
445
446

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

447
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
448
    if args.gpu_only:
449
450
451
452
        return get_torch_device()
    else:
        return torch.device("cpu")

453
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
454
    if args.gpu_only:
455
        return get_torch_device()
456
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
457
458
        if is_intel_xpu():
            return torch.device("cpu")
459
        if should_use_fp16(prioritize_performance=False):
460
461
462
            return get_torch_device()
        else:
            return torch.device("cpu")
463
464
465
    else:
        return torch.device("cpu")

466
467
468
469
def vae_device():
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
470
    if args.gpu_only:
471
472
473
474
        return get_torch_device()
    else:
        return torch.device("cpu")

475
def vae_dtype():
476
477
    global VAE_DTYPE
    return VAE_DTYPE
478

479
480
481
482
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
483

484
485
486
487
488
489
490
def cast_to_device(tensor, device, dtype, copy=False):
    device_supports_cast = False
    if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
        device_supports_cast = True
    elif tensor.dtype == torch.bfloat16:
        if hasattr(device, 'type') and device.type.startswith("cuda"):
            device_supports_cast = True
491
492
        elif is_intel_xpu():
            device_supports_cast = True
493
494
495
496
497
498
499
500
501
502

    if device_supports_cast:
        if copy:
            if tensor.device == device:
                return tensor.to(dtype, copy=copy)
            return tensor.to(device, copy=copy).to(dtype)
        else:
            return tensor.to(device).to(dtype)
    else:
        return tensor.to(dtype).to(device, copy=copy)
503

504
def xformers_enabled():
505
    global directml_enabled
506
507
    global cpu_state
    if cpu_state != CPUState.GPU:
508
        return False
509
    if is_intel_xpu():
510
511
512
        return False
    if directml_enabled:
        return False
513
    return XFORMERS_IS_AVAILABLE
514

515
516
517
518
519

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
520
521

    return XFORMERS_ENABLED_VAE
522

523
def pytorch_attention_enabled():
524
    global ENABLE_PYTORCH_ATTENTION
525
526
    return ENABLE_PYTORCH_ATTENTION

527
528
529
530
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
531
        if is_nvidia(): #pytorch flash attention only works on Nvidia
532
533
534
            return True
    return False

535
def get_free_memory(dev=None, torch_free_too=False):
536
    global directml_enabled
537
    if dev is None:
538
        dev = get_torch_device()
539

Yurii Mazurevich's avatar
Yurii Mazurevich committed
540
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
541
542
543
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
544
545
546
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
547
        elif is_intel_xpu():
548
549
550
551
552
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_allocated = stats['allocated_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
553
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
554
555
556
557
558
559
560
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
561
562
563
564
565

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
566

comfyanonymous's avatar
comfyanonymous committed
567
568
569
570
571
572
573
def batch_area_memory(area):
    if xformers_enabled() or pytorch_attention_flash_attention():
        #TODO: these formulas are copied from maximum_batch_area below
        return (area / 20) * (1024 * 1024)
    else:
        return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)

574
575
def maximum_batch_area():
    global vram_state
576
    if vram_state == VRAMState.NO_VRAM:
577
578
579
        return 0

    memory_free = get_free_memory() / (1024 * 1024)
580
    if xformers_enabled() or pytorch_attention_flash_attention():
581
        #TODO: this needs to be tweaked
582
        area = 20 * memory_free
583
584
585
    else:
        #TODO: this formula is because AMD sucks and has memory management issues which might be fixed in the future
        area = ((memory_free - 1024) * 0.9) / (0.6)
586
    return int(max(area, 0))
587
588

def cpu_mode():
589
590
    global cpu_state
    return cpu_state == CPUState.CPU
591

Yurii Mazurevich's avatar
Yurii Mazurevich committed
592
def mps_mode():
593
594
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
595

596
597
def is_device_cpu(device):
    if hasattr(device, 'type'):
comfyanonymous's avatar
comfyanonymous committed
598
599
600
601
602
603
604
        if (device.type == 'cpu'):
            return True
    return False

def is_device_mps(device):
    if hasattr(device, 'type'):
        if (device.type == 'mps'):
605
606
607
            return True
    return False

608
def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
609
610
    global directml_enabled

611
612
613
614
    if device is not None:
        if is_device_cpu(device):
            return False

615
616
617
    if FORCE_FP16:
        return True

618
    if device is not None: #TODO
619
        if is_device_mps(device):
620
            return False
621

622
623
624
    if FORCE_FP32:
        return False

625
626
627
    if directml_enabled:
        return False

628
    if cpu_mode() or mps_mode():
629
630
        return False #TODO ?

631
    if is_intel_xpu():
comfyanonymous's avatar
comfyanonymous committed
632
633
634
        return True

    if torch.cuda.is_bf16_supported():
635
636
        return True

comfyanonymous's avatar
comfyanonymous committed
637
    props = torch.cuda.get_device_properties("cuda")
638
639
640
641
642
643
644
645
646
647
648
649
650
651
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

    if fp16_works:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
652
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
653
654
            return True

655
656
657
    if props.major < 7:
        return False

658
    #FP16 is just broken on these cards
659
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX"]
660
661
662
663
664
665
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

666
def soft_empty_cache(force=False):
667
668
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
669
        torch.mps.empty_cache()
670
    elif is_intel_xpu():
671
672
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
673
        if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
674
675
676
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

comfyanonymous's avatar
comfyanonymous committed
677
678
679
680
681
682
683
def resolve_lowvram_weight(weight, model, key):
    if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
        key_split = key.split('.')              # I have no idea why they don't just leave the weight there instead of using the meta device.
        op = comfy.utils.get_attr(model, '.'.join(key_split[:-1]))
        weight = op._hf_hook.weights_map[key_split[-1]]
    return weight

684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()